Printed Page 496
496
When you finish this section, you should be able to:
Printed Page 496
Completing the square is discussed in Appendix A.1, pp. A-2 to A-3.
Integrals containing ax2+bx+c, where a≠0, b and c are real numbers, can often be integrated by completing the square. We complete the square of ax2+bx+c as follows: ax2+bx+c=a(x2+bax)+cFactor a from the first two terms.=a(x2+bax+b24a2)+c−b24aAdd and subtract a (12⋅ba)2=b24a.=a(x+b2a)2+(c−b24a)Factor x2+bax+b24a2=(x+b2a)2.
After completing the square, we use the substitution u=x+b2a
to express the original quadratic expression ax2+bx+c in the simpler form au2+r, where r=c−b24a.
Find ∫dxx2+6x+10.
Solution The integrand contains the quadratic expression x2+6x+10. So, we complete the square. x2+6x+10=(x2+6x+9)+1=(x+3)2+1
Now we write the integral as ∫dxx2+6x+10=∫dx(x+3)2+1
and use the substitution u=x+3. Then du=dx, and ∫dxx2+6x+10=∫dx(x+3)2+1=∫duu2+1=tan−1u+C=tan−1(x+3)+C
∫dxa2+x2=1atan−1xa+C
497
Find
Solution (a) The integrand contains the quadratic expression x2+x+1. So, we complete the square in the denominator. ∫dxx2+x+1=↑Complete the square∫dx(x2+x+14)+(1−14)=∫dx(x+12)2+34
∫duu2+a2=1atan−1ua+C
Now we use the substitution u=x+12. Then du=dx. ∫dxx2+x+1=∫dx(x+12)2+34=∫duu2+34a=√32=1√32tan−1u√32+C=2√3tan−12u√3+C=2√33tan−12x+1√3+Cu=x+12
We could also complete the square and let u=x+12.
(b) This problem requires some imagination. We force the derivative of the denominator to appear in the numerator by using the following algebraic manipulations: ∫x dxx2+x+1=12∫2x dxx2+x+1Multiply the integrand by 22.=12∫[(2x+1)−1]dxx2+x+1Add and subtract 1 inthe numerator to get 2x+1.=12∫(2x+1)dxx2+x+1−12∫dxx2+x+1Write the integral as thesum of two integrals.
∫g′(x)g(x)dx=ln|g(x)|+C
Now we find each integral separately. We found the integral on the right in (a). In the integral on the left, the numerator equals the derivative of the denominator. 12∫(2x+1)dxx2+x+1=12ln|x2+x+1|
So, ∫x dxx2+x+1=12∫(2x+1)dxx2+x+1−12∫dxx2+x+1=12ln|x2+x+1|−12[2√33tan−12x+1√3]+C=12ln|x2+x+1|−√33tan−12x+1√3+C
498
Find ∫dx√2x−x2.
Solution The integrand contains the quadratic expression 2x−x2, so we complete the square. 2x−x2=−x2+2x=−(x2−2x)=−(x2−2x+1)+1=−(x−1)2+1=1−(x−1)2
Then ∫dx√2x−x2=∫dx√1−(x−1)2=↑u=x−1du=dx∫du√1−u2=sin−1u+C=sin−1(x−1)+C
∫dx√a2−x2=sin−1xa+C