7.5 Integration of Rational Functions Using Partial Fractions

499

OBJECTIVES

When you finish this section, you should be able to:

  1. Integrate a rational function whose denominator contains only distinct linear factors (p. 500)
  2. Integrate a rational function whose denominator contains a repeated linear factor (p. 502)
  3. Integrate a rational function whose denominator contains a distinct irreducible quadratic factor (p. 503)
  4. Integrate a rational function whose denominator contains a repeated irreducible quadratic factor (p. 504)

NEED TO REVIEW?

Rational functions are discussed in Section P.2, pp. 19-20.

In this section, we integrate rational functions using a technique called partial fractions. Although the integral of any rational function can be found using partial fractions, the process requires being able to factor the denominator of the rational function.

Recall that a rational function \(R\) in lowest terms is the ratio of two polynomial functions \(p\) and \(q \ne 0,\) where \(p\) and \(q\) have no common factors. The domain of \(R\) is the set of all real numbers for which \(q \ne 0.\) The rational function \(R\) is called proper when the degree of the polynomial \(p\) is less than the degree of the polynomial \(q\); otherwise, \( R\) is an improper rational function.

Every improper rational function \(R\) can be reduced by long division to the sum of a polynomial function and a proper rational function. For example, the rational function \(R( x) =\dfrac{x^{2}}{x-1}\) is improper, but by long division, \[ R( x) =\dfrac{x^{2}}{x-1}=x+1+\dfrac{1}{x-1} \]

Then we can find \(\int R( x) \,dx\) by using properties of an indefinite integral to obtain \[ \begin{eqnarray*} \int \dfrac{x^{2}}{x-1}\,dx &=& \int \left( x+1+\dfrac{1}{x-1}\right) \,dx=\int x~dx+\int dx+\int \dfrac{1}{x-1}\,dx\\[5pt] &=& \dfrac{x^{2}}{2}+x+\ln \,\vert x-1\vert +C \end{eqnarray*} \]

For these reasons, the discussion that follows deals only with proper rational functions in lowest terms. Such rational functions can be written as the sum of simpler functions, called partial fractions.

For example, since \(\dfrac{2}{x-1}+\dfrac{3}{x+4}=\dfrac{5x+5}{( x-1) (x+4) },\) the rational function \[ R( x) =\dfrac{5x+5}{(x-1) (x+4) } \]

can be expressed as the sum \(R(x) =\dfrac{2}{x-1}+\dfrac{3}{ x+4}\) . Then \[ \begin{eqnarray*} R( x) &=&\int \dfrac{5x+5}{(x-1) (x+4) }dx=\int \left( \dfrac{2}{x-1}+\dfrac{3}{x+4}\right) dx\\[5pt] &=& 2\int \dfrac{1}{x-1}dx+3\int \dfrac{1}{x+4}dx \\[5pt] &=& 2\ln \vert x-1\vert +3\ln \vert x+4 \vert +C \end{eqnarray*} \]

500

We use a technique called partial fraction decomposition to write a proper rational function \(R\) as the sum of simpler rational terms. The resulting partial fractions depend on the nature of the factors of the denominator \(q\). It can be shown that any polynomial \(q\) whose coefficients are real numbers can be factored (over the real numbers) into products of linear and/or irreducible quadratic factors. This means the integral of every rational function can be expressed in terms of algebraic, logarithmic, and/or inverse trigonometric functions.

The rest of this section presents systematic methods of decomposing rational functions into sums of partial fractions, that is, into forms that we can integrate.

1 Integrate a Rational Function Whose Denominator Contains Only Distinct Linear Factors

Case 1: If the denominator \(q\) contains only distinct linear factors, say, \(x-a_{1}\), \(x-a_{2}, \ldots , x-a_{n}\), then \(\dfrac{p}{q}\) can be written as \[\bbox[5px, border:1px solid black, #F9F7ED]{\dfrac{p(x)}{q(x)}= \dfrac{A_{1}}{x-a_{1}}+\dfrac{A_{2}}{x-a_{2}}+\cdots +\dfrac{A_{n}}{x-a_{n}}}\tag{1} \]

where \(A_{1}, A_{2}, \ldots , A_{n}\) are real numbers.

