16.5 Power Series Methods

1089

OBJECTIVES

When you finish this section, you should be able to:

  1. Use power series to solve a linear differential equation (p. 1089)

Up to now, we have concentrated on first-order differential equations for which exact solutions could be found. But many first-order differential equations lead to integrals that cannot be expressed in terms of elementary functions. Moreover, most higher-order differential equations cannot be solved exactly. For these reasons, considerable emphasis is placed on methods for approximating solutions of differential equations. One such method, power series, is introduced here.

1 Use Power Series to Solve a Linear Differential Equation

Power series methods assume that a solution \(y=y(x)\) of a given differential equation has a power series expansion of the form \[\bbox[5px, border:1px solid black, #F9F7ED]{\bbox[#FAF8ED,5pt] {y=y( x) =\sum\limits_{k=0}^{\infty }a_{k}x^{k}}} \]

NEED TO REVIEW?

Power series are discussed in Section 8.8, pp. 600-609.

A power series method consists of finding power series for the terms in the differential equation, as well as the power series for \(y,\) \(y^{\prime} ,\) \(y^{\prime \prime}\), and so on. These power series expansions are substituted into the differential equation to obtain relationships among the coefficients.

We begin with a simple example to outline the basic idea.

Using Power Series to Solve a Linear Differential Equation

Use power series to solve the differential equation \(y^{\prime} =y.\)

Solution We assume that the solution of the differential equation can be expressed as the power series \[ \begin{equation} y( x) =\sum\limits_{k=0}^{\infty }a_{k}x^{k} \tag{1} \end{equation} \]

Then \[ \begin{equation*} y^{\prime} ( x) =\sum\limits_{k=1}^{\infty }ka_{k}x^{k-1} \end{equation*} \]

Since \(y^{\prime} =y,\) this leads to \[ \begin{equation*} \sum\limits_{k=1}^{\infty }ka_{k}x^{k-1}=\sum\limits_{k=0}^{\infty}a_{k}x^{k} \end{equation*} \]

To obtain relationships among the coefficients, we write out the terms. \[ \begin{equation*} a_{1}x^{0}+2a_{2}x+3a_{3}x^{2}+4a_{4}x^{3}+\cdots =a_{0}x^{0}+a_{1}x+a_{2}x^{2}+a_{3}x^{3}+\cdots \end{equation*} \]

Because the coefficients of corresponding powers of \(x\) are equal, we have \[ \begin{equation*} a_{1}=a_{0}\qquad 2a_{2}=a_{1}\qquad 3a_{3}=a_{2}\qquad 4a_{4}=a_{3}\ \ldots\ na_{n}=a_{n-1}\ldots \end{equation*} \]

We can express these relationships recursively. \[ \begin{eqnarray*}{{\hspace{-5pc}}{\hspace{-5pc}}} & \enspace a_{1}=a_{0}\,\,\,\,\qquad a_{2}=\dfrac{1}{2}a_{1}=\dfrac{1}{2!}a_{0} &\hspace{-56pt}a_{3}=\dfrac{1}{3}a_{2}=\dfrac{1}{3\cdot 2}a_{0}=\dfrac{1}{3!}a_{0}\\[4pt] & \qquad \qquad \qquad \qquad a_{4} =\dfrac{1}{4}a_{3}=\dfrac{1}{4!}a_{0}\,\,\,\,\, \ldots\,\, \,\,\, a_{n}=\dfrac{1}{n}a_{n-1}=\dfrac{1}{n!}a_{0}\,\,\,\,\,\,\cdots \end{eqnarray*} \]

1090

The power series (1) takes the form \[ y( x) =\sum\limits_{k=0}^{\infty }a_{k}x^{k}=\sum\limits_{k=0}^{\infty }\dfrac{1}{k!}a_{0}x^{k}=a_{0}\sum \limits_{k=0}^{\infty }\dfrac{x^{k}}{k!} \]

which we recognize as \(y( x) =a_{0}e^{x}\).

RECALL

As we learned in Section 8.9, \[ e^{x}=\sum \limits_{k=0}^{\infty }\dfrac{x^{k}}{k!} \]

NOW WORK

Problem 1.

Although this example led to a power series solution we recognized, most solutions will not. The next examples will illustrate typical power series solutions.

