222
When you finish this section, you should be able to:
Recall that the function \(f( x) =a^{x},\) where \(a>0\) and \(a≠ 1, \) is one-to-one and is defined for all real numbers. We know from Section 3.1 that \(f^\prime ( x) =a^{x}\ln a\) and that the domain of \(f^\prime ( x) \) is also the set of all real numbers. Moreover, since \(f^\prime ( x) ≠ 0,\) the inverse of \(f,\) \(y=\log _{a}x,\) is differentiable on its domain \(\left( 0,\infty \right) \). See Figure 5.
Logarithmic functions are discussed in Section P.5, pp. 42-45.
To find \(y^\prime =\dfrac{d}{dx}\log _{a}x\), we use the fact that the following statements are equivalent: \[ y=\log _{a}x \quad \hbox{if and only} \quad \hbox{if}\; x=a^{y} \]
Now we differentiate the equation on the right using implicit differentiation. \[ \begin{eqnarray*} \begin{array}{rl@{\qquad}l} \dfrac{d}{dx}x &= \dfrac{d}{dx}a^{y} \\ 1 &= a^{y}\ln a\dfrac{dy}{dx} & {\color{#0066A7}{\hbox{Use the Chain Rule on the right. }}} \\ \dfrac{dy}{dx} &= \dfrac{1}{a^{y}\ln a} & {\color{#0066A7}{\hbox{Solve for} \tfrac{dy}{dx}.}} \\ \dfrac{dy}{dx} &= \dfrac{1}{x\ln a} & {\color{#0066A7}{x={a}^{y}}} \end{array} \end{eqnarray*} \]
The derivative of the logarithmic function \(y=\log _{a}x\), \(x>0\), \(a>0\), and \(a≠ 1\), is \[ \begin{equation*} \bbox[5px, border:1px solid black, #F9F7ED]{ y^\prime =\dfrac{d}{dx}\log _{a}x=\dfrac{1}{x\ln a}\qquad x > 0}\tag{1} \end{equation*} \]
When \(a=e\), then \(\ln a=\ln e=1\), and (1) gives the formula for the derivative of the natural logarithm function \(f( x) =\ln x\).
The derivative of the natural logarithm function \(y=\ln x,\) \(x>0,\) is \[\bbox[5px, border:1px solid black, #F9F7ED]{ y^\prime =\dfrac{d}{dx}\ln x=\dfrac{1}{x}} \]
223
Find \(y^\prime \) if:
Solution (a) We use the Power Rule for Functions. Then \[ \begin{eqnarray*} && y^\prime =\dfrac{d}{dx}( \ln x) ^{2} \underset{\underset{\color{#0066A7}{\hbox{\(\tfrac{d}{dx}[u(x) ] ^{n}{=n}[u(x) ]^{n-1}\tfrac{du}{dx}\)}}}{\color{#0066A7}{\uparrow}}}{=} 2\ln x\cdot \dfrac{d}{dx}\ln x= (2\ln x)\left(\dfrac{1}{x}\right)=\dfrac{2\ln x}{x}\\ \end{eqnarray*} \]
(b) Remember that \(\log x=\log _{10}x\). Then \(y=\dfrac{1}{2}\log x=\dfrac{1}{2}\log_{10} x\). \[ \begin{eqnarray*} && y^\prime =\dfrac{1}{2}\left( \dfrac{d}{dx}\log_{10} x\right) = \dfrac{1}{2}\cdot \dfrac{1}{x\ln 10}=\dfrac{1}{2x\ln 10}\qquad {\color{#0066A7}{\tfrac{d}{dx}\log_{a}{x} = \tfrac{1}{x\ln a}}} \end{eqnarray*} \]
(c) We assume \(y\) is a differentiable function of \(x\) and use implicit differentiation. Then \[ \begin{eqnarray*} \begin{array}{rl@{\quad}l} \dfrac{d}{dx}\left( \ln x+\ln y\right) &= \dfrac{d}{dx}(2x) \\ \dfrac{d}{dx}\ln x+\dfrac{d}{dx}\ln y &= 2 \\ \dfrac{1}{x}+\dfrac{1}{y}\dfrac{dy}{dx} &= 2 & {\color{#0066A7}{\tfrac{d}{dx}\ln {y}=\tfrac{1}{y}\tfrac{dy}{dx}}}\\ y^\prime &= \dfrac{dy}{dx}=y\left(2-\dfrac{1}{x}\right) =\dfrac{y\left(2x-1\right)}{x} & {\color{#0066A7}{\hbox{Solve for}\quad {y^\prime }=\tfrac{dy}{dx}.}} \end{array} \end{eqnarray*} \]
Problem 9.
