Printed Page 591
591
When you finish this section, you should be able to:
One of the most practical tests for convergence of a series makes use of the ratio of two consecutive terms.
Let ∞∑k=1ak be a series of nonzero terms.
A proof of the Ratio Test is given at the end of the section.
Printed Page 591
Use the Ratio Test to determine whether each series converges or diverges.
Solution (a) \sum\limits_{k\,=\,1}^{\infty }\dfrac{k}{4^{k}} is a series of nonzero terms; a_{n+1}=\dfrac{n+1}{4^{n+1}} and a_{n}= \dfrac{n}{4^{n}}. The absolute value of their ratio is \left\vert \frac{a_{n+1}}{a_{n}}\right\vert =\dfrac{\dfrac{n+1}{4^{n+1}}}{ \dfrac{n}{4^{n}}}=\dfrac{n+1}{4^{n+1}}\cdot \dfrac{4^{n}}{n}=\frac{n+1}{4n}
Then \lim\limits_{n\,\rightarrow \,\infty }\,\left\vert \frac{a_{n+1}}{a_{n}} \right\vert =\lim\limits_{n\,\rightarrow \,\infty }\frac{n+1}{4n}=\frac{1}{4} <1
Since the limit is less than 1, the series converges.
(b) \sum\limits_{k\,=\,1}^{\infty }\dfrac{2^{k}}{k} is a series of nonzero terms; a_{n+1}=\dfrac{2^{n+1}}{n+1} and a_{n}=\dfrac{ 2^{n}}{n}. The absolute value of their ratio is \left\vert \frac{a_{n+1}}{a_{n}}\right\vert =\frac{2^{n+1}}{n+1} \cdot \frac{ n}{2^{n}} =\frac{2n}{n+1}
Then \lim\limits_{n\,\rightarrow \,\infty }\left\vert \frac{a_{n+1}}{a_{n}} \right\vert =\lim\limits_{n\,\rightarrow \,\infty }\frac{2n}{n+1}=2>1
Since the limit is greater than 1, the series diverges.
592
(c) \sum\limits_{k\,=\,1}^{\infty }\dfrac{3k+1}{k^{2}} is a series of nonzero terms; a_{n+1}=\dfrac{3(n+1) +1}{(n+1) ^{2}}=\dfrac{3n+4}{(n+1) ^{2}} and a_{n}=\dfrac{3n+1 }{n^{2}}. The absolute value of their ratio is \left\vert \frac{a_{n+1}}{a_{n}}\right\vert {=}\left[ \frac{3n+4}{(n+1)^{2}} \right] \left( \frac{n^{2}}{3n+1}\right) {=}\left( \frac{3n+4}{3n+1}\right) \left( \frac{n^{2}}{n^{2}+2n+1}\right) =\dfrac{3n^{3}+4n^{2}}{3n^{3}+7n^{2}+5n+1}
Then \lim\limits_{n\,\rightarrow \,\infty }\left\vert \frac{a_{n+1}}{a_{n}} \right\vert =\lim\limits_{n\,\rightarrow \,\infty }\dfrac{3n^{3}+4n^{2}}{3n^{3}+7n^{2}+5n+1}=1
The Ratio Test gives no information about this series. Another test must be used. \bigg({\rm{You}}\, {\rm{can}}\, {\rm{show}}\, {\rm{that}}\, {\rm{the}}\, {\rm{series}}\, {\rm{diverges}}\, {\rm{by}}\, {\rm{comparing}}\, {\rm{it}}\, {\rm{to}}\, {\rm{the}}\, {\rm{harmonic}}\, {\rm{series}}\, \sum\limits_{k\,=\,1}^{\infty }\dfrac{1}{k}.\bigg)
(d) \sum\limits_{k\,=\,1}^{\infty }\dfrac{1}{k!} is a series of nonzero terms; a_{n+1}=\dfrac{1}{(n+1) !} and a_{n}=\dfrac{ 1}{n!}. The absolute value of their ratio is \left\vert \frac{a_{n+1}}{a_{n}}\right\vert =\frac{n!}{(n+1)!} = \frac{1}{n+1}
Then \lim_{n\rightarrow \infty }\left\vert \frac{a_{n+1}}{a_{n}}\right\vert =\lim_{n\rightarrow \infty }\frac{1}{n+1}=0
Since the limit is less than 1, the series \sum\limits_{k\,=\,1}^{\infty }\dfrac{1}{k!} converges.
In Section 8.9, we show that \sum\limits_{k\,=\,1}^{\infty }\dfrac{1}{k!}=e.
As Example 1 illustrates, the Ratio Test is useful in determining whether a series containing factorials and/or powers converges or diverges.
Use the Ratio Test to determine whether the series \sum\limits_{k\,=\,1}^{\infty }\dfrac{k!}{k^{k}} converges or diverges.
