Section 11.1
1. {t | t ≤ 4}
2. False
3. True
4. True
5. False
6. u′ × v+u × v′
7. i − 2j
9.
11. i−2k
13. 4i + j +8k
15. All real numbers
17. {t|t ≥ 0}
19. {t|t ≠ 0}
21. {t|t > 0}
23.
25.
27.
29.
31.
33.
35.
37. D
39. C
41.
43.
45.
47.
49. {t|t ≠ −1, 1}
51.
53. {t|t ≠ −1}
55.
57. r′ (t) = 8ti − 6t2j and r″(t) = 8i − 12tj
59. and
61. r′ (t) = j + 2tk and r″(t) = 2k
63. r′(t) = 2ti + 3t2j − k and r″(t) = 2i + 6tj
65. r′ (t) = sin(2t)i+sin(2t)j and r″(t) = 2 cos(2t)i+2 cos(2t)j
67. and
69. r′ (t) = (et cos t − et sin t)i + (et sin t + et cos t)j + k and r″(t) = −2et sin ti + 2et cos tj
71. r′ (t) = (1 − 3t2)i + (1 + 3t2)j − k and r″ (t) = −6ti + 6tj
73.
75.
77.
79. and
81. and
83.
85. See Student Solutions Manual.
87.
89.
91.
93.
95. (a) y = 1 − x
97. (a)
(b)
99. See Student Solutions Manual.
101. See Student Solutions Manual.
103. Answers will vary.
105. See Student Solutions Manual.
107. See Student Solutions Manual.
Section 11.2
1. False
2. False
3. False
4. False
5. True
6. True
7.
(a) r′(1) = i − 2j
(b) and
(c)
9.
(a) r′ (1) = 2i − j
(b) and
(c)
11. (a)
(b) and
(c)
13.
(a) r′ (0) = i − j
(b) and
(c)
15. r′ (0) = −3i + 2j − k
17.
19.
21. r′ (0) = i + j + k
23. Figure below not drawn to scale.
25. Figure below not drawn to scale.
27. and
29. and
31. and
33. and
35. and N(0) is undefined
37. and
39. and
41. and \({\rm {\bf N}}(0) = -\dfrac{\sqrt{2}}{2}{\rm {\bf i}} +\dfrac{\sqrt{2}}{2}{\rm {\bf j}}\)
43. s =
45. s =
47. s =
49. s =
51. s =
53. s =
55. (a)
(b) s ≈ 11.052
57. (a)
(b) s ≈ 33.637
59.
61. θ ≈ 37°
63.
65. θ = 90°
67. and
69. N (t) = −cos ti − sin tj, and
71.
73. s ≈ 10.516
75. (a) s =
(b) s ≈ 33.510
(c) See the Student Solutions Manual
Section 11.3
1. (d)
2. False
3. False
4. True
5. False
6.
7.
8. False
9. No
11. No
13. No
15. Yes
17. No
19. P R Q
21. κ =
23. κ =
25. κ =
27. κ = 0
29. κ =
31. κ =
33. κ =
35. κ =
37. κ =
39. κ =
41.
43.
45. ρ =
47. ρ = 1
49. ρ =
51. ρ =
53. ρ = 6
55. ρ =
57. ρ =
59. ρ =
61. ρ = 12a
63. See the Student Solutions Manual.
65.
67. \(\left(\pm\left(\dfrac{1}{5}\right)^{{1}/{4}},\;\pm\dfrac{1}{3}\left(\dfrac{1}{5}\right)^{{3}/{4}}\right)\)
69. α = 1
71. See the Student Solutions Manual.
73. κ =
75. κ = As t →∞, κ → ∞ as the graph curves more and more tightly around the origin.
77. See the Student Solutions Manual.
79.
81. See the Student Solutions Manual.
83. See the Student Solutions Manual.
85. See the Student Solutions Manual.
87. \(\kappa=\dfrac{\sqrt{2}}{2}\), \(\mathbf{T}(s)=\dfrac{\sqrt{2}}{2}\cos{s}\mathbf{i}-\dfrac{\sqrt{2}}{2}\sin{s}\mathbf{j}+\dfrac{\sqrt{2}}{2}\mathbf{k}\), \(\mathbf{N}(s)=-\sin{s}\mathbf{i}-\cos{s}\mathbf{j}\), and \(\mathbf{B}(s)=\dfrac{\sqrt{2}}{2}\cos{s}\mathbf{i}-\dfrac{\sqrt{2}}{2}\sin{s}\mathbf{j}-\dfrac{\sqrt{2}}{2}\mathbf{k}\)
89. κ =
91. κ =
93. κ =
95. See the Student Solutions Manual.
97.
99.
