591
When you finish this section, you should be able to:
One of the most practical tests for convergence of a series makes use of the ratio of two consecutive terms.
Let \(\sum\limits_{k\,=\,1}^{\infty }a_{k}\) be a series of nonzero terms.
A proof of the Ratio Test is given at the end of the section.
Use the Ratio Test to determine whether each series converges or diverges.
Solution (a) \(\sum\limits_{k\,=\,1}^{\infty }\dfrac{k}{4^{k}}\) is a series of nonzero terms; \(a_{n+1}=\dfrac{n+1}{4^{n+1}}\) and \(a_{n}= \dfrac{n}{4^{n}}\). The absolute value of their ratio is \[ \left\vert \frac{a_{n+1}}{a_{n}}\right\vert =\dfrac{\dfrac{n+1}{4^{n+1}}}{ \dfrac{n}{4^{n}}}=\dfrac{n+1}{4^{n+1}}\cdot \dfrac{4^{n}}{n}=\frac{n+1}{4n} \]
Then \[ \lim\limits_{n\,\rightarrow \,\infty }\,\left\vert \frac{a_{n+1}}{a_{n}} \right\vert =\lim\limits_{n\,\rightarrow \,\infty }\frac{n+1}{4n}=\frac{1}{4} <1 \]
Since the limit is less than \(1\), the series converges.
(b) \(\sum\limits_{k\,=\,1}^{\infty }\dfrac{2^{k}}{k}\) is a series of nonzero terms; \(a_{n+1}=\dfrac{2^{n+1}}{n+1}\) and \(a_{n}=\dfrac{ 2^{n}}{n}.\) The absolute value of their ratio is \[ \left\vert \frac{a_{n+1}}{a_{n}}\right\vert =\frac{2^{n+1}}{n+1} \cdot \frac{ n}{2^{n}} =\frac{2n}{n+1} \]
Then \[ \lim\limits_{n\,\rightarrow \,\infty }\left\vert \frac{a_{n+1}}{a_{n}} \right\vert =\lim\limits_{n\,\rightarrow \,\infty }\frac{2n}{n+1}=2>1 \]
Since the limit is greater than \(1\), the series diverges.
592
(c) \(\sum\limits_{k\,=\,1}^{\infty }\dfrac{3k+1}{k^{2}}\) is a series of nonzero terms; \(a_{n+1}=\dfrac{3(n+1) +1}{(n+1) ^{2}}=\dfrac{3n+4}{(n+1) ^{2}}\) and \(a_{n}=\dfrac{3n+1 }{n^{2}}\). The absolute value of their ratio is \[ \left\vert \frac{a_{n+1}}{a_{n}}\right\vert {=}\left[ \frac{3n+4}{(n+1)^{2}} \right] \left( \frac{n^{2}}{3n+1}\right) {=}\left( \frac{3n+4}{3n+1}\right) \left( \frac{n^{2}}{n^{2}+2n+1}\right) =\dfrac{3n^{3}+4n^{2}}{3n^{3}+7n^{2}+5n+1} \]
Then \[ \lim\limits_{n\,\rightarrow \,\infty }\left\vert \frac{a_{n+1}}{a_{n}} \right\vert =\lim\limits_{n\,\rightarrow \,\infty }\dfrac{3n^{3}+4n^{2}}{3n^{3}+7n^{2}+5n+1}=1 \]
The Ratio Test gives no information about this series. Another test must be used. \(\bigg({\rm{You}}\, {\rm{can}}\, {\rm{show}}\, {\rm{that}}\, {\rm{the}}\, {\rm{series}}\, {\rm{diverges}}\, {\rm{by}}\, {\rm{comparing}}\, {\rm{it}}\, {\rm{to}}\, {\rm{the}}\, {\rm{harmonic}}\, {\rm{series}}\, \sum\limits_{k\,=\,1}^{\infty }\dfrac{1}{k}.\bigg)\)
(d) \(\sum\limits_{k\,=\,1}^{\infty }\dfrac{1}{k!}\) is a series of nonzero terms; \(a_{n+1}=\dfrac{1}{(n+1) !}\) and \(a_{n}=\dfrac{ 1}{n!}\). The absolute value of their ratio is \[ \left\vert \frac{a_{n+1}}{a_{n}}\right\vert =\frac{n!}{(n+1)!} = \frac{1}{n+1} \]
Then \[ \lim_{n\rightarrow \infty }\left\vert \frac{a_{n+1}}{a_{n}}\right\vert =\lim_{n\rightarrow \infty }\frac{1}{n+1}=0 \]
Since the limit is less than \(1,\) the series \(\sum\limits_{k\,=\,1}^{\infty }\dfrac{1}{k!}\) converges.
In Section 8.9, we show that \(\sum\limits_{k\,=\,1}^{\infty }\dfrac{1}{k!}=e\).
Problem 7.
As Example 1 illustrates, the Ratio Test is useful in determining whether a series containing factorials and/or powers converges or diverges.
Use the Ratio Test to determine whether the series \(\sum\limits_{k\,=\,1}^{\infty }\dfrac{k!}{k^{k}}\) converges or diverges.