Using Power Series to Solve a Linear Differential Equation

Use power series to solve the differential equation \(y^{\prime} -2y=e^{-x}.\)

Solution Assume that a solution \(y=y( x)\) of the differential equation can be expressed as the power series \(y(x)=\sum\limits_{k=0}^{\infty }a_{k}x^{k}.\) Then \(y^{\prime}(x)=\sum\limits_{k=1}^{\infty }ka_{k}x^{k-1}.\) Since \(e^{-x}=\sum \limits_{k=0}^{\infty }\dfrac{(-1)^{k}}{k!}x^{k},\) the differential equation can be written as \[ \begin{equation} \underset{\color{#0066A7}{\hbox{\(y^{\prime}\)}}}{\underbrace{\sum\limits_{k=1}^{\infty }ka_{k}x^{k-1}}}-\underset{\color{#0066A7}{\hbox{\(y\)}}}{2\underbrace{\sum\limits_{k=0}^{\infty }a_{k}x^{k}}}=\underset{\color{#0066A7}{\hbox{\(e^{-x}\)}}}{\underbrace{\sum\limits_{k=0}^{\infty }\frac{(-1)^{k}}{k!}x^{k}}} \tag{2} \end{equation} \]

To obtain relationships among the coefficients, we write out the terms of the power series. \[ \begin{eqnarray*} &&\hspace{-.75pc}\big( a_{1}\,{+}\,2a_{2}x\,{+}\,3a_{3}x^{2}\,{+}\,4a_{4}x^{3}\,{+}\,5a_{5}x^{4}\,{+}\,\cdots \big)\!\,{-}\,2\big(a_{0}\,{+}\,a_{1}x\,{+}\,a_{2}x^{2}\,{+}\,a_{3}x^{3}\,{+}\,a_{4}x^{4}\,{+}\,\cdots \big)\\[4pt] && \enspace \quad =1-x+\frac{1}{2!}x^{2}-\frac{1}{3!}x^{3}+\dfrac{1}{4!}x^{4}+\cdots \end{eqnarray*} \]

Now we combine the coefficients of corresponding powers of \(x\) to get \[ \begin{eqnarray*} &&(a_{1}-2a_{0})+(2a_{2}-2a_{1})x+(3a_{3}-2a_{2})x^{2}+(4a_{4}-2a_{3})x^{3}+ \cdots\\[4pt] &&\qquad =1-x+\frac{1}{2!}x^{2}-\frac{1}{3!}x^{3}+\dfrac{1}{4!}x^{4}-\cdots \end{eqnarray*} \]

Since the coefficients of corresponding powers of \(x\) are equal, we have \[ \begin{equation*} \begin{array}{rcl@{\quad}l@{\quad}rcl@{\;}l} a_{1}-2a_{0}&=&1 & \hbox{or equivalently,} & a_{1}&=&2a_{0}+1 \\ 2a_{2}-2a_{1}&=&-1 & \hbox{or equivalently,} & a_{2}&=&\dfrac{2a_{1}-1}{2}=\dfrac{ 2\left( 2a_{0}+1\right) -1}{2}=2a_{0}+\dfrac{1}{2} \\ 3a_{3}-2a_{2}&=&\dfrac{1}{2!} & \hbox{or equivalently,} & a_{3}&=&\dfrac{2a_{2}+ \dfrac{1}{2!}}{3}=\dfrac{2}{3}\left( 2a_{0}+\dfrac{1}{2}\right) +\dfrac{1}{ 3\cdot 2!}\\ &&&&&=&\dfrac{4}{3}a_{0}+\dfrac{3}{3!} \\ 4a_{4}-2a_{3}&=&-\dfrac{1}{3!} & \hbox{or equivalently,} & a_{4}&=&\dfrac{2a_{3}- \dfrac{1}{3!}}{4}=\dfrac{1}{2}a_{3}-\dfrac{1}{4!}\\ &&&&& =&\dfrac{1}{2}\left( \dfrac{4 }{3}a_{0}+\dfrac{3}{3!}\right)-\dfrac{1}{4!}=\dfrac{2}{3}a_{0}+\dfrac{5}{4!}\\ 5a_{5}-2a_{4}&=&\dfrac{1}{4!} & \hbox{or equivalently,} & a_{5}&=&\dfrac{2a_{4}+ \dfrac{1}{4!}}{5}=\dfrac{2}{5}a_{4}+\dfrac{1}{5!}\\ &&&&&=&\dfrac{2}{5}\left( \dfrac{2 }{3}a_{0}+\dfrac{5}{4!}\right) +\dfrac{1}{5!}=\dfrac{4}{15}a_{0}+\dfrac{11}{ 5!} \end{array} \end{equation*} \]