To find \(\int \dfrac{p( x) }{q( x) }dx,\) we integrate both sides of (1). Then \[ \begin{eqnarray*} \int \dfrac{p( x) }{q( x) }dx &=&\int \dfrac{A_{1}}{ x-a_{1}}dx+\int \dfrac{A_{2}}{x-a_{2}}dx+\cdots +\int \dfrac{A_{n}}{x-a_{n}}dx \\[6pt] &=&A_{1}\ln \left\vert x-a_{1}\right\vert +A_{2}\ln \left\vert x-a_{2}\right\vert +\cdots +A_{n}\ln \left\vert x-a_{n}\right\vert +C \end{eqnarray*} \]

All that remains is to find the numbers \(A_{1}, \ldots, A_{n}\).

A procedure for finding the numbers \(A_{1}, \ldots , A_{n}\) is illustrated in Example 1.

Integrating a Rational Function Whose Denominator Contains Only Distinct Linear Factors

Find \(\int \dfrac{x\,dx}{x^{2}-5x+6}\).

Solution The integrand is a proper rational function in lowest terms. We begin by factoring the denominator: \(x^{2}-5x+6=(x-2)(x-3)\). Since the factors are linear and distinct, we apply Case 1 and allow for the terms \(\dfrac{A}{x-2}\) and \(\dfrac{B}{x-3}\). \[ \dfrac{x}{(x-2)(x-3)}=\dfrac{A}{x-2}+\dfrac{B}{x-3} \]

Now we clear fractions by multiplying both sides of the equation by \( (x-2)(x-3).\) \[ \begin{eqnarray*} \begin{array}{ll@{\qquad}l} x &= A(x-3)+B(x-2) \\[3pt] x &= (A+B)x-( 3A+2B) & {\color{#0066A7}{\hbox{Group like terms.}}} \end{array} \end{eqnarray*} \]

This is an identity in \(x\), so the coefficients of like powers of \(x\) must be equal. \[ \begin{eqnarray*} \begin{array}{ll@{\qquad}l} 1 &= A+B & {\color{#0066A7}{\hbox{The coefficient of }{x}\hbox{ equals 1.}}} \\[3pt] 0 &= -3A-2B & {\color{#0066A7}{\hbox{The constant term on the left is 0.}}} \end{array} \end{eqnarray*} \]

This is a system of two equations containing two variables. Solving the second equation for \(B,\) we get \(B = -\dfrac{3}{2}A.\) Substituting for \(B\) in the first equation produces the solution \(A\) = -2 from which \(B\) = 3. So, \[ \dfrac{x}{(x-2)(x-3)}=\dfrac{-2}{x-2}+\dfrac{3}{x-3} \]

501

Then \[ \begin{eqnarray*} \int \dfrac{x}{(x-2)(x-3)}dx &=& \int \dfrac{-2}{x-2}\,dx+\int \dfrac{3}{x-3} \,dx \\ &=& -2\,\ln \,\vert x-2 \vert +3\ln \,\vert x-3 \vert +C=\ln \left\vert \dfrac{(x-3)^{3}}{(x-2)^{2}}\right\vert +C \end{eqnarray*} \]

NOW WORK

Problem 11.

Alternatively, we can find the unknown numbers in the decomposition of \(\dfrac{p}{q}\) by substituting convenient values of \(x\) into the identity obtained after clearing fractions.* In Example 1, after clearing fractions, the identity is \[ \begin{equation*} x=A(x-3)+B(x-2) \end{equation*} \]

*This method is discussed in detail in H. J. Straight & R. Dowds (1984, June-July), American Mathematical Monthly, 91(6), 365.

When \(x=3\), the term involving \(A\) drops out, leaving \(3=B\cdot 1\), so that \(B=3\). When \(x=2\), the term involving \(B\) drops out, leaving \(2=A\cdot (-1)\), so that \(A=-2\).

Deriving Formulas Involving a Rational Function

Derive these formulas: \[\bbox[5px, border:1px solid black, #F9F7ED]{{(a)} \quad \int \dfrac{dx}{x^{2}-a^{2}}=\dfrac{1}{2a}\ln \left \vert \dfrac{x-a}{x+a}\right \vert +C \quad a ≠ 0 } \] \[\bbox[5px, border:1px solid black, #F9F7ED]{{(b)} \quad \int \dfrac{dx}{a^{2}-x^{2}}=\dfrac{1}{2a}\ln \left\vert \dfrac{x+a}{x-a}\right\vert +C \quad a ≠ 0 }\]

