File | Title | Manuscript Id |
Chapter 39 Introduction | morris2e_ch39_1.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_1_dlap.xml | 563c3832757a2e4941000000 |
39.1 Delivery of Oxygen and Elimination of Carbon Dioxide
| morris2e_ch39_2.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_2_dlap.xml | 563c3832757a2e4941000000 |
Diffusion governs gas exchange over short distances.
| morris2e_ch39_3.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_3_dlap.xml | 563c3832757a2e4941000000 |
Bulk flow moves fluid over long distances.
| morris2e_ch39_4.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_4_dlap.xml | 563c3832757a2e4941000000 |
39.2 Respiratory Gas Exchange
| morris2e_ch39_5.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_5_dlap.xml | 563c3832757a2e4941000000 |
Many aquatic animals breathe through gills.
| morris2e_ch39_6.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_6_dlap.xml | 563c3832757a2e4941000000 |
Insects breathe air through tracheae.
| morris2e_ch39_7.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_7_dlap.xml | 563c3832757a2e4941000000 |
Most terrestrial vertebrates breathe by tidal ventilation of internal lungs.
| morris2e_ch39_8.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_8_dlap.xml | 563c3832757a2e4941000000 |
Mammalian lungs are well adapted for gas exchange.
| morris2e_ch39_9.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_9_dlap.xml | 563c3832757a2e4941000000 |
The structure of bird lungs allows unidirectional airflow for increased oxygen uptake.
| morris2e_ch39_10.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_10_dlap.xml | 563c3832757a2e4941000000 |
Voluntary and involuntary mechanisms control breathing.
| morris2e_ch39_11.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_11_dlap.xml | 563c3832757a2e4941000000 |
39.3 Oxygen Transport by Hemoglobin
| morris2e_ch39_12.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_12_dlap.xml | 563c3832757a2e4941000000 |
Blood is composed of fluid and several types of cell.
| morris2e_ch39_13.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_13_dlap.xml | 563c3832757a2e4941000000 |
Hemoglobin is an ancient molecule with diverse roles related to oxygen binding and transport.
| morris2e_ch39_14.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_14_dlap.xml | 563c3832757a2e4941000000 |
Hemoglobin reversibly binds oxygen.
| morris2e_ch39_15.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_15_dlap.xml | 563c3832757a2e4941000000 |
Myoglobin stores oxygen, enhancing delivery to muscle mitochondria.
| morris2e_ch39_16.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_16_dlap.xml | 563c3832757a2e4941000000 |
Many factors affect hemoglobin–oxygen binding.
| morris2e_ch39_17.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_17_dlap.xml | 563c3832757a2e4941000000 |
39.4 Circulatory Systems
| morris2e_ch39_18.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_18_dlap.xml | 563c3832757a2e4941000000 |
Circulatory systems have vessels of different sizes to facilitate bulk flow and diffusion.
| morris2e_ch39_19.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_19_dlap.xml | 563c3832757a2e4941000000 |
Arteries are muscular, elastic vessels that carry blood away from the heart under high pressure.
| morris2e_ch39_20.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_20_dlap.xml | 563c3832757a2e4941000000 |
Veins are thin-walled vessels that return blood to the heart under low pressure.
| morris2e_ch39_21.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_21_dlap.xml | 563c3832757a2e4941000000 |
Compounds and fluid move across capillary walls by diffusion, filtration, and osmosis.
| morris2e_ch39_22.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_22_dlap.xml | 563c3832757a2e4941000000 |
Case 7: How do hormones and nerves provide homeostatic regulation of blood flow as well as allow an animal to respond to stress?
| morris2e_ch39_23.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_23_dlap.xml | 563c3832757a2e4941000000 |
39.5 The Evolution, Structure, and Function of the Heart
| morris2e_ch39_24.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_24_dlap.xml | 563c3832757a2e4941000000 |
Fish have two-chambered hearts and a single circulatory system.
| morris2e_ch39_25.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_25_dlap.xml | 563c3832757a2e4941000000 |
Amphibians and reptiles have three-chambered hearts and partially divided circulations.
| morris2e_ch39_26.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_26_dlap.xml | 563c3832757a2e4941000000 |
Mammals and birds have four-chambered hearts and fully divided pulmonary and systemic circulations.
| morris2e_ch39_27.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_27_dlap.xml | 563c3832757a2e4941000000 |
Cardiac muscle cells are electrically connected to contract in synchrony.
| morris2e_ch39_28.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_28_dlap.xml | 563c3832757a2e4941000000 |
Heart rate and cardiac output are regulated by the autonomic nervous system.
| morris2e_ch39_29.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_29_dlap.xml | 563c3832757a2e4941000000 |
Chapter 39 Summary | morris2e_ch39_30.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_30_dlap.xml | 563c3832757a2e4941000000 |