Printed Page 472
472
When you finish this section, you should be able to:
Integration by parts is a technique of integration based on the Product Rule for derivatives: If u=f(x) and v=g(x) are functions that are differentiable on an open interval (a,b), then ddx[f(x)⋅g(x)]=f(x)g′(x)+f′(x)g(x)
Integrating both sides gives ∫ddx[f(x)⋅g(x)]dx=∫[f(x)g′(x)+f′(x)g(x)]dxf(x)⋅g(x)=∫f(x)g′(x)dx+∫f′(x)g(x)dx
Solving this equation for ∫f(x)g′(x)dx yields \bbox[5px, border:1px solid black, #F9F7ED]{\bbox[5pt] {\int f( x) g^\prime ( x) dx = f(x) \cdot g(x) -\int f^\prime ( x) g(x) dx}}
which is known as the integration by parts formula.
Let u=f( x) , v=g( x) . Then we can use their differentials, du=f^{\prime} ( x) dx and dv=g^{\prime} ( x) dx to obtain the formula in the form we usually use: \bbox[5px, border:1px solid black, #F9F7ED]{\bbox[5pt] {\int u~dv=uv-\int v~du}}
The integral of the product u dv equals u times v minus the integral of the product v du.
Printed Page 472
The goal of integration by parts is to choose u and dv so that \int v~du is easier to integrate than \int u~dv.
Find \int x e^x~dx.
Solution Choose u and dv so that \int u dv = \int x e^x~dx
Suppose we choose u = x\qquad \text{and} \quad dv = e^x~dx
Then du = dx\qquad \text{and} \qquad v = \int dv = \int e^x~dx=e^x
Notice that we did not add a constant. Only a particular antiderivative of dv is required at this stage; we will add the constant of integration at the end. Using the integration by parts formula, we have \int \underset{\color{#0066A7}{\hbox{\(u\)}}}{\underbrace{x}} \underset{\color{#0066A7}{dv}}{\underbrace{e^{x} dx}} = \underset{\color{#0066A7}{uv}}{\underbrace{x e^{x}}}-\int \underset{\color{#0066A7}{v}}{\underbrace{e^{x}}}\underset{\color{#0066A7}{\hbox{\(du\)}}} {\underbrace{\hbox{\(dx\)}}}=x e^{x}-e^{x}+C=e^{x}(x-1)+C
473
We intentionally chose u=x and dv=e^{x}dx so that \int v~du in the formula is easy to integrate. Suppose, instead, we chose u = e^x \quad \text{and} \quad dv = x~dx
Then du = e^xdx \quad \text{and} \quad v = \int xdx = \dfrac {x^{2}}{2}
The integration by parts formula yields \int x e^{x} dx=\int \underset{\color{#0066A7}{\hbox{\(u\)}}}{\underbrace{e^{x}}} \underset{\color{#0066A7}{dv}}{\underbrace{x~dx}} = \underset{\color{#0066A7}{uv}}{\underbrace{e^{x} \dfrac{x^{2}}{2}}}-\int \underset{\color{#0066A7}{v}}{\underbrace{\dfrac{x^{2}}{2}}} \underset{\color{#0066A7}{\hbox{\(du\)}}}{\underbrace{e^{x} dx}}
For this choice of u and v, the integral on the right is more complicated than the original integral, indicating an unwise choice of u and dv.
We choose dv so that it can be easily integrated and choose u so that \int v du is simpler than \int u dv.
Find \int x sin x~dx.
Solution We use the integration by parts formula with u=x \qquad\hbox{and}\qquad dv=\sin x\,dx\qquad {\color{#0066A7}{\int}} {\color{#0066A7}{udv=}} {\color{#0066A7}{\int x\sin x\,dx}}
Then du = dx \quad and \quad v = \int \sin x~dx = -cos x
and \begin{eqnarray*} \int x\sin x\,dx \underset{\underset{\color{#0066A7}{\hbox{\(\int udv= uv - \int vdu\)}}}{\color{#0066A7}{\uparrow}}} {=} -x\cos x+\int \cos x\,dx=-x\cos x+\sin x+C \\[-9pt] \end{eqnarray*}
Unfortunately, there are no exact rules for choosing u and dv. But the following guidelines are helpful:
Integration by Parts: Guidelines for Choosing u and dv
Choosing u and dv often involves trial and error. If a selection does not appear to work, try a different choice. If no choice works, it may be that some other technique of integration should be used.