1091

This recursive formula \(( n+1) a_{n+1}=2a_{n}+( -1) ^{n}\dfrac{1}{( n) !}\) can be used to find \(a_{n}\) in terms of \(a_{0,}\) as we did for \(a_{1},\) \(a_{2},\) \(a_{3},\) \(a_{4}\), and \(a_{5}.\) The power series representation of the general solution of the equation is \[ \begin{eqnarray*} y(x) =\sum\limits_{k=0}^{\infty }a_{k}x^{k}&=&a_{0}+(2a_{0}+1)x+\left( 2a_{0}+\frac{1}{2!}\right) x^{2}+\left( \frac{4}{3}a_{0}+\frac{3}{3!}\right) x^{3}\\[4pt] &&+\left( \frac{2}{3}a_{0}+\frac{5}{4!}\right)\! x^{4}+\!\left( \dfrac{4}{15} a_{0}+\dfrac{11}{5!}\right)\! x^{5}+\cdots \\[4pt] & =&a_{0}\!\left( 1+2x+2x^{2}+\frac{4}{3}x^{3}+\frac{2}{3}x^{4}+\dfrac{4}{15} x^{5}+\cdots \right) \\[4pt] &&+\,x+\frac{1}{2!}x^{2}+\frac{3}{3!}x^{3}+\frac{5}{4!} x^{4}+\dfrac{11}{5!}x^{5}+\cdots \end{eqnarray*} \]

where \(a_{0}\) is arbitrary.

There is a more direct method for obtaining the recursion formula in Example 2. If we change the index of summation from \(k\) to \(k+1\) in the first power series on the left side of (2) and distribute the \(-2\) inside the second power series, we have \[ \sum_{k=0}^{\infty }(k+1)a_{k+1}x^{k}+\sum_{k=0}^{\infty }(-2) a_{k}x^{k}=\sum_{k=0}^{\infty }\frac{(-1)^{k}}{k!}x^{k} \]

Now add the two series on the left. \[ \sum_{k=0}^{\infty }[(k+1)a_{k+1}-2a_{k}]x^{k}=\sum_{k=0}^{n}\frac{(-1)^{k}}{ k!}x^{k} \]

Then \(( n+1) a_{n+1}-2a_{n}=\dfrac{( -1) ^{n}}{n!},\) as before.

Using Power Series to Solve a Linear Differential Equation

Use power series to find the general solution of the linear differential equation \[ \begin{equation*} y^{\prime \prime} +xy^{\prime} +2y=0 \end{equation*} \]

Solution If \(y(x)=\sum\limits_{k=0}^{\infty }a_{k}x^{k}\) is a solution to the differential equation, then \[ y^{\prime} (x)=\sum\limits_{k=1}^{\infty }ka_{k}x^{k-1}\qquad \hbox{and}\qquad y^{\prime \prime} (x)=\sum\limits_{k=2}^{\infty }k(k-1)a_{k}x^{k-2} \]

Now we substitute these power series into the differential equation. \[ \begin{eqnarray*} \sum\limits_{k=2}^{\infty }k(k-1)a_{k}x^{k-2}\,{+}\,x\!\sum\limits_{k=1}^{\infty}ka_{k}x^{k-1}+2\sum\limits_{k=0}^{\infty }a_{k}x^{k}\!&=&0\quad {\color{#0066A7}{y^{\prime \prime} +xy^{\prime} +2y=0}} \\[4pt] \sum\limits_{k=2}^{\infty }k(k-1)a_{k}x^{k-2}+\sum\limits_{k=1}^{\infty }ka_{k}x^{k}+\sum\limits_{k=0}^{\infty }2a_{k}x^{k}\!&=&0 \quad {\color{#0066A7}{\hbox{Move }x\hbox{ and } 2\hbox{ into the summation.}}} \end{eqnarray*} \]

