Estimate the error that results from using Simpson's Rule with n=4 to approximate ∫2ππsinxxdx. (See Example 6.)
Solution To estimate the error, we need to find the absolute maximum value of |f(4)| on the interval [π,2π]. We begin by finding f(4): f(x)=sinxxf′(x)=xcosx−sinxx2=cosxx−sinxx2f′′(x)=[−xsinx−cosxx2]−[x2cosx−2xsinxx4]=2sinxx3−sinxx−2cosxx2f′′′(x)=[2x3cosx−6x2sinxx6]−[xcosx−sinxx2]−[−2x2sinx−4xcosxx4]=2cosxx3−6sinxx4−cosxx+sinxx2+2sinxx2+4cosxx3=6cosxx3−cosxx+3sinxx4f(4)(x)=[−6x3sinx−18x2cosxx6]−[−xsinx−cosxx2]+[3x2cosx−6xsinxx4]−[6x4cosx−24x3sinxx8]=4cosxx2−24cosxx4+sinxx−12sinxx3+24sinxx5
517
We use graphing technology to find the absolute maximum value of |f(4)|. See Figure 20.
Since on the interval [π,2π] the maximum value of |f(4)|<0.176, we use M=0.176. Then the error that results from using Simpson's Rule to approximate ∫2ππsinxxdx is Error≤M(b−a)5180n4=0.176(2π−π)5180⋅44≈0.001
That is, −0.434−0.001≤∫2ππsinxxdx≤−0.434+0.001−0.435≤∫2ππsinxxdx≤−0.433