474
Derive the formula \bbox[5px, border:1px solid black, #F9F7ED]{ \int \ln x\,dx=x\ln x-x+C }
Solution We use the integration by parts formula with \begin{equation*} \hbox{ }u=\ln x\qquad \hbox{and}\qquad dv=dx \end{equation*}
Then du=\frac{1}{x}\,dx\qquad {\rm and}\qquad v=\int dx=x \
Now \int \ln x\,dx= {{x}}\cdot {{\ln x}}-\int {{x}}\cdot {{\frac{1}{x}\,dx}}\,=x\,\ln x-\int dx=x\,\ln x-x+C
The integral \int \ln x\,dx can be found in the list of integrals on the inserts at the front and back of the book and is a basic integral.
Derive the formula \bbox[5px, border:1px solid black, #F9F7ED]{ \int \tan ^{-1}x\,dx=x\,\tan ^{-1}x-\dfrac{1}{2}\ln \,(1+x^{2})+C }
Solution We use the integration by parts formula with u=\tan ^{-1}x\qquad \hbox{and }\qquad dv=dx
Then du=\frac{1}{1+x^{2}}\,dx\qquad \hbox{and}\qquad v=\int dx=x and \int \tan ^{-1}x\,dx=x\cdot \tan ^{-1}x-\int \frac{x}{1+x^{2}}dx
To find the integral \int \dfrac{x}{1+x^{2}}dx, we use the substitution t=1+x^{2}. Then dt=2x\,dx, or equivalently, x~dx=\dfrac{dt}{2}. \begin{equation*} \int \frac{x}{1+x^{2}}dx=\frac{1}{2}\int \frac{dt}{t}=\frac{1}{2}\ln \vert \,t\vert =\frac{1}{2}\ln (1+x^{2}) \end{equation*}
As a result, \int \tan ^{-1} x \,dx=x \tan ^{-1}x-\dfrac{1}{2}\ln (1+x^{2})+C.
The method of substitution is discussed in Section 5.6, pp. 387-393.
The next example shows that sometimes it is necessary to integrate by parts more than once.
Find \int x^{2}\,e^{x}\,dx.
Solution We use the integration by parts formula with u=x^{2}\qquad \hbox{and}\qquad dv=e^{x}\,dx
Then du=2x\,dx\qquad \hbox{and}\qquad v=\int e^{x}\,dx=e^{x}
475
and \int x^{2} e^{x}\,dx=x^{2}e^{x}-2\int xe^{x}\,dx
The integral on the right is simpler than the original integral. To find it, we use integration by parts a second time. (Refer to Example 1.)
\begin{equation*} \int xe^{x}\,dx=xe^{x}-e^{x} \end{equation*}
Then \int x^{2}e^{x}\,dx=x^{2}e^{x}-2( xe^{x}-e^{x}) +C=e^{x}(x^{2}-2x+2)+C
Table 1 provides guidelines to help choose u and dv for several types of integrals that are found using integration by parts. In the table, n is always a positive integer.
Integral; n is a positive integer | u | dv |
---|---|---|
\left. \begin{array}{l} \int x^{n}e^{ax}\,dx \\ \int x^{n}\cos (ax) \,dx \\ \int x^{n}\sin (ax) \,dx \end{array} \right\} | u=x^{n} | dv= \hbox{what remains} |
\begin{array}{l} \int x^{n}\sin ^{-1}x\,dx \\ \int x^{n}\cos ^{-1}x\,dx \\ \int x^{n}\tan ^{-1}x\,dx \end{array} | \begin{array}{l} u=\sin ^{-1}x \\ u=\cos ^{-1}x \\ u=\tan ^{-1}x \end{array} | dv=x^{n}\,dx |
\int x^{m}( \ln x) ^{n}\,dx; m is a real number, m ≠ -1 | u=( \ln x) ^{n} | dv=x^{m}\,dx |
Integration by parts is also used to find certain definite integrals.