Solution \sum\limits_{k\,=\,1}^{\infty }\dfrac{k!}{k^{k}} is a series of nonzero terms. Since a_{n+1}=\dfrac{(n+1)!}{(n+1) ^{n+1}} and a_{n}=\dfrac{n!}{n^{n}}, the absolute value of their ratio is \begin{eqnarray*} \begin{array}{@{\hspace*{-0pc}}rcl} \displaystyle\left\vert \dfrac{a_{n+1}}{a_{n}}\right\vert &=& \dfrac{\dfrac{(n+1)!}{(n+1) ^{n+1}}}{\dfrac{n!}{n^{n}}}=\dfrac{(n+1)!}{(n+1)^{n+1}}\cdot \dfrac{n^{n}}{n!}=\dfrac{n^{n}}{(n+1)^{n}}\\ &=&\left( \dfrac{n}{n+1}\right)^{n} = \left( \dfrac{1}{1+\dfrac{1}{n}}\right)^{n} = \dfrac{1}{\left( 1+\dfrac{1}{n}\right) ^{n}}\qquad \end{array} \end{eqnarray*}
So, \lim\limits_{n\,\rightarrow \,\infty }\left\vert \frac{a_{n+1}}{a_{n}} \right\vert =\lim\limits_{n\,\rightarrow \,\infty }\frac{1}{\left( 1+\dfrac{1 }{n}\right) ^{n}}=\frac{\lim\limits_{n\,\rightarrow \,\infty }1}{ \lim\limits_{n\,\rightarrow \,\infty }\,\left( 1+\dfrac{1}{n}\right) ^{n}}=\frac{1}{e}
Since \dfrac{1}{e}<1, the series converges.
The number e expressed as a limit is discussed in Section 3.3, pp. 227-228.
593
We conclude the discussion of the Ratio Test with these observations:
In Example 2, the ratio \left\vert \dfrac{a_{n+1}}{a_{n}} \right\vert converges to \dfrac{1}{e}. This does not mean that \sum\limits_{k\,=\,1}^{\infty }\dfrac{k!}{k^{k}} converges to \dfrac{1}{e} . In fact, the sum of the series \sum\limits_{k\,=\,1}^{\infty }\dfrac{ k!}{k^{k}} is not known; all that is known is that the series converges.
The Root Test works well for series of nonzero terms whose nth term involves an nth power.
Let \sum\limits_{k\,=\,1}^{\infty }a_{k} be a series of nonzero terms. Suppose \ \lim\limits_{n\rightarrow \infty }\sqrt[{n}]{\,\vert a_{n}\vert }=L, a number.
The proof of the Root Test is similar to the proof of the Ratio Test. It is left as an exercise (Problem 55).
Printed Page 593
Use the Root Test to determine whether the series \sum\limits_{k\,=\,1}^{ \infty }\dfrac{e^{k}}{k^{k}} converges or diverges.
Solution \sum\limits_{k\,=\,1}^{\infty }\dfrac{e^{k}}{k^{k}} is a series of nonzero terms. The nth term is a_{n}= \dfrac{e^{n}}{n^{n}}=\left(\dfrac{e}{n}\right)^{n}. Since a_{n} involves an nth power, we use the Root Test. \lim\limits_{n\,\rightarrow \,\infty }\sqrt[n]{\,\vert a_{n}\vert }=\lim\limits_{n\,\rightarrow \,\infty }\sqrt[n]{\left( \frac{e}{n}\right) ^{n}}=\lim\limits_{n\,\rightarrow \,\infty }\frac{e}{n}=0<1
The series \sum\limits_{k\,=\,1}^{\infty }\dfrac{e^{k}}{k^{k}} converges.
594
Use the Root Test to determine whether the series \sum\limits_{k\,=\,1}^{ \infty }\left( {\dfrac{8k+3}{5k-2}}\right) ^{\!\!k} converges or diverges.
Solution \sum\limits_{k\,=\,1}^{\infty }\left( {\dfrac{8k+3}{ 5k-2}}\right) ^{\!\!k} is a series of nonzero terms. The nth term is a_{n}= \left( {\dfrac{8n+3}{5n-2}}\right) ^{\!\!n}\!. Since a_{n} involves an nth power, we use the Root Test. \lim\limits_{n\,\rightarrow \,\infty }\sqrt[n]{\,\vert a_{n}\vert }=\lim\limits_{n\,\rightarrow \,\infty }\sqrt[n]{\left( {\dfrac{8n+3}{5n-2}} \right) ^{\!\!n}}=\lim\limits_{n\,\rightarrow \,\infty }\frac{8n+3}{5n-2}=\frac{8}{5}>1
The series diverges.
Let \sum\limits_{k\,=\,1}^{\infty }a_{k} be a series of nonzero terms.
Case 1: \lim\limits_{n\,\rightarrow \,\infty }\,\left\vert \dfrac{a_{n+1}}{a_{n}}\right\vert =L, a number.
595
Case 2: \lim\limits_{n\,\rightarrow \,\infty }\,\left\vert \dfrac{a_{n+1}}{a_{n}}\right\vert =\infty The proof that this series diverges is left as an exercise (Problem 54).