Solution(a) The factored denominator \(x^{2}-a^{2}=( x-a) (x+a)\) contains only distinct linear factors. So, \( \dfrac{1}{x^{2}-a^{2}}\) can be decomposed into partial fractions of the form \[ \begin{eqnarray*} \begin{array}{rl@{\qquad}l} \dfrac{1}{x^{2}-a^{2}} &= \dfrac{1}{(x-a)(x+a)}=\dfrac{A}{x-a}+\dfrac{B}{x+a}\\ 1 &= A(x+a) +B (x-a)&{\color{#0066A7}{\hbox{Multiply both sides by }(x-a) (x+a).}} \end{array} \end{eqnarray*} \]

This is an identity in \(x.\) When \(x=a,\) the term involving \(B\) drops out. Then \(1=A(2a)\), so \(A=\dfrac{1}{2a}.\) When \(x=-a\), the term involving \(A\) drops out. Then \(1=B (-2a)\), so \(B=-\dfrac{1}{2a}.\) Then, \[ \begin{equation*} \dfrac{1}{x^{2}-a^{2}}=\dfrac{A}{x-a}+\dfrac{B}{x+a}=\dfrac{1}{2a( x-a) }-\dfrac{1}{2a(x+a) } \end{equation*} \] \[ \begin{eqnarray*} \int \dfrac{dx}{x^{2}-a^{2}} &=& \dfrac{1}{2a}\int \dfrac{dx}{x-a}-\dfrac{1}{2a} \int \dfrac{dx}{x+a}=\dfrac{1}{2a}\left( \int \dfrac{dx}{x-a}-\int \dfrac{dx}{x+a}\right) \\[7pt] &=& \dfrac{1}{2a}\big(\ln \,\vert x-a\vert -\ln \,\vert x+a \vert\big) +C\\[7pt] &=&\dfrac{1}{2a}\ln \left\vert \dfrac{x-a}{x+a}\right\vert +C \end{eqnarray*} \]

502

(b) Using the result from (a), we get \[ \begin{eqnarray*} \int \dfrac{dx}{a^{2}-x^{2}} &=& -\int \dfrac{dx}{x^{2}-a^{2}}=-\dfrac{1}{2a}\ln \left\vert \dfrac{x-a}{x+a}\right\vert +C=\dfrac{1}{2a}\ln \left\vert \dfrac{x-a }{x+a}\right\vert ^{-1}+C \\[6pt] &=& \dfrac{1}{2a}\ln \left\vert \dfrac{x+a}{x-a}\right\vert +C \end{eqnarray*} \]

NOW WORK

Problem 37.

2 Integrate a Rational Function Whose Denominator Contains a Repeated Linear Factor

Case 2: If the denominator \(q\) has a repeated linear factor \( (x-a)^{n},\) \(n \geq 2\) an integer, then the decomposition of \(\dfrac{p}{q}\) includes the terms \[\bbox[5px, border:1px solid black, #F9F7ED]{ \dfrac{A_{1}}{x-a}, \dfrac{A_{2}}{(x-a)^{2}},\ \ldots ,\ \dfrac{A_{n}}{(x-a)^{n}}} \]

where \(A_{1},\) \(A_{2,}\) \(\ldots ,\) \(A_{n}\) are real numbers.

Integrating a Rational Function Whose Denominator Contains a Repeated Linear Factor

Find \(\int \dfrac{dx}{x(x-1)^{2}}\).

Solution  Since \(x\) is a distinct linear factor of the denominator \(q\), and \((x-1)^{2}\) is a repeated linear factor of the denominator, the decomposition of \(\dfrac{1}{x(x-1) ^{2}}\) into partial fractions has the three terms \(\dfrac{A}{x}\), \(\dfrac{B}{x-1},\) and \(\dfrac{C}{(x-1) ^{2}}\). \[ \begin{eqnarray*} \begin{array}{rl@{\!\!\!\qquad}l} \dfrac{1}{x(x-1)^{2}} &= \dfrac{A}{x}+\dfrac{B}{x-1}+\dfrac{C}{(x-1)^{2}} \quad &{\color{#0066A7}{\hbox{Write the identity.}}} \\ 1 &= A(x-1)^{2}+B\cdot x(x-1)+C\cdot x\quad &{\color{#0066A7}{\hbox{Multiply both sides by }{x} (x-1)^{2}.}} \end{array} \end{eqnarray*} \]

We find \(A,\) \(B,\) and \(C\) by choosing values of \(x\) that cause one or more terms to drop out. When \(x=1,\) we have \(1=C\cdot 1,\) so \(C=1\). When \(x=0,\) we have \(1=A(0-1)^{2},\) so \(A=1.\) Now using \(A=1\) and \(C=1,\) we have \[ \begin{equation*} 1=(x-1)^{2}+B\cdot x(x-1)+ 1 \cdot x \end{equation*} \]