Find the area under the graph of f( x) =x\ln x from 1 to 2.
Solution See Figure 1 for the graph of f( x) =x\ln x. The area A under the graph of f from 1 to 2 is A=\int_{1}^{2}x\ln x\,dx. We use the integration by parts formula with \begin{equation*} u=\ln x\qquad \hbox{and}\qquad dv=x\,dx \end{equation*}
Then \begin{equation*} du=\frac{1}{x} dx\qquad \hbox{and}\qquad v=\int x dx=\frac{x^{2}}{2} \end{equation*}
and \begin{eqnarray*} A=\int_{1}^{2}x\ln x\,dx&=&\left[ \frac{x^{2}}{2}\ln x\right] _{1}^{2}-\int_{1}^{2}\frac{x^{2}}{2}\left( \frac{1}{x} dx\right) =2\ln 2-\dfrac{1}{2}\int_{1}^{2}x\,dx\\[5pt] &=&2\ln 2- \dfrac{1}{2}\left[ \frac{x^{2}}{2}\right] _{1}^{2}=2\ln 2-\dfrac{3}{4} \end{eqnarray*}
Printed Page 476
476
Integration by parts is also used to derive general formulas involving integrals.
Derive the formula \bbox[5px, border:1px solid black, #F9F7ED]{ \int e^{ax}\cos (bx) \,dx=\dfrac{e^{ax}[b\sin (bx) +a\cos (bx)] }{a^{2}+b^{2}}+C\qquad b ≠ 0} \tag{1}
Solution We use the integration by parts formula with u=e^{ax}\qquad \hbox{and} \qquad dv=\cos (bx) \,dx
Then \begin{equation*} du=ae^{ax}\,dx\qquad \hbox{and}\qquad v=\int \cos (bx) \,dx=\frac{1}{b}\sin (bx) \end{equation*}
and \begin{equation*} \int e^{ax}\cos (bx) \,dx=e^{ax}\,\dfrac{\sin (bx) }{b}-\frac{a}{b}\int e^{ax}\sin (bx) \,dx \tag{2} \end{equation*}
The new integral on the right, \int e^{ax}\sin (bx) \,dx, is different from the original integral, but it is essentially of the same form. We use integration by parts again with this integral by choosing \begin{equation*} u=e^{ax}\qquad \hbox{and}\qquad dv=\sin (bx) \,dx \end{equation*}
Then \begin{equation*} du=ae^{ax}\,dx\qquad \hbox{and}\qquad v=\int \sin (bx) \,dx=- \frac{1}{b}\cos (bx) \end{equation*}
and \begin{equation*} \int e^{ax}\sin (bx) \,dx=-\frac{1}{b}\,e^{ax}\cos (bx) +\frac{a}{b}\int e^{ax}\cos (bx) \,dx\tag{3} \end{equation*}
Substituting the result from (3) into (2), we obtain \begin{eqnarray*} \int e^{ax}\cos (bx) \,dx& =& \frac{1}{b}e^{ax}\sin (bx) -\frac{a}{b}\left[ -\frac{1}{b}e^{ax}\cos (bx) + \frac{a}{b}\int e^{ax}\cos (bx) \,dx\right] \\[8pt] \int e^{ax}\cos (bx) \,dx& =&\frac{1}{b}\,e^{ax}\sin (bx) +\frac{a}{b^{2}}\,e^{ax}\cos (bx) -\frac{a^{2}}{b^{2}}\int e^{ax}\cos (bx) \,dx \end{eqnarray*}
