File | Title | Manuscript Id |
Chapter 21 Introduction | morris2e_ch21_1.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_1_dlap.xml | 5617cd84757a2eab63000000 |
21.1 Genetic Variation
| morris2e_ch21_2.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_2_dlap.xml | 5617cd84757a2eab63000000 |
Population genetics is the study of patterns of genetic variation.
| morris2e_ch21_3.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_3_dlap.xml | 5617cd84757a2eab63000000 |
Mutation and recombination are the two sources of genetic variation.
| morris2e_ch21_4.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_4_dlap.xml | 5617cd84757a2eab63000000 |
21.2 Measuring Genetic Variation
| morris2e_ch21_5.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_5_dlap.xml | 5617cd84757a2eab63000000 |
To understand patterns of genetic variation, we require information about allele frequencies.
| morris2e_ch21_6.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_6_dlap.xml | 5617cd84757a2eab63000000 |
Early population geneticists relied on observable traits and gel electrophoresis to measure variation.
| morris2e_ch21_7.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_7_dlap.xml | 5617cd84757a2eab63000000 |
DNA sequencing is the gold standard for measuring genetic variation.
| morris2e_ch21_8.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_8_dlap.xml | 5617cd84757a2eab63000000 |
21.3 Evolution and the Hardy–Weinberg Equilibrium
| morris2e_ch21_9.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_9_dlap.xml | 5617cd84757a2eab63000000 |
Evolution is a change in allele or genotype frequency over time.
| morris2e_ch21_10.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_10_dlap.xml | 5617cd84757a2eab63000000 |
The Hardy–Weinberg equilibrium describes situations in which allele and genotype frequencies do not change.
| morris2e_ch21_11.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_11_dlap.xml | 5617cd84757a2eab63000000 |
The Hardy–Weinberg equilibrium relates allele frequencies and genotype frequencies.
| morris2e_ch21_12.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_12_dlap.xml | 5617cd84757a2eab63000000 |
The Hardy–Weinberg equilibrium is the starting point for population genetic analysis.
| morris2e_ch21_13.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_13_dlap.xml | 5617cd84757a2eab63000000 |
21.4 Natural Selection
| morris2e_ch21_14.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_14_dlap.xml | 5617cd84757a2eab63000000 |
Natural selection brings about adaptations.
| morris2e_ch21_15.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_15_dlap.xml | 5617cd84757a2eab63000000 |
The Modern Synthesis combines Mendelian genetics and Darwinian evolution.
| morris2e_ch21_16.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_16_dlap.xml | 5617cd84757a2eab63000000 |
Natural selection increases the frequency of advantageous mutations and decreases the frequency of deleterious mutations.
| morris2e_ch21_17.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_17_dlap.xml | 5617cd84757a2eab63000000 |
Case 4: What genetic differences have made some individuals more and some less susceptible to malaria?
| morris2e_ch21_18.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_18_dlap.xml | 5617cd84757a2eab63000000 |
Natural selection can be stabilizing, directional, or disruptive.
| morris2e_ch21_19.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_19_dlap.xml | 5617cd84757a2eab63000000 |
Sexual selection increases an individual’s reproductive success.
| morris2e_ch21_20.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_20_dlap.xml | 5617cd84757a2eab63000000 |
21.5 Migration, Mutation, Genetic Drift, and Non-Random Mating
| morris2e_ch21_21.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_21_dlap.xml | 5617cd84757a2eab63000000 |
Migration reduces genetic variation between populations.
| morris2e_ch21_22.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_22_dlap.xml | 5617cd84757a2eab63000000 |
Mutation increases genetic variation.
| morris2e_ch21_23.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_23_dlap.xml | 5617cd84757a2eab63000000 |
Genetic drift has a large effect in small populations.
| morris2e_ch21_24.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_24_dlap.xml | 5617cd84757a2eab63000000 |
Non-random mating alters genotype frequencies without affecting allele frequencies.
| morris2e_ch21_25.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_25_dlap.xml | 5617cd84757a2eab63000000 |
21.6 Molecular Evolution
| morris2e_ch21_26.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_26_dlap.xml | 5617cd84757a2eab63000000 |
The molecular clock relates the amount of sequence difference between species and the time since the species diverged.
| morris2e_ch21_27.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_27_dlap.xml | 5617cd84757a2eab63000000 |
The rate of the molecular clock varies.
| morris2e_ch21_28.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_28_dlap.xml | 5617cd84757a2eab63000000 |
Chapter 21 Summary | morris2e_ch21_29.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_29_dlap.xml | 5617cd84757a2eab63000000 |