101. See the Student Solutions Manual.
Section 11.4
1. True
2. False
3. True
4. Tangential, normal
5. (a) v(t) = i + 2tj, a(t) = 2j, and
(b)
7. (a) v (t) = 2ti − j, a(t) = 2i, and
(b)
9. (a) v(t) = 4i + 3t2j, a(t) = 6tj, and
(b)
11. v (t) = 2ti + j − 9t2k, a(t) = 2i − 18tk, and
13. and
15. v (t) = −2 sin ti + cos tj + k, a(t) = −2 cos ti − sin tj, and
17. (a) v (t) = costi − sin tj + 2 cos(2t)k, a(t) = −sin ti − cos tj − 4 sin(2t)k,
(b)
and
(c)
19. (a) F(t) = mr(t)
(b)
21. (a) F(t) = m et j
(b)
23. (a) F(t) = −4mr(t)
(b)
25. (a) F(t) = −mr(t)
(b)
27. (a) v(t) = 2i + j, a(t) = 0, and
(b) aT = 0, aN = 0
29. (a) v(t) = eti + 2e2tj, a(t) = eti + 4e2tj, and
(b)
31. (a) v(t) = 2 cos ti − sin tj, a(t) = −2 sin ti − cos tj, and
(b)
33. (a) v (t) = −3i + 2j − k, a (t) = 0, and
(b) aT = 0, aN = 0
35. (a) v (t) = i + 2tj + 3t2k, a(t) = 2j + 6tk, and
(b)
37. (a) v (t) = −sin tj + cos tk, a (t) = −cos tj − sin tk, and ν(t) = 1
(b) aT = 0, aN = 1
39. (a)
and
(b)
41. (a) v (t) = (et cos t − et sin t)i + (et sin t + et cos t)j + etk, a(t) = −2et sin ti + 2et cos tj + etk, and
(b)
43. (a) v(t) = −a sin ti + b cos tj + ck, a(t) = −a cos ti − b sin tj, and
(b)
45. v(t) = (π − π cos(πt))i + π sin(πt)j, a(t) = π2 sin(πt)i + π2 cos(πt)j
47. and
49. See the Student Solutions Manual.
51. aT = 0 and
53. (a) 350 N
(b) 35 km/h slower
55. 2.118 × 1013m N
57. \(4\sqrt{5}\;m\)
59. (a)
(b) No
(c) (−1, 0)
61. (a) See the Student Solutions Manual.
(b)
(c)
63. ν ≈ 3750 m/s
65. See Student Solutions Manual.
67. See Student Solutions Manual.
69. Answers will vary.
71. See Student Solutions Manual.
73.
(a) v(t) = 2t cos(ωt)i + 2t sin(ωt)j + t2vd and a(t) = 2 cos(ωt)i + 2 sin(ωt)j + 4tvd + t2ad
(b) 2 cos(ωt)i + 2 sin(ωt)j + 4tvd
75. See Student Solutions Manual.
77. r = e2t, where θ = t; v(t) = 2rur + ruθ; a(t) = 3rur + 4ruθ
Section 11.5
1. True
2. False
3.
5.
7.
9.
11. r(t) = (et − e)i + (t − t ln t)j + t2k
13. r(t) = (3 − 2 cos t)i + (sin t − 1)j + tk
15. r(t) =
17. v(t) = −32tk, υ(t) = 32t, and r(t) = −16t2k
19. v(t) = (sin t + 1)i + (1 − cos t)j, v (t) = and r (t) = (t − cos t + 1)i + (t − sin t + 1)j
21. v(t) = i − 9.8tk, v (t) = and r(t) = ti + (5 − 4.9t2)k
23. v(t) = (2 − e−t)i + (t + 1)j, v (t) = and r (t) =
25. The range ≈ 23,895 m, the time of flight ≈ 53 s, and the greatest height reached ≈3449 m.
27. (a) x =
and y =
(b) Range ≈ 724.6 m
(c) Time of flight ≈ 7.8 s
(d)
29. (a) The projectile travels approximately 152.5 feet up the hill.
(b) The projectile is in the air for approximately 1.9 seconds.
31. (a) v(t) = 5ti + (−9.8t + 3)j and v(t) =
(b) r(t) =
(c) ≈0.612 s
(d)
33. v0 ≈ 54.521 ft/s
35. The initial speed of the ball is approximately 114 ft/s. It took the ball approximately 5 s to reach the vines.
37. (a) Range ≈ 114.342 ft
(b) ≈93 ft
39. See Student Solutions Manual.
41. See Student Solutions Manual.
43. See Student Solutions Manual.
45. See Student Solutions Manual.
Section 11.6
1. ≈79.479 days
3. Answers will vary.
5. (a)See Student Solutions Manual.
(b) M ≈ 2.0 × 1030kg
7. See Student Solutions Manual.
Review Exercises
1. (a) All real numbers.
(b)
(c) r′(2) = 4i + 3j
3. (a) All real numbers.
(b)
(c) r′(0) = i + 2k
5.
7. Continuous
9. r′ (t) = −2 sin ti − 3 sin tj + k and r″ (t) = −2 cos ti − 3 cos tj
11. [f(t) · g(t)]′ = 4t − 2 sin(2t) cos t − cos(2t) sin t − 5 cos t and
[f(t) × g(t)]′ = (−2 sin(2t) sin t + cos(2t) cos t − 5 sin t)i + (−10 − sin t − t cos t)j + (cos t − t sin t + 4t sin(2t) − 2 cos(2t))k
13.
(a) r′(0) = i + 2j
(b)T (0) =
(c) N(0) = −k
15.
17.
19. No
21.
23. κ =
25. κ =
27. ρ = ∞
29. κ =
31.
(a) v(t) = −2 sin ti + cos tj, a(t) = −2 cos ti − sin tj, and v(t) =
(b)
33.
(a) v(t) = eti − e−tj, a(t) = et i + e−t j, and v(t) =
(b)
35. v(t) = (π − cos(πt))i + π sin(πt)j and a(t) = π2 sin(πt)i + π2 cos(πt)j
37.
39.
41.
43. ≈25,540 m away