Solution \(\sum\limits_{k\,=\,1}^{\infty }\dfrac{k!}{k^{k}}\) is a series of nonzero terms. Since \(a_{n+1}=\dfrac{(n+1)!}{(n+1) ^{n+1}}\) and \(a_{n}=\dfrac{n!}{n^{n}}\), the absolute value of their ratio is \[ \begin{eqnarray*} \begin{array}{@{\hspace*{-0pc}}rcl} \displaystyle\left\vert \dfrac{a_{n+1}}{a_{n}}\right\vert &=& \dfrac{\dfrac{(n+1)!}{(n+1) ^{n+1}}}{\dfrac{n!}{n^{n}}}=\dfrac{(n+1)!}{(n+1)^{n+1}}\cdot \dfrac{n^{n}}{n!}=\dfrac{n^{n}}{(n+1)^{n}}\\ &=&\left( \dfrac{n}{n+1}\right)^{n} = \left( \dfrac{1}{1+\dfrac{1}{n}}\right)^{n} = \dfrac{1}{\left( 1+\dfrac{1}{n}\right) ^{n}}\qquad \end{array} \end{eqnarray*} \]
So, \[ \lim\limits_{n\,\rightarrow \,\infty }\left\vert \frac{a_{n+1}}{a_{n}} \right\vert =\lim\limits_{n\,\rightarrow \,\infty }\frac{1}{\left( 1+\dfrac{1 }{n}\right) ^{n}}=\frac{\lim\limits_{n\,\rightarrow \,\infty }1}{ \lim\limits_{n\,\rightarrow \,\infty }\,\left( 1+\dfrac{1}{n}\right) ^{n}}=\frac{1}{e} \]
Since \(\dfrac{1}{e}<1\), the series converges.
The number \(e\) expressed as a limit is discussed in Section 3.3, pp. 227-228.
Problem 15.
593
We conclude the discussion of the Ratio Test with these observations:
In Example 2, the ratio \(\left\vert \dfrac{a_{n+1}}{a_{n}} \right\vert \) converges to \(\dfrac{1}{e}\). This does not mean that \( \sum\limits_{k\,=\,1}^{\infty }\dfrac{k!}{k^{k}}\) converges to \(\dfrac{1}{e} \). In fact, the sum of the series \(\sum\limits_{k\,=\,1}^{\infty }\dfrac{ k!}{k^{k}}\) is not known; all that is known is that the series converges.
The Root Test works well for series of nonzero terms whose \(n\)th term involves an \(n\)th power.
Let \(\sum\limits_{k\,=\,1}^{\infty }a_{k}\) be a series of nonzero terms. Suppose \(\ \lim\limits_{n\rightarrow \infty }\sqrt[{n}]{\,\vert a_{n}\vert }=L\), a number.
The proof of the Root Test is similar to the proof of the Ratio Test. It is left as an exercise (Problem 55).
Use the Root Test to determine whether the series \(\sum\limits_{k\,=\,1}^{ \infty }\dfrac{e^{k}}{k^{k}}\) converges or diverges.
Solution \(\sum\limits_{k\,=\,1}^{\infty }\dfrac{e^{k}}{k^{k}}\) is a series of nonzero terms. The \(n\)th term is \( a_{n}=\) \(\dfrac{e^{n}}{n^{n}}=\left(\dfrac{e}{n}\right)^{n}\). Since \(a_{n}\) involves an \(n\)th power, we use the Root Test. \[ \lim\limits_{n\,\rightarrow \,\infty }\sqrt[n]{\,\vert a_{n}\vert }=\lim\limits_{n\,\rightarrow \,\infty }\sqrt[n]{\left( \frac{e}{n}\right) ^{n}}=\lim\limits_{n\,\rightarrow \,\infty }\frac{e}{n}=0<1 \]
The series \(\sum\limits_{k\,=\,1}^{\infty }\dfrac{e^{k}}{k^{k}}\) converges.
Problem 27.
594
Use the Root Test to determine whether the series \(\sum\limits_{k\,=\,1}^{ \infty }\left( {\dfrac{8k+3}{5k-2}}\right) ^{\!\!k}\) converges or diverges.
Solution \(\sum\limits_{k\,=\,1}^{\infty }\left( {\dfrac{8k+3}{ 5k-2}}\right) ^{\!\!k}\) is a series of nonzero terms. The \(n\)th term is \(a_{n}=\) \(\left( {\dfrac{8n+3}{5n-2}}\right) ^{\!\!n}\!\). Since \(a_{n}\) involves an \(n\)th power, we use the Root Test. \[ \lim\limits_{n\,\rightarrow \,\infty }\sqrt[n]{\,\vert a_{n}\vert }=\lim\limits_{n\,\rightarrow \,\infty }\sqrt[n]{\left( {\dfrac{8n+3}{5n-2}} \right) ^{\!\!n}}=\lim\limits_{n\,\rightarrow \,\infty }\frac{8n+3}{5n-2}=\frac{8}{5}>1 \]
The series diverges.
Problem 23.
Let \(\sum\limits_{k\,=\,1}^{\infty }a_{k}\) be a series of nonzero terms.
Case 1: \(\lim\limits_{n\,\rightarrow \,\infty }\,\left\vert \dfrac{a_{n+1}}{a_{n}}\right\vert =L,\) a number.
595
Case 2: \(\lim\limits_{n\,\rightarrow \,\infty }\,\left\vert \dfrac{a_{n+1}}{a_{n}}\right\vert =\infty \) The proof that this series diverges is left as an exercise (Problem 54).