Processing math: 8%

EXAMPLE 2Determining the Convergence of a Maclaurin Series

Show that 1+x+x22!+x33!++xnn!+ converges to ex for every number x. That is, prove that \bbox[5px, border:1px solid black, #F9F7ED]{\bbox[#FAF8ED,5pt]{ e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!} +\cdots +\frac{x^{n}}{n!}+\cdots =\sum\limits_{k\,=\,0}^{\infty }\frac{ x^{k}}{k!}}}

for all real numbers.

Solution To prove that 1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots =e^{x} for every number x, we need to show that \lim\limits_{n\rightarrow \infty }R_{n}(x)=0. Since f^{\,(n+1)}(x)=e^{x}, we have R_{n}(x)=\frac{f^{(n+1)}(u) x^{n+1}}{(n+1) !}=\frac{e^{u}x^{n+1}}{(n+1)!}

where u is between 0 and x. To show that \lim\limits_{n\rightarrow\infty }R_{n}(x) = 0, we consider two cases: x>0 and x<0.

The Squeeze Theorem is discussed in Section 1.4, pp. 106-107.

Case 1: When x>0, then 0<u<x, so that 1<e^{u}<e^{x} and, for every positive integer n, 0<R_{n}(x)=\frac{e^{u}x^{n+1}}{(n+1)!}<\frac{e^{x}x^{n+1}}{(n+1)!}

By the Ratio Test, the series \sum\limits_{k\,=\,\,0}^{\infty }\frac{x^{k+1}}{(k+1) !} converges for all x. It follows that \lim\limits_{n\rightarrow \infty } \frac{x^{n+1}}{(n+1) !}=0, and, therefore, \lim\limits_{n\rightarrow \infty }\frac{e^{x}x^{n+1}}{(n+1)!} =e^{x}\lim\limits_{n\rightarrow \infty }\frac{x^{n+1}}{(n+1)!}=0

By the Squeeze Theorem, \lim\limits_{n\rightarrow \infty }R_{n}(x)=0.

Case 2: When x<0, then x<u<0 and e^{x}<e^{u}<1, so that 0\leq \left\vert R_{n}(x)\right\vert =\frac{e^{u}\cdot |x|^{n+1}}{(n+1)!}< \frac{|x|^{n+1}}{(n+1)!}

616

Since \lim\limits_{n\rightarrow \infty }\frac{\vert x\vert^{n+1}}{(n+1) !}=0, by the Squeeze Theorem, \lim\limits_{n\rightarrow \infty }R_{n}(x)=0. So for all x, \lim\limits_{n\rightarrow \infty }R_{n}(x) =0. As a result, e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots +\frac{x^{n}}{n!}+\cdots =\sum_{k\,=\,0}^{\infty }\frac{x^{k}}{k!} for all numbers x.