If \(y=\ln [u(x) ] ,\) where \(u=u( x) >0\) is a differentiable function of \(x\), then by the Chain Rule, \[ \begin{eqnarray*} \dfrac{dy}{dx} = \dfrac{dy}{du}\cdot \dfrac{du}{dx}=\dfrac{1}{u}\dfrac{du}{dx}=\dfrac{u^\prime(x)}{u(x)} \end{eqnarray*} \] \[\bbox[5px, border:1px solid black, #F9F7ED]{ \dfrac{d}{dx} \ln [u(x)] =\dfrac{u^\prime(x)}{u(x)} } \]
Find \(y^\prime \) if:
Solution
(a) \[ \begin{eqnarray*} && y^\prime = \dfrac{d}{dx}\ln (5x) = \dfrac{\dfrac{d}{dx}(5x) }{5x}=\dfrac{5}{5x} = \dfrac{1}{x} \qquad {\color{#0066A7}{\tfrac{d}{dx}\ln u({x}) = \tfrac{u^\prime (x)}{u(x)}}} \end{eqnarray*} \]
(b) \[ \begin{eqnarray*} y^\prime = \dfrac{d}{dx}[ x\ln (x^{2}+1)] &=& x\dfrac{d}{dx} \ln (x^{2}+1) +\left( \dfrac{d}{dx}x\right) \ln (x^{2}+1)\qquad{\color{#0066A7}{\hbox{Product Rule}}} \\ &&\underset{\underset{\color{#0066A7}{\tfrac{d}{dx}\ln u(x)=\tfrac{u^\prime (x)}{u(x)}}}{\color{#0066A7}{\uparrow}}}{=} x\cdot \dfrac{\dfrac{d}{dx}(x^{2}+1) }{ x^{2}+1}+1\cdot \ln (x^{2}+1) =\dfrac{2x^{2}}{x^{2}+1}+\ln (x^{2}+1) \end{eqnarray*} \]
224
(c) \[ \begin{eqnarray*} y &=&\ln \vert x\vert =\left\{ \begin{array}{c@{\quad}l} \ln x & \hbox{if}\; x>0 \\ \ln (-x) & \hbox{if}\; x<0 \end{array} \right. \\ y^\prime &=& \dfrac{d}{dx}\ln \vert x\vert =\left\{ \begin{array}{c@{\quad}l} \dfrac{1}{x} & \hbox{if}\;x>0 \\ \dfrac{1}{-x}(-1) =\dfrac{1}{x} & \hbox{if}\;x<0 \end{array}\right. \end{eqnarray*} \]
That is, \(\dfrac{d}{dx}\ln \vert x\vert =\dfrac{1}{x}\) for all numbers \(x≠ 0\).
Part (c) proves an important result that is used often: \[\bbox[5px, border:1px solid black, #F9F7ED]{ \dfrac{d}{dx}\ln \vert x\vert =\dfrac{1}{x}\qquad x≠ 0} \]
Look at the graph of \(y=\ln \left\vert x\right\vert \) in Figure 6. As we move from left to right along the graph, starting where \(x\) is unbounded in the negative direction and ending near the \(y\)-axis, we see that the tangent lines to \(y=\ln \left\vert x\right\vert\) go from being nearly horizontal with negative slope to being nearly vertical with a very large negative slope. This is reflected in the graph of the derivative \(y^\prime =\dfrac{1}{x}\), where \(x<0\): The graph starts close to zero and slightly negative and gets more negative as the \(y\)-axis is approached.
