File | Title | Manuscript Id |
Chapter 19 Introduction | morris2e_ch19_1.html | 5616c13a757a2e0278000000 |
DLAP questions | morris2e_ch19_1_dlap.xml | 5616c13a757a2e0278000000 |
19.1 Chromatin to Messenger RNA in Eukaryotes
| morris2e_ch19_2.html | 5616c13a757a2e0278000000 |
DLAP questions | morris2e_ch19_2_dlap.xml | 5616c13a757a2e0278000000 |
Gene expression can be influenced by chemical modification of DNA or histones.
| morris2e_ch19_3.html | 5616c13a757a2e0278000000 |
DLAP questions | morris2e_ch19_3_dlap.xml | 5616c13a757a2e0278000000 |
Gene expression can be regulated at the level of an entire chromosome.
| morris2e_ch19_4.html | 5616c13a757a2e0278000000 |
DLAP questions | morris2e_ch19_4_dlap.xml | 5616c13a757a2e0278000000 |
Transcription is a key control point in gene expression.
| morris2e_ch19_5.html | 5616c13a757a2e0278000000 |
DLAP questions | morris2e_ch19_5_dlap.xml | 5616c13a757a2e0278000000 |
RNA processing is also important in gene regulation.
| morris2e_ch19_6.html | 5616c13a757a2e0278000000 |
DLAP questions | morris2e_ch19_6_dlap.xml | 5616c13a757a2e0278000000 |
19.2 Messenger RNA to Phenotype in Eukaryotes
| morris2e_ch19_7.html | 5616c13a757a2e0278000000 |
DLAP questions | morris2e_ch19_7_dlap.xml | 5616c13a757a2e0278000000 |
Small regulatory RNAs inhibit translation or promote mRNA degradation.
| morris2e_ch19_8.html | 5616c13a757a2e0278000000 |
DLAP questions | morris2e_ch19_8_dlap.xml | 5616c13a757a2e0278000000 |
Translational regulation controls the rate, timing, and location of protein synthesis.
| morris2e_ch19_9.html | 5616c13a757a2e0278000000 |
DLAP questions | morris2e_ch19_9_dlap.xml | 5616c13a757a2e0278000000 |
Protein structure and chemical modification modulate protein effects on phenotype.
| morris2e_ch19_10.html | 5616c13a757a2e0278000000 |
DLAP questions | morris2e_ch19_10_dlap.xml | 5616c13a757a2e0278000000 |
Case 3: How do lifestyle choices affect expression of your personal genome?
| morris2e_ch19_11.html | 5616c13a757a2e0278000000 |
DLAP questions | morris2e_ch19_11_dlap.xml | 5616c13a757a2e0278000000 |
19.3 Transcriptional Regulation in Prokaryotes
| morris2e_ch19_12.html | 5616c13a757a2e0278000000 |
DLAP questions | morris2e_ch19_12_dlap.xml | 5616c13a757a2e0278000000 |
Transcriptional regulation can be positive or negative.
| morris2e_ch19_13.html | 5616c13a757a2e0278000000 |
DLAP questions | morris2e_ch19_13_dlap.xml | 5616c13a757a2e0278000000 |
Lactose utilization in E. coli is the pioneering example of transcriptional regulation.
| morris2e_ch19_14.html | 5616c13a757a2e0278000000 |
DLAP questions | morris2e_ch19_14_dlap.xml | 5616c13a757a2e0278000000 |
The repressor protein binds with the operator and prevents transcription, but not in the presence of lactose.
| morris2e_ch19_15.html | 5616c13a757a2e0278000000 |
DLAP questions | morris2e_ch19_15_dlap.xml | 5616c13a757a2e0278000000 |
The function of the lactose operon was revealed by genetic studies.
| morris2e_ch19_16.html | 5616c13a757a2e0278000000 |
DLAP questions | morris2e_ch19_16_dlap.xml | 5616c13a757a2e0278000000 |
The lactose operon is also positively regulated by CRP–cAMP.
| morris2e_ch19_17.html | 5616c13a757a2e0278000000 |
DLAP questions | morris2e_ch19_17_dlap.xml | 5616c13a757a2e0278000000 |
Transcriptional regulation determines the outcome of infection by a bacterial virus.
| morris2e_ch19_18.html | 5616c13a757a2e0278000000 |
DLAP questions | morris2e_ch19_18_dlap.xml | 5616c13a757a2e0278000000 |
Chapter 19 Summary | morris2e_ch19_19.html | 5616c13a757a2e0278000000 |
DLAP questions | morris2e_ch19_19_dlap.xml | 5616c13a757a2e0278000000 |