Next we adjust the indexes of summation so that \(x^{k}\) appears in each series. Here, only the first series needs modification. If we replace \(k\) with \(k+2\) in the first series, we obtain \[ \begin{equation*} \underset{\color{#0066A7}{\hbox{Replace }k\hbox{ with }k+2}}{\underbrace{\sum\limits_{k=0}^{ \infty }( k+2) (k+1)a_{k+2}x^{k}}}+\sum\limits_{k=1}^{\infty }ka_{k}x^{k}+\sum\limits_{k=0}^{\infty }2a_{k}x^{k}=0 \end{equation*} \]

1092

The index in the first and third series begins at \(k=0\), and the index in the second series begins at \(k=1\). We write out the \(k=0\) term of the first and third series separately. Then each summation starts at \(k=1.\) \[ \begin{eqnarray*} \left( 2\right) \left( 1\right) a_{2}x^{0}+2a_{0}x^{0}+\sum\limits_{k=1}^{\infty }( k+2) (k+1)a_{k+2}x^{k}+\sum\limits_{k=1}^{\infty }ka_{k}x^{k}+\sum\limits_{k=1}^{\infty }2a_{k}x^{k}& =&0 \\[4pt] 2a_{2}+2a_{0}+\sum\limits_{k=1}^{\infty }\left[ (k+2)(k+1)a_{k+2}+(k+2) a_{k}\right] x^{k}& =&0 \end{eqnarray*} \]

Equating the coefficients of corresponding powers of \(x\) (the coefficients on the right side are all \(0)\), we have \[ \begin{eqnarray*} \hspace{-5pt}2a_{2}+2a_{0}&=&0 \hspace{20pt}(n+2)(n+1)a_{n+2}+(n+2)a_{n}=0 & \\[2pt] a_{2}&=&-a_{0}\quad\hspace{140pt} a_{n+2}=-\dfrac{a_{n}}{(n+1)}\quad n=1,2,3,\ldots \end{eqnarray*} \]

If \(n=1\), we find \(a_3=-\frac{a_1}{2}\). Then we use the recursion formula on the left to obtain all of the coefficients in terms of \(a_{0}\) and \(a_{1}\). That is, \[ \begin{equation*} \begin{array}{@{}l@{\quad\ \ \ }l@{\quad\ \ \ }l@{\quad\ \ \ }l@{}} a_{2}= -a_{0} & a_{4}=-\dfrac{a_{2}}{3}=\dfrac{a_{0}}{3} & a_{6}=-\dfrac{a_{4}}{5}=-\dfrac{a_{0}}{3\cdot 5} & a_{8}=-\dfrac{a_{6}}{7}=\dfrac{a_{0}}{3\cdot 5\cdot 7}\\ a_{3}=-\dfrac{a_{1}}{2} & a_{5}=-\dfrac{a_{3}}{4}=\dfrac{a_{1}}{2\cdot 4} & a_{7}=-\dfrac{a_{5}}{6}=-\dfrac{a_{1}}{2\cdot 4\cdot 6} \end{array} \end{equation*} \]

and so on. Since \(a_{0}\) and \(a_{1}\) can be chosen arbitrarily, the power series representation for the general solution is \[ \begin{eqnarray*} y(x)&=&a_{0}\!\left( 1-x^{2}+\frac{x^{4}}{3}-\frac{x^{6}}{3\cdot 5}+\frac{x^{8}}{3\cdot 5\cdot 7}-\cdots \right)\\[5pt] &&+\,a_{1}\!\left( x-\frac{x^{3}}{2}+\frac{x^{5}}{2\cdot 4}-\frac{x^{7}}{2\cdot 4\cdot 6}+\cdots \right) \end{eqnarray*} \]

NOW WORK

Problem 7.

NEED TO REVIEW?

Maclaurin series are discussed in Section 8.9, pp. 611-614

A second type of series solution method involves a differential equation with initial conditions and makes use of a Maclaurin series.