Suppose we let \(x=2.\) (Any choice other than \(0\) and \(1\) will also work.) Then \[ \begin{eqnarray*} 1 &=&1+2B+2 \\ B &=&-1 \end{eqnarray*} \]

Then \[ \begin{array}{l@{\qquad}l} \dfrac{1}{x(x-1)^{2}}=\dfrac{1}{x}+\dfrac{-1}{(x-1) }+\dfrac{1}{(x-1)^{2}} \quad{\color{#0066A7}{\hbox{\(A=1\)}}\quad \quad{\color{#0066A7}{\hbox{\(B=-1\)}}}\quad \quad{\color{#0066A7}{\hbox{\(C=1\)}}}} \end{array} \]

503

So, \[ \begin{eqnarray*} \int \dfrac{dx}{x(x-1)^{2}} &=& \int \dfrac{dx}{x}- \int \dfrac{dx}{x-1}+ \int \dfrac{dx}{(x-1)^{2}}\\[7pt] &=& \ln \vert x \vert -\ln \vert x-1\vert -\dfrac{1}{x-1} +C_{1} \end{eqnarray*} \]

NOTE

To avoid confusion, we use \(C_{1}\) for the constant of integration whenever \(C\) appears in the partial fraction decomposition.

NOW WORK

Problem 15.

3 Integrate a Rational Function Whose Denominator Contains a Distinct Irreducible Quadratic Factor

A quadratic polynomial \(ax^{2}+bx+c\) is called irreducible if it cannot be factored into real linear factors. This happens if the discriminant \(b^{2}-4ac<0\). For example, \(x^{2}+x+1\) and \(x^{2}+4\) are irreducible.

NEED TO REVIEW?

The discriminant of a quadratic equation is discussed in Appendix A.1, pp. A-3 to A-4.

Case 3: If the denominator \(q\) contains a nonrepeated irreducible quadratic factor \(ax^{2}+bx+c\), then the decomposition of \(\dfrac{p}{q}\) includes the term \[\bbox[5px, border:1px solid black, #F9F7ED]{ \dfrac{Ax+B}{ax^{2}+bx+c} } \]

where \(A\) and \(B\) are real numbers.

Integrating a Rational Function Whose Denominator Contains a Distinct Irreducible Quadratic Factor

Find \(\int \dfrac{3x}{x^{3}-1}\,dx\).

Solution  The denominator is \(x^{3}-1=(x-1)(x^{2}+x+1)\). Since \( x-1\) is a nonrepeated linear factor, by Case 1 the decomposition of \(\dfrac{ 3x}{x^{3}-1}=\dfrac{3x}{(x-1) (x^{2}+x+1) }\) has the term \(\dfrac{A}{x-1}\).

The discriminant of the quadratic equation \(x^{2}+x+1=0\) is negative, so \( x^{2}+x+1\) is an irreducible quadratic factor of \(q\), and the decomposition of \(\dfrac{p}{q}\) also contains the term \(\dfrac{Bx+C}{x^{2}+x+1}\). Then \[ \dfrac{3x}{x^{3}-1}=\dfrac{A}{x-1}+\dfrac{Bx+C}{x^{2}+x+1} \]

Clearing the denominators, we have \[ \begin{equation*} 3x=A(x^{2}+x+1)+(Bx+C)(x-1)\ \end{equation*} \]

This is an identity in \(x\). When \(x=1\), we have \(3=3A,\) so \(A=1.\) With \(A=1,\) the identity becomes \[ \begin{eqnarray*} 3x &=& (x^{2}+x+1) + (Bx+C) (x-1) \\[3pt] -x^{2}+2x-1 &=& (Bx+C) (x-1) \\[3pt] -(x-1) ^{2} &=& (Bx+C) (x-1) \\[3pt] -(x-1) &=& Bx+C \\[3pt] B &=& -1,\quad C=1 \end{eqnarray*} \]