Now we solve for \int e^{ax}\cos (bx) \,dx and simplify. \begin{eqnarray*} \int e^{ax}\cos (bx) \,dx+\frac{a^{2}}{b^{2}}\int e^{ax}\cos (bx) \,dx& =&\frac{1}{b}\,e^{ax}\sin (bx) +\frac{a}{ b^{2}}\,e^{ax}\cos (bx) \nonumber \\[5pt] \left( 1+\frac{a^{2}}{b^{2}}\right) \int e^{ax}\cos (bx) \,dx &=&\frac{1}{b^{2}}\,e^{ax} [b\sin (bx) +a\cos (bx) ] \\ \int e^{ax}\cos (bx) \,dx &=&\frac{e^{ax}[b\sin (bx)+a\cos (bx)]}{a^{2}+b^{2}}+C \end{eqnarray*}
477
For example, to find \int e^{4x}\cos (5x) \,dx, we use (1) with a=4 and b=5. \int e^{4x}\cos (5x) \,dx=\frac{e^{4x}[ 5\sin \,(5x) +4\cos \,(5x) ] }{41}+C
Derive the formula \bbox[5px, border:1px solid black, #F9F7ED]{ \int \sec ^{n} x\,dx=\dfrac{\sec ^{n-2}x\,\tan \,x}{n-1} +\dfrac{n-2}{n-1}\int \sec ^{n-2} x\,dx\qquad n \geq 3}\tag{4}
Solution We begin by writing \sec ^{n}x=\sec ^{n-2}x\sec ^{2}x, and choose u=\sec ^{n-2}x\qquad \hbox{and}\qquad dv=\sec ^{2}x\,dx
This choice makes \int dv easy to integrate. Then \begin{eqnarray*} du&=&[ (n-2)\sec ^{n-3}x\cdot \sec x\,\tan x] \,dx =[ (n-2)\sec ^{n-2}x\,\tan x] \,dx \\[6pt] v&=&\int \sec^{2}x\,dx=\tan x \end{eqnarray*}
Using integration by parts, we get \begin{equation*} \int \sec ^{n}x\,dx=\sec ^{n-2}x\,\tan x-(n-2)\int \sec ^{n-2}x\,\tan ^{2}x\,dx \end{equation*}
To express the integrand on the right in terms of \sec x, we use the trigonometric identity, \tan ^{2}x+1=\sec ^{2}x, and replace \tan ^{2}x by \sec ^{2}x-1, obtaining \begin{eqnarray*} \int \sec ^{n}x\,dx& =&\sec ^{n-2}x\tan x-(n-2)\int \sec ^{n-2}x(\sec^{2}x-1)\,dx \\[4pt] \int \sec ^{n}x\,dx& =& \sec ^{n-2}x\tan x-(n-2)\int \sec ^{n}x\,dx+(n-2)\int \sec ^{n-2}x\,dx \end{eqnarray*}
Moving the middle term on the right to the left, we obtain (n-1)\int \sec ^{n}x\,dx=\sec ^{n-2}x\,\tan x+(n-2)\int \sec ^{n-2}x\,dx
Finally, divide both sides by n-1: \int \sec ^{n}x\,dx=\frac{\sec ^{n-2}x\tan x}{n-1}+\frac{n-2}{n-1}\int \sec ^{n-2}x\,dx
Formula (4) is called a reduction formula because repeated applications of the formula eventually lead to an elementary integral. For this reduction formula, when n is even, repeated applications lead eventually to \bbox[5px, border:1px solid black, #F9F7ED]{ \int \sec ^{2}x\,dx=\tan x+C}
When n is odd, repeated applications eventually lead to the integral \bbox[5px, border:1px solid black, #F9F7ED]{ \int \sec x\,dx=\ln \vert \sec x+\tan x\vert +C}
478
For example, if n=3, \int \sec^{3}x~dx = \frac{\sec x \tan x}{2}+ \frac{1}{2} \int \sec x~dx=\frac{\sec x \tan x}{2}+\frac{1}{2}\ln \vert \sec x+\tan x\vert + C