Loading [MathJax]/jax/output/CommonHTML/jax.js

7.4 Substitution: Integrands Containing ax2+bx+c

Printed Page 496

496

OBJECTIVE

When you finish this section, you should be able to:

  1. Find an integral that contains a quadratic expression (p. 496)

1 Find an Integral That Contains a Quadratic Expression

Printed Page 496

NEED TO REVIEW?

Completing the square is discussed in Appendix A.1, pp. A-2 to A-3.

Integrals containing ax2+bx+c, where a0, b and c are real numbers, can often be integrated by completing the square. We complete the square of ax2+bx+c as follows: ax2+bx+c=a(x2+bax)+cFactor a from the first two terms.=a(x2+bax+b24a2)+cb24aAdd and subtract a (12ba)2=b24a.=a(x+b2a)2+(cb24a)Factor x2+bax+b24a2=(x+b2a)2.

After completing the square, we use the substitution u=x+b2a

to express the original quadratic expression ax2+bx+c in the simpler form au2+r, where r=cb24a.

EXAMPLE 1Finding an Integral Containing x2+6x+10

Find dxx2+6x+10.

Solution The integrand contains the quadratic expression x2+6x+10. So, we complete the square. x2+6x+10=(x2+6x+9)+1=(x+3)2+1

Now we write the integral as dxx2+6x+10=dx(x+3)2+1

and use the substitution u=x+3. Then du=dx, and dxx2+6x+10=dx(x+3)2+1=duu2+1=tan1u+C=tan1(x+3)+C

RECALL

dxa2+x2=1atan1xa+C

NOW WORK

Problem 1.

497

EXAMPLE 2Finding Integrals Containing x2+x+1

Find

  1. (a) dxx2+x+1
  2. (b) xdxx2+x+1

Solution (a) The integrand contains the quadratic expression x2+x+1. So, we complete the square in the denominator. dxx2+x+1=Complete the squaredx(x2+x+14)+(114)=dx(x+12)2+34

RECALL

duu2+a2=1atan1ua+C

Now we use the substitution u=x+12. Then du=dx. dxx2+x+1=dx(x+12)2+34=duu2+34a=32=132tan1u32+C=23tan12u3+C=233tan12x+13+Cu=x+12

NOTE

We could also complete the square and let u=x+12.

(b) This problem requires some imagination. We force the derivative of the denominator to appear in the numerator by using the following algebraic manipulations: x dxx2+x+1=122x dxx2+x+1Multiply the integrand by 22.=12[(2x+1)1]dxx2+x+1Add and subtract 1 inthe numerator to get 2x+1.=12(2x+1)dxx2+x+112dxx2+x+1Write the integral as thesum of two integrals.

RECALL

g(x)g(x)dx=ln|g(x)|+C

Now we find each integral separately. We found the integral on the right in (a). In the integral on the left, the numerator equals the derivative of the denominator. 12(2x+1)dxx2+x+1=12ln|x2+x+1|

So, x dxx2+x+1=12(2x+1)dxx2+x+112dxx2+x+1=12ln|x2+x+1|12[233tan12x+13]+C=12ln|x2+x+1|33tan12x+13+C

NOW WORK

Problem 7.

498

EXAMPLE 3Finding an Integral Containing 2xx2

Find dx2xx2.

Solution The integrand contains the quadratic expression 2xx2, so we complete the square. 2xx2=x2+2x=(x22x)=(x22x+1)+1=(x1)2+1=1(x1)2

Then dx2xx2=dx1(x1)2=u=x1du=dxdu1u2=sin1u+C=sin1(x1)+C

RECALL

dxa2x2=sin1xa+C

NOW WORK

Problem 23.