When you finish this section, you should be able to:
In the previous sections, we have discussed a variety of tests that can be used to determine if a series converges or diverges. In the exercises following each section, the instructions indicate which test to use. Unfortunately, in practice, series do not come with instructions. This section summarizes the tests that we have discussed and gives some clues as to what test has the best chance of answering the fundamental question, ‘Does the series converge or diverge?’
The following outline is a guide to help you choose a test to use when determining the convergence or divergence of a series. Table 5 lists the tests we have discussed. Table 6 describes important series we have analyzed.
597
Test Name | Description | Comment |
---|---|---|
Test for Divergence for all series (p. 566) | \(\sum\limits_{k=1}^{\infty }\,a_{k}\) diverges if \(\lim\limits_{n\,\rightarrow \,\infty}a_{n}\neq 0\). | No information is obtained about convergence if \(\lim\limits_{n\,\rightarrow \,\infty}a_{n}=0\). |
Integral Test (p. 569) for series of positive terms | \(\sum\limits_{k=1}^{\infty }\,a_{k}\) converges (diverges) if \(\int_{1}^{\infty}\,f(x)\,dx\) converges (diverges), where \(f\) is continuous, positive, and decreasing for \(x\geq 1;\) and \(f(k)=a_{k}\) for all \(k\). | Good to use if \(f\) is easy to integrate. |
Comparison Test for Convergence for series of positive terms (p. 576) | \(\sum\limits_{k=1}^{\infty }\,a_{k}\) converges if \(0< a_{k}\leq b_{k}\) and the series \(\sum\limits_{k=1}^{\infty }b_{k}\) converges. | \(\sum\limits_{k=1}^{\infty }b_{k}\) must have positive terms and be convergent. |
Comparison Test for Divergence for series of positive terms (p. 576) | \(\sum\limits_{k=1}^{\infty}\,a_{k}\) diverges if \(a_{k}\geq c_{k}> 0\) and the series \(\sum\limits_{k=1}^{\infty }c_{k}\) diverges. | \(\sum\limits_{k=1}^{\infty }c_{k}\) must have positive terms and be divergent. |
Limit Comparison Test (p. 577) for series of positive terms | \(\sum\limits_{k=1}^{\infty}\,a_{k}\) converges (diverges) if \(\sum\limits_{k=1}^{\infty }b_{k}\) converges (diverges), and \(\lim\limits_{n\,\rightarrow \,\infty }\dfrac{a_{n}}{b_{n}}=L,\) a positive real number. | \(\sum\limits_{k=1}^{\infty}b_{k}\) must have positive terms, whose convergence (divergence) can be determined. |
Alternating Series Test (p. 582) | \(\sum\limits_{k=1}^{\infty}(-1)^{k+1}a_{k}\), \(a_{k}>0,\) converges if
|
The error made by using the \(n\)th partial sum as an approximation to the sum \(S\) of the series is less than the \((n+1) \)st term of the series. |
Absolute Convergence Test (p. 586) | If \(\sum\limits_{k=1}^{\infty}\,\left\vert a_{k}\right\vert \) converges, then \(\sum\limits_{k=1}^{\infty}a_{k}\) converges. | The converse is not true. That is, if \(\sum\limits_{k=1}^{\infty}\,\left\vert a_{k}\right\vert \) diverges, \(\sum\limits_{k=1}^{\infty }a_{k}\) may converge. |
Ratio Test (p. 591) for series with nonzero terms | \(\sum\limits_{k=1}^{\infty }a_{k}\) converges if \(\lim\limits_{n\,\rightarrow \,\infty }\,\left\vert \dfrac{a_{n+1}}{a_{n}}\right\vert <1\). \(\sum\limits_{k=1}^{\infty}a_{k}\) diverges if \(\lim\limits_{n\,\rightarrow \,\infty }\,\left\vert \dfrac{a_{n+1}}{a_{n}}\right\vert >1\) or if \(\lim\limits_{n\,\rightarrow \,\infty }\,\left\vert \dfrac{a_{n+1}}{a_{n}}\right\vert = \infty\). |
Good to use if \(a_{n}\) includes factorials or powers. It provides no information if \(\lim\limits_{n\,\rightarrow \,\infty }\,\left\vert \dfrac{a_{n+1}}{a_{n}}\right\vert =1.\) |
Root Test (p. 593) for series with nonzero terms | \(\sum\limits_{k=1}^{\infty }a_{k}\) converges if \(\lim\limits_{n\,\rightarrow \,\infty }\sqrt[n]{\vert a_{n}\vert }<1\). \( \sum\limits_{k=1}^{\infty }a_{k}\) diverges if \(\lim\limits_{n\,\rightarrow \,\infty }\sqrt[n]{\vert a_{n}\vert }>1\) or if \(\lim\limits_{n\,\rightarrow \,\infty }\sqrt[n]{\vert a_{n}\vert }=\infty\). |
Good to use if \(a_{n}\) involves \(n\)th powers. It provides no information if \(\lim\limits_{n\,\rightarrow\,\infty }\sqrt[n]{\vert a_{n}\vert }=1\). |
598
Series Name | Series Description | Comments |
---|---|---|
Geometric series (p. 557) | \(\sum\limits_{k=1}^{\infty }ar^{k-1}=a+ar+ar^{2} +\cdots ,~a\neq 0\) | Converges to \(\dfrac{a}{1-r}\) if \(\vert r\vert <1\); diverges if \(\vert r\vert \geq 1.\) |
Harmonic series (p. 561) | \(\sum\limits_{k=1}^{\infty }\dfrac{1}{k}=1+\dfrac{1}{2}+\dfrac{1}{3}+\cdots \) | Diverges. |
p-series (p. 570) | \(\sum\limits_{k=1}^{\infty }\dfrac{1}{k^{p}}=1+\dfrac{1}{2^{p}}+\dfrac{1}{3^{p}}+\cdots \) | Converges if \(p>1\); diverges if \(0<p\leq 1\). |
\(k\)-to-the-\(k\) series (p. 576) | \(\sum\limits_{k=1}^{\infty }\dfrac{1}{k^{k}}=1+\dfrac{1}{2^{2}}+\dfrac{1}{3^{3}}+\dfrac{1}{4^{4}}+\cdots \) | Converges. |
Factorial series (p. 591) | \(\sum\limits_{k\,=\,0}^{\infty }\dfrac{1}{k!}=1+1+\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{24}+\cdots \) | Converges. |
Alternating harmonic series (p. 583) | \(\sum\limits_{k=1}^{\infty }\dfrac{(-1)^{k+1}}{k}=1-\dfrac{1}{2}+\dfrac{1}{3}- \dfrac{1}{4}+\cdots \) | Converges. |