Using a Maclaurin Series to Solve a Linear Differential Equation

  1. Use a Maclaurin series to find the solution of
    \[ \begin{equation} y^{\prime \prime} =x^{2}y+e^{x}y^{\prime} \tag{3} \end{equation} \]
    given the initial conditions \(y(0)=1\) and \(y^{\prime} (0)=1\).
  2. Use the first five terms of the series to approximate values of \(y=y( x)\) for \(0\leq x\leq 1\).
  3. Use a numeric differential equation solver with \(10,000\) equally spaced numbers in the interval \([ 0,1]\) to solve the differential equation in (a). Then construct a table showing the values of \(y\) for \(x=0,0.1,0.2,\ldots,0.9,1.\)

Solution (a) We assume that the solution of the differential equation is given by the Maclaurin series \[ y(x)=\sum_{k=0}^{\infty }\frac{y^{(k)}(0)}{k!}x^{n}=y(0)+y^{\prime} ( 0) x+\frac{y^{\prime \prime} (0)}{2!}x^{2}+\frac{y^{\prime \prime \prime} (0)}{3!}x^{3}+\cdots \]

1093

We substitute the initial conditions, \(y(0)=1\) and \(y^{\prime} (0)=1\), into (3). Then \[ \begin{equation*} y^{\prime \prime} ( 0) =0^{2}\cdot 1+e^{0}\cdot 1=1\qquad {\color{#0066A7}{\hbox{\(x=0; y(0) =1; y^{\prime} (0) =1; y^{\prime \prime}(x)= x^{2}y + e^{x}y^{\prime}\)}}} \end{equation*} \]

Now we differentiate \(y^{\prime \prime} =x^{2}y+e^{x}y^{\prime}\) with respect to \(x\) to find \(y^{\prime \prime \prime} ( 0) .\) \[ \begin{eqnarray*} y^{\prime \prime \prime} ( x) &=&( x^{2}y^{\prime} +2xy) +( e^{x}y^{\prime \prime} +e^{x}y^{\prime}) \\[3pt] y^{\prime \prime \prime} ( 0) &=& ( 0^{2}\cdot 1+2\cdot 0\cdot 1) +( e^{0}\cdot 1+e^{0}\cdot 1) =2 \end{eqnarray*} \]

We continue differentiating and evaluating the derivative at \(x=0.\) \[ \begin{eqnarray*} y^{(4)}( x) & =&x^{2}y^{\prime \prime} +4xy^{\prime} +2y+e^{x}y^{\prime \prime \prime} +2e^{x}y^{\prime \prime} +e^{x}y^{\prime} \\[3pt] y^{(4)}(0)& =&0^{2}\cdot 1+4\cdot 0\cdot 1+2\cdot 1+e^{0}\cdot 2+2\cdot e^{0}\cdot 1+e^{0}\cdot 1=7 \end{eqnarray*} \]

and so on. The Maclaurin series then becomes \[ \begin{equation*} y(x)=1+x+\frac{1}{2!}x^{2}+\frac{2}{3!}x^{3}+\frac{7}{4!}x^{4}+\cdots \end{equation*} \]

(b) We construct Table 1 that uses the first five terms of the series to approximate select values of \(y\) in the interval \(0\leq x\leq 1\).

Table 1: TABLE 1 Maclaurin Series Approximation of \(y\) Using Five Terms of the Series
\(x\) \(0.0\) \(0.1\) \(0.2\) \(0.3\) \(0.4\) \(0.5\) \(0.6\) \(0.7\) \(0.8\) \(0.9\) \(1.0\)
\(y\) \(1.0\) \(1.1054\) \(1.2231\) \(1.3564\) \(1.5088\) \(1.6849\) \(1.8898\) \(2.1294\) \(2.4101\) \(2.7394\) \(3.125\)

(c) Using every thousandth term from the numeric solution, we construct Table 2.

Table 2: TABLE 2 Select Values of \(y\) Using a Numeric Equation Solver
\(x\) \(0.0\) \(0.1\) \(0.2\) \(0.3\) \(0.4\) \(0.5\) \(0.6\) \(0.7\) \(0.8\) \(0.9\) \(1.0\)
\(y\) \(1.0\) \(1.1054\) \(1.2232\) \(\ 1.3569\) \(1.5114\) \(1.6933\) \(1.9127\) \(2.1836\) \(2.5271\) \(2.9747\) \(3.5752\)

From the results of Tables 1 and 2, we can see how the five-term approximation to the series solution of the differential equation deteriorates as we move away from the center of convergence \(0\).

NOW WORK

Problem 15.