Loading [MathJax]/jax/output/CommonHTML/jax.js

EXAMPLE 7Estimating the Error in Using Simpson's Rule

Estimate the error that results from using Simpson's Rule with n=4 to approximate 2ππsinxxdx. (See Example 6.)

Solution To estimate the error, we need to find the absolute maximum value of |f(4)| on the interval [π,2π]. We begin by finding f(4): f(x)=sinxxf(x)=xcosxsinxx2=cosxxsinxx2f(x)=[xsinxcosxx2][x2cosx2xsinxx4]=2sinxx3sinxx2cosxx2f(x)=[2x3cosx6x2sinxx6][xcosxsinxx2][2x2sinx4xcosxx4]=2cosxx36sinxx4cosxx+sinxx2+2sinxx2+4cosxx3=6cosxx3cosxx+3sinxx4f(4)(x)=[6x3sinx18x2cosxx6][xsinxcosxx2]+[3x2cosx6xsinxx4][6x4cosx24x3sinxx8]=4cosxx224cosxx4+sinxx12sinxx3+24sinxx5

517

We use graphing technology to find the absolute maximum value of |f(4)|. See Figure 20.

Figure 20 y=|f(4)| on the interval [π,2π].

Since on the interval [π,2π] the maximum value of |f(4)|<0.176, we use M=0.176. Then the error that results from using Simpson's Rule to approximate 2ππsinxxdx is ErrorM(ba)5180n4=0.176(2ππ)5180440.001

That is, 0.4340.0012ππsinxxdx0.434+0.0010.4352ππsinxxdx0.433