File | Title | Manuscript Id |
Chapter 28 Introduction | morris2e_ch28_1.html | 562487ac757a2ed66d000000 |
DLAP questions | morris2e_ch28_1_dlap.xml | 562487ac757a2ed66d000000 |
28.1 The Phylogenetic Distribution of Multicellular Organisms
| morris2e_ch28_2.html | 562487ac757a2ed66d000000 |
DLAP questions | morris2e_ch28_2_dlap.xml | 562487ac757a2ed66d000000 |
Simple multicellularity is widespread among eukaryotes.
| morris2e_ch28_3.html | 562487ac757a2ed66d000000 |
DLAP questions | morris2e_ch28_3_dlap.xml | 562487ac757a2ed66d000000 |
Complex multicellularity evolved several times.
| morris2e_ch28_4.html | 562487ac757a2ed66d000000 |
DLAP questions | morris2e_ch28_4_dlap.xml | 562487ac757a2ed66d000000 |
28.2 Diffusion and Bulk Flow
| morris2e_ch28_5.html | 562487ac757a2ed66d000000 |
DLAP questions | morris2e_ch28_5_dlap.xml | 562487ac757a2ed66d000000 |
Diffusion is effective only over short distances.
| morris2e_ch28_6.html | 562487ac757a2ed66d000000 |
DLAP questions | morris2e_ch28_6_dlap.xml | 562487ac757a2ed66d000000 |
Animals achieve large size by circumventing limits imposed by diffusion.
| morris2e_ch28_7.html | 562487ac757a2ed66d000000 |
DLAP questions | morris2e_ch28_7_dlap.xml | 562487ac757a2ed66d000000 |
Complex multicellular organisms have structures specialized for bulk flow.
| morris2e_ch28_8.html | 562487ac757a2ed66d000000 |
DLAP questions | morris2e_ch28_8_dlap.xml | 562487ac757a2ed66d000000 |
28.3 How to Build a Multicellular Organism
| morris2e_ch28_9.html | 562487ac757a2ed66d000000 |
DLAP questions | morris2e_ch28_9_dlap.xml | 562487ac757a2ed66d000000 |
Complex multicellularity requires adhesion between cells.
| morris2e_ch28_10.html | 562487ac757a2ed66d000000 |
DLAP questions | morris2e_ch28_10_dlap.xml | 562487ac757a2ed66d000000 |
How did animal cell adhesion originate?
| morris2e_ch28_11.html | 562487ac757a2ed66d000000 |
DLAP questions | morris2e_ch28_11_dlap.xml | 562487ac757a2ed66d000000 |
Complex multicellularity requires communication between cells.
| morris2e_ch28_12.html | 562487ac757a2ed66d000000 |
DLAP questions | morris2e_ch28_12_dlap.xml | 562487ac757a2ed66d000000 |
Complex multicellularity requires a genetic program for coordinated growth and cell differentiation.
| morris2e_ch28_13.html | 562487ac757a2ed66d000000 |
DLAP questions | morris2e_ch28_13_dlap.xml | 562487ac757a2ed66d000000 |
28.4 Variations On a Theme: Plants Versus Animals
| morris2e_ch28_14.html | 562487ac757a2ed66d000000 |
DLAP questions | morris2e_ch28_14_dlap.xml | 562487ac757a2ed66d000000 |
Cell walls shape patterns of growth and development in plants.
| morris2e_ch28_15.html | 562487ac757a2ed66d000000 |
DLAP questions | morris2e_ch28_15_dlap.xml | 562487ac757a2ed66d000000 |
Animal cells can move relative to one another.
| morris2e_ch28_16.html | 562487ac757a2ed66d000000 |
DLAP questions | morris2e_ch28_16_dlap.xml | 562487ac757a2ed66d000000 |
28.5 The Evolution of Complex Multicellularity
| morris2e_ch28_17.html | 562487ac757a2ed66d000000 |
DLAP questions | morris2e_ch28_17_dlap.xml | 562487ac757a2ed66d000000 |
Fossil evidence of complex multicellular organisms is first observed in rocks deposited 579–555 million years ago.
| morris2e_ch28_18.html | 562487ac757a2ed66d000000 |
DLAP questions | morris2e_ch28_18_dlap.xml | 562487ac757a2ed66d000000 |
Oxygen is necessary for complex multicellular life.
| morris2e_ch28_19.html | 562487ac757a2ed66d000000 |
DLAP questions | morris2e_ch28_19_dlap.xml | 562487ac757a2ed66d000000 |
Land plants evolved from green algae that could carry out photosynthesis on land.
| morris2e_ch28_20.html | 562487ac757a2ed66d000000 |
DLAP questions | morris2e_ch28_20_dlap.xml | 562487ac757a2ed66d000000 |
Regulatory genes played an important role in the evolution of complex multicellular organisms.
| morris2e_ch28_21.html | 562487ac757a2ed66d000000 |
DLAP questions | morris2e_ch28_21_dlap.xml | 562487ac757a2ed66d000000 |
Chapter 28 Summary | morris2e_ch28_22.html | 562487ac757a2ed66d000000 |
DLAP questions | morris2e_ch28_22_dlap.xml | 562487ac757a2ed66d000000 |