Similar remarks hold for \(x>0\). The graph of \(y^\prime =\dfrac{1}{x}\) just to the right of the \(y\)-axis is unbounded in the positive direction (the tangent lines to \(y=\ln \left\vert x\right\vert\) are nearly vertical with positive slope). As \(x\) becomes unbounded in the positive direction, the graph of \(y^\prime \) gets closer to zero but remains positive (the tangent lines to \(y=\ln \left\vert x\right\vert \) are nearly horizontal with positive slope).
Problem 17.
Properties of logarithms are discussed in Appendix A.1, pp. A-10 to A-11.
Properties of logarithms can sometimes be used to simplify the work needed to find a derivative.
Find \(y^\prime \) if \(y=\ln \left[ \dfrac{\left( 2x-1\right) ^{3}\sqrt{2x^{4}+1}}{x}\right]\!\).
In the remaining examples, we do not explicitly state the domain of a function containing a logarithm. Instead, we assume that the variable is restricted so all arguments for logarithmic functions are positive.
Solution Rather than attempting to use the Chain Rule, Quotient Rule, and Product Rule, we first simplify the right side by using properties of logarithms. \[ \begin{eqnarray*} y &=& \ln \left[ \dfrac{\left( 2x-1\right) ^{3}\sqrt{2x^{4}+1}}{x}\right] =\ln \left( 2x-1\right) ^{3}+\ln \sqrt{2x^{4}+1}-\ln x\\ &=& 3\ln \left( 2x-1\right) + \dfrac{1}{2}\ln ( 2x^{4}+1) -\ln x \end{eqnarray*} \]
Now we differentiate \(y.\) \[ \begin{eqnarray*} y^\prime &=&\dfrac{d}{dx}\left[ 3\ln \left( 2x-1\right) +\dfrac{1}{2}\ln ( 2x^{4}+1) -\ln x\right]\\ &=&\dfrac{d}{dx}\left[3\ln \left( 2x-1\right)\right] + \dfrac{d}{dx}\left[\dfrac{1}{2}\ln ( 2x^{4}+1)\right] -\dfrac{d}{dx}\ln x \\ &=&3\cdot \dfrac{2}{2x-1}+\dfrac{1}{2}\cdot \dfrac{8x^{3}}{2x^{4}+1}-\dfrac{1}{x}=\dfrac{6}{2x-1}+\dfrac{4x^{3}}{2x^{4}+1}-\dfrac{1}{x} \end{eqnarray*} \]
Problem 27.
225
Logarithms and their properties are very useful for finding derivatives of functions that involve products, quotients, or powers. This method, called logarithmic differentiation, uses the facts that the logarithm of a product is a sum, the logarithm of a quotient is a difference, and the logarithm of a power is a product.
Find \(y^\prime \) if \(y=\dfrac{x^{2}\sqrt{5x+1}}{( 3x-2) ^{3}}\).
Solution It is easier to find \(y^\prime \) if we take the natural logarithm of each side before differentiating. That is, we write \[ \ln y=\ln \left[ \dfrac{x^{2}\sqrt{5x+1}}{( 3x-2) ^{3}}\right] \]
Logarithmic differentiation was first used in 1697 by Johann Bernoulli (1667–1748) to find the derivative of \({y=x}^{x}\). Johann, a member of a famous family of mathematicians, was the younger brother of Jakob Bernoulli (1654–1705). He was also a contemporary of Newton, Leibniz, and the French mathematician Guillaume de L’Hôpital.