504

So, \[ \begin{eqnarray*} \dfrac{3x}{x^{3}-1} &=&\dfrac{1}{x-1}+\dfrac{-x+1}{x^{2}+x+1} \nonumber\\[5pt] \int \dfrac{3x}{x^{3}-1}\,dx &=&\int \left( \dfrac{1}{x-1}+\dfrac{-x+1}{ x^{2}+x+1}\right) dx=\int \dfrac{1}{x-1}\,dx+\int \dfrac{-x+1}{x^{2}+x+1}\,dx \nonumber\\[5pt] &=& \ln \vert x-1\vert -\int \dfrac{x-1}{x^{2}+x+1}\, dx\tag{2} \end{eqnarray*} \]

To find the integral on the right, we complete the square in the denominator and use substitution. \[ \begin{eqnarray*} \int \dfrac{x-1}{x^{2}+x+1}dx &=& \int \dfrac{x-1}{\left( x+\dfrac{1}{2}\right)^{2}+\dfrac{3}{4}}dx \underset{\underset{\color{#0066A7}{\hbox{\(u=x+\dfrac{1}{2}\)}}}{\color{#0066A7}{\left\uparrow{\vphantom{\vrule width0pc height11pt\\ depth0pt}}\right.}}} {=} \int \dfrac{u-\dfrac{3}{2}}{u^{2}+\dfrac{3}{4}}du=\int \dfrac{u}{u^{2}+\dfrac{3}{4\\ }}du-\dfrac{3}{2}\int \dfrac{du}{u^2+\dfrac{3}{4}} \\ &=& \dfrac{1}{2}\ln \left( u^{2}+\dfrac{3}{4}\right) -\dfrac{3}{2}\left[ \dfrac{2}{\sqrt{3}}\tan ^{-1}\left( \dfrac{2}{\sqrt{3}}u\right) \right] \quad {\color{#0066A7}{\hbox{\(\int \dfrac{du}{u^{2}+a^{2}}\, =\dfrac{1}{a}\tan^{-1}\left( \dfrac{u}{a}\right)\)}}} \\ &=& \dfrac{1}{2}\ln \left( u^{2}+\dfrac{3}{4}\right) -\sqrt{3}\tan ^{-1}\left( \dfrac{2}{\sqrt{3}}u\right) \\ &=& \dfrac{1}{2}\ln (x^{2}+x+1) -\sqrt{3}\tan ^{-1}\left( \dfrac{2x+1}{\sqrt{3}}\right) \end{eqnarray*} \]

Then from (2), \[ \int \dfrac{3x}{x^{3}-1}dx=\ln \vert x-1\vert -\dfrac{1}{2}\ln \,(x^{2}+x+1)+\sqrt{3}\tan ^{-1}\left( \dfrac{2x+1}{\sqrt{3}}\right) +C_{1} \]

NOW WORK

Problem 21.

4 Integrate a Rational Function Whose Denominator Contains a Distinct Irreducible Quadratic Factor

Case 4: If the denominator \(q\) contains a repeated irreducible quadratic polynomial \((x^{2}+bx+c)^{n}\), \(n \geq 2\) an integer, then the decomposition of \(\dfrac{p}{q}\) includes the terms \[\bbox[5px, border:1px solid black, #F9F7ED]{ \dfrac{A_{1}x+B_{1}}{x^{2}+bx+c}\hbox{, }\ \dfrac{A_{2}x+B_{2}}{ (x^{2}+bx+c)^{2}}\hbox{,}\ \ldots\hbox{, }\ \dfrac{A_{n}x+B_{n}}{(x^{2}+bx+c)^{n}} } \]

where \(A_{1}\), \(B_{1}\), \(A_{2}\), \(B_{2}\), …, \(A_{n}\), \(B_{n}\) are real numbers.

Integrating a Rational Function Whose Denominator Contains a Repeated Irreducible Quadratic Factor

Find \(\int \dfrac{x^{3}+1}{(x^{2}+4)^{2}}\,dx\).

Solution  The denominator is a repeated, irreducible quadratic, so the decomposition of \(\dfrac{x^{3}+1}{(x^{2}+4)^{2}}\) is \[ \dfrac{x^{3}+1}{(x^{2}+4)^{2}}=\dfrac{Ax+B}{x^{2}+4}+\dfrac{Cx+D}{(x^{2}+4)^{2}} \]

505

Clearing fractions and combining terms give \[ \begin{eqnarray*} x^{3}+1 &=& (Ax+B) (x^{2}+4) +Cx+D \\[3pt] x^{3}+1 &=& Ax^{3}+Bx^{2}+(4A+C)x+4B+D \end{eqnarray*} \]

