File | Title | Manuscript Id |
Chapter 26 Introduction | morris2e_ch26_1.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_1_dlap.xml | 561d5637757a2ebc6d000000 |
26.1 Two Prokaryotic Domains
| morris2e_ch26_2.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_2_dlap.xml | 561d5637757a2ebc6d000000 |
The bacterial cell is small but powerful.
| morris2e_ch26_3.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_3_dlap.xml | 561d5637757a2ebc6d000000 |
Diffusion limits cell size in bacteria.
| morris2e_ch26_4.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_4_dlap.xml | 561d5637757a2ebc6d000000 |
Horizontal gene transfer promotes genetic diversity in bacteria.
| morris2e_ch26_5.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_5_dlap.xml | 561d5637757a2ebc6d000000 |
Archaea form a second prokaryotic domain.
| morris2e_ch26_6.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_6_dlap.xml | 561d5637757a2ebc6d000000 |
26.2 An Expanded Carbon Cycle
| morris2e_ch26_7.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_7_dlap.xml | 561d5637757a2ebc6d000000 |
Many photosynthetic bacteria do not produce oxygen.
| morris2e_ch26_8.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_8_dlap.xml | 561d5637757a2ebc6d000000 |
Many bacteria respire without oxygen.
| morris2e_ch26_9.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_9_dlap.xml | 561d5637757a2ebc6d000000 |
Photoheterotrophs obtain energy from light but obtain carbon from preformed organic molecules.
| morris2e_ch26_10.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_10_dlap.xml | 561d5637757a2ebc6d000000 |
Chemoautotrophy is a uniquely prokaryotic metabolism.
| morris2e_ch26_11.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_11_dlap.xml | 561d5637757a2ebc6d000000 |
26.3 Other Biogeochemical Cycles
| morris2e_ch26_12.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_12_dlap.xml | 561d5637757a2ebc6d000000 |
Bacteria and archaeons dominate Earth’s sulfur cycle.
| morris2e_ch26_13.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_13_dlap.xml | 561d5637757a2ebc6d000000 |
The nitrogen cycle is also driven by bacteria and archaeons.
| morris2e_ch26_14.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_14_dlap.xml | 561d5637757a2ebc6d000000 |
26.4 The Diversity of Bacteria
| morris2e_ch26_15.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_15_dlap.xml | 561d5637757a2ebc6d000000 |
Bacterial phylogeny is a work in progress.
| morris2e_ch26_16.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_16_dlap.xml | 561d5637757a2ebc6d000000 |
What, if anything, is a bacterial species?
| morris2e_ch26_17.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_17_dlap.xml | 561d5637757a2ebc6d000000 |
Proteobacteria are the most diverse bacteria.
| morris2e_ch26_18.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_18_dlap.xml | 561d5637757a2ebc6d000000 |
The gram-positive bacteria include organisms that cause and cure disease.
| morris2e_ch26_19.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_19_dlap.xml | 561d5637757a2ebc6d000000 |
Photosynthesis is widely distributed on the bacterial tree.
| morris2e_ch26_20.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_20_dlap.xml | 561d5637757a2ebc6d000000 |
26.5 The Diversity of Archaea
| morris2e_ch26_21.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_21_dlap.xml | 561d5637757a2ebc6d000000 |
The archaeal tree has anaerobic, hyperthermophilic organisms near its base.
| morris2e_ch26_22.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_22_dlap.xml | 561d5637757a2ebc6d000000 |
The Archaea include several groups of acid-loving microorganisms.
| morris2e_ch26_23.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_23_dlap.xml | 561d5637757a2ebc6d000000 |
Only Archaea produce methane as a by-product of energy metabolism.
| morris2e_ch26_24.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_24_dlap.xml | 561d5637757a2ebc6d000000 |
One group of the Euryarchaeota thrives in extremely salty environments.
| morris2e_ch26_25.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_25_dlap.xml | 561d5637757a2ebc6d000000 |
Thaumarchaeota may be the most abundant cells in the deep ocean.
| morris2e_ch26_26.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_26_dlap.xml | 561d5637757a2ebc6d000000 |
26.6 The Evolutionary History of Prokaryotes
| morris2e_ch26_27.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_27_dlap.xml | 561d5637757a2ebc6d000000 |
Life originated early in our planet’s history.
| morris2e_ch26_28.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_28_dlap.xml | 561d5637757a2ebc6d000000 |
Prokaryotes have coevolved with eukaryotes.
| morris2e_ch26_29.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_29_dlap.xml | 561d5637757a2ebc6d000000 |
Case 5: How do intestinal bacteria influence human health?
| morris2e_ch26_30.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_30_dlap.xml | 561d5637757a2ebc6d000000 |
Chapter 26 Summary | morris2e_ch26_31.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_31_dlap.xml | 561d5637757a2ebc6d000000 |