and simplify the equation using properties of logarithms. \[ \begin{eqnarray*} \ln y &=&\ln [ x^{2}\sqrt{5x+1}] -\ln ( 3x-2) ^{3}=\ln x^{2}+\ln (5x+1) ^{1/2}-\ln ( 3x-2) ^{3} \\ &=&2\ln x+\dfrac{1}{2}\ln (5x+1) -3\ln ( 3x-2) \end{eqnarray*} \]
To find \(y^\prime\), we use implicit differentiation. \[ \begin{eqnarray*} \dfrac{d}{dx}\ln y&=&\dfrac{d}{dx}\left[ 2\ln x+\dfrac{1}{2}\ln (5x+1) -3\ln (3x-2) \right]\\ \dfrac{y^\prime}{y}&=&\dfrac{d}{dx}(2\ln x) + \dfrac{d}{dx} \left[\dfrac{1}{2}\ln (5x+1)\right]-\dfrac{d}{dx}[3\ln(3x-2)]\\ &=&\dfrac{2}{x}+\dfrac{5}{2 ( 5x+1) }-\dfrac{9}{3x-2} \\ y^\prime &=&y\!\left[ \dfrac{2}{x}+\dfrac{5}{2 ( 5x+1) }-\dfrac{9}{3x-2}\right] \!=\!\left[ \dfrac{x^{2}\sqrt{5x+1}}{( 3x-2) ^{3}}\right]\!\! \left[ \dfrac{2}{x}+\dfrac{5}{2(5x+1) }-\dfrac{9}{3x-2}\right] \end{eqnarray*} \]
Summarizing these steps, we arrive at the method of Logarithmic Differentiation.
Step 1 If the function \(y=f( x) \) consists of products, quotients, and powers, take the natural logarithm of each side. Then simplify the equation using properties of logarithms.
Step 2 Differentiate implicitly, and use the fact that \(\dfrac{d}{dx}\ln y=\dfrac{y^\prime }{y}\).
Step 3 Solve for \(y^\prime \), and replace \(y\) with \(f( x) \).
Problem 51.
Find \(y^\prime \) if \(y=x^{x}\), \(x>0\).
Solution Notice that \(x^{x}\) is neither \(x\) raised to a fixed power \(a\), nor a fixed base \(a\) raised to a variable power. We follow the steps for logarithmic differentiation:
Step 1 Take the natural logarithm of each side of \(y=x^{x}\), and simplify: \[ \ln y=\ln x^{x}=x\ln x \]
226
Step 2 Differentiate implicitly. \[ \begin{eqnarray*} \dfrac{d}{dx}\ln y&=&\dfrac{d}{dx}(x\ln x)\\ \dfrac{y^\prime }{y} &=& x\cdot \dfrac{d}{dx}\ln x+\left( \dfrac{d}{dx}x\right) \cdot \ln x=x\left(\dfrac{1}{x}\right) +1\cdot \ln x=1+\ln x \end{eqnarray*} \]
Step 3 Solve for \(y^\prime \): \(y^\prime =y( 1+\ln x) =x^{x}( 1+\ln x).\)
A second approach to finding the derivative of \(y=x^{x}\) is to use the fact that \(y=x^{x}= e^{\ln {x}^{{x}}}=e^{x\ln x}\). See Problem 85.
Problem 57.
Find an equation of the tangent line to the graph of \(f( x) =\dfrac{x\sqrt{x^{2}+3}}{1+x}\) at the point \((1,1) .\)
Solution The slope of the tangent line to the graph of \(y=f( x) \) at the point \((1,1) \) is \(f^\prime (1) \). Since the function consists of a product, a quotient, and a power, we follow the steps for logarithmic differentiation:
Step 1 Take the natural logarithm of each side, and simplify: \[ \ln y=\ln \dfrac{x\sqrt{x^{2}+3}}{1+x}=\ln x+\dfrac{1}{2}\ln ( x^{2}+3) -\ln ( 1+x) \]
Step 2 Differentiate implicitly. \[ \dfrac{y^\prime }{y}=\dfrac{1}{x}+\dfrac{1}{2}\cdot \dfrac{2x}{x^{2}+3}- \dfrac{1}{1+x}=\dfrac{1}{x}+\dfrac{x}{x^{2}+3}-\dfrac{1}{1+x} \]
Step 3 Solve for \(y^\prime \) and simplify: \[ y^\prime =f^\prime (x) = y\left( \dfrac{1}{x}+\dfrac{x}{x^{2}+3}-\dfrac{1}{1+x}\right) = \dfrac{x\sqrt{x^{2}+3}}{1+x}\left( \dfrac{1}{x}+\dfrac{x}{x^{2}+3}-\dfrac{1}{1+x}\right) \]
Now we find the slope of the tangent line by evaluating \(f^\prime (1) \). \[ f^\prime (1) =\dfrac{\sqrt{4}}{2}\left( 1+\dfrac{1}{4}-\dfrac{1}{2}\right) =\dfrac{3}{4} \]
Then an equation of the tangent line to the graph of \(f\) at the point \((1,1) \) is \[ \begin{eqnarray*} y-1 &=&\dfrac{3}{4}( x-1) \\ y &=&\dfrac{3}{4}x+\dfrac{1}{4} \end{eqnarray*} \]
See Figure 7 for the graphs of \(f\) and \(y=\dfrac{3}{4}x+\dfrac{1}{4}\).