Equating coefficients, we get \[ \begin{equation*} \begin{array}{rl@{\qquad}rrr} A=1 \quad B=0\quad 4A+C &= 0 & 4B+D &= 1 \\[3pt] C &=-4 & D &=1 \end{array} \end{equation*} \]

Then \[ \begin{equation*} \dfrac{x^{3}+1}{(x^{2}+4)^{2}}=\dfrac{x}{x^{2}+4}+\dfrac{-4x+1}{(x^{2}+4)^{2}} \end{equation*} \]

and \[ \begin{eqnarray*} \int \dfrac{x^{3}+1}{(x^{2}+4)^{2}}dx &=& \int \dfrac{x}{x^{2}+4}dx+\int \dfrac{ -4x+1}{(x^{2}+4)^{2}}dx \nonumber\\[5pt] & =& \int \dfrac{x}{x^{2}+4}dx-4\int \dfrac{x}{(x^{2}+4)^{2} }dx+\int \dfrac{dx}{(x^{2}+4)^{2}}\tag{3} \end{eqnarray*} \]

In the first two integrals on the right in (3), we use the substitution \(u=x^{2}+4\) , \(x \geq 0.\) Then \(du=2x\,dx\), and

  • \(\int \dfrac{x}{x^{2}+4}dx = \dfrac{1}{2}\int \dfrac{du}{u}=\dfrac{1}{2}\ln \vert u \vert =\dfrac{1}{2}\ln (x^{2}+4) \tag{4}\)
  • \(-4\int \dfrac{x}{(x^{2}+4)^{2}}dx = -2\int \dfrac{\,du}{u^{2}}=\dfrac{2}{u}= \dfrac{2}{x^{2}+4}\tag{5}\)

In the third integral on the right in (3), we use the trigonometric substitution \( x=2\tan \theta \), \(-\dfrac{\pi }{2} \lt \theta \lt \dfrac{\pi }{2}.\) Then \( dx=2\sec ^{2} \theta \,d\theta \), and \[ \begin{eqnarray*} \int \dfrac{dx}{(x^{2}+4)^{2}} &=& \int \dfrac{2\sec ^{2} \theta \,d\theta }{ \left( 4\tan ^{2}\theta +4\right) ^{2}}=\dfrac{2}{16}\int \dfrac{\sec ^{2} \theta \,d\theta }{( \sec ^{2} \theta) ^{2}}=\dfrac{1}{8}\int \cos ^{2}\theta \,d\theta \\[7pt] &=& \dfrac{1}{8}\int \dfrac{1+\cos (2\theta) }{2}d\theta \\[7pt] &=& \dfrac{1}{16}\left[ \theta +\dfrac{1}{2}\sin (2\theta ) \right] =\dfrac{1}{16}(\theta +\sin \theta \cos \theta ) \end{eqnarray*} \]

To express the solution in terms of \(x\), either use the triangles in Figure 10 or use trigonometric identities as follows: \[ \begin{equation*} \sin \theta \cos \theta =\dfrac{\sin \theta }{\cos \theta }\cdot \cos ^{2}\theta =\dfrac{\tan \theta }{\sec ^{2} \theta }=\dfrac{\tan \theta }{\tan ^{2}\theta +1}=\dfrac{\dfrac{x}{2}}{\dfrac{x^{2}}{4}+1}=\dfrac{2x}{x^{2}+4} \end{equation*} \]

Then \[ \begin{eqnarray*} \int \dfrac{dx}{(x^{2}+4)^{2}} &=& \dfrac{1}{16}(\theta +\sin \theta \cos \theta )\underset{\underset{\color{#0066A7}{\hbox{\(x=2\tan \theta{;} \theta =\tan^{-1}\dfrac{x}{2}\)}}}{\color{#0066A7}{\uparrow}}}{=} \dfrac{1}{16}\left( \tan ^{-1}\dfrac{x}{2}+\dfrac{2x}{x^{2}+4}\right)\tag{6} \end{eqnarray*} \]

Figure 10 \(\tan \theta =\dfrac{x}{2}, -\dfrac{\pi}{2} \lt \theta \lt \dfrac{\pi }{2} \)

Now use the results of (3), (4), (5), and (6): \[ \int \dfrac{x^{3}+1}{(x^{2}+4)^{2}}dx=\dfrac{1}{2}\ln (x^{2}+4)+\dfrac{2}{ x^{2}+4}+\dfrac{1}{16}\tan ^{-1}\dfrac{x}{2}+\dfrac{x}{8(x^{2}+4)}+C_{1} \]

NOW WORK

Problem 23.