Problem 75.
We now prove the Power Rule for finding the derivative of \(y=x^{a}\), where \(a \) is a real number.
If \(a\) is a real number, then \[\bbox[5px, border:1px solid black, #F9F7ED]{ \dfrac{d}{dx}x^{a}=ax^{a-1}} \]
227
Let \(y=x^{a},\) \(a\) real. Then \(\ln y=\ln x^{a}=a\ln x.\) \begin{eqnarray*} \frac{y^\prime }{y} &=&a\frac{1}{x} \\ y^\prime &=&\frac{ay}{x}=\frac{ax^{a}}{x}=ax^{a-1} \end{eqnarray*}
Find the derivative of:
Solution
In Section P.5, we stated that the number \(e\) has this property: \(\ln e=1.\) Here are two equivalent ways of writing \(e\) as a limit, both of which are used in later chapters.
The number \(e\) can be expressed by either of the two limits: \[\bbox[5px, border:1px solid black, #F9F7ED]{ \hbox{(a)} \lim\limits_{h\rightarrow 0}(1+h)^{1/h} = e \qquad \hbox{or}\qquad \hbox{(b)} \lim\limits_{n\rightarrow ∞ }\left( 1+\dfrac{1}{n}\right) ^{n}=e}\tag{2} \]
(a) The derivative of \(f(x) =\ln x\) is \( f^\prime (x) =\frac{1}{x}\) so \(f^\prime (1) =1\). Then \[ \begin{eqnarray*} f^\prime (1) \underset{\underset{\color{#0066A7}{\hbox{Definition of a Derivative}}}{\color{#0066A7}{\uparrow}}}{=} \lim\limits_{h\rightarrow 0}\frac{f(1+h) -f(1) }{h} &=&\lim\limits_{h\rightarrow 0}\dfrac{\ln (1+h) -\ln 1}{h} = \lim\limits_{h\rightarrow 0}\frac{\ln (1+h) -0}{h} \\ &=&\lim\limits_{h\rightarrow 0}\left[ \dfrac{1}{h}\ln (1+h) \right] =\lim\limits_{h\rightarrow 0}\ln (1+h) ^{1/h} \end{eqnarray*} \]
Since \(y=\ln x\) is continuous and \(f^\prime (1) =1\), \[ \lim\limits_{h\rightarrow 0}\ln (1+h) ^{1/h}=\ln \left[ \lim\limits_{h\rightarrow 0}(1+h) ^{1/h}\right] =1 \]
Since \(\ln e=1\), \[ \ln \left[ \lim\limits_{h\rightarrow 0}(1+h) ^{1/h}\right] =\ln e \]
\(n\) | \(\left(1+\frac{1}{n}\right)^{n}\) |
---|---|
\(10\) | \(2.\, 593\,742\,46\) |
\(1000\) | \(2.\, 716\,923\,932\) |
\(10,000\) | \(2.\, 718\,145\,927\) |
\(10^{6}\) | \(2.\, 718\,280\, 469\) |
Since \(y=\ln x\) is a one-to-one function, \[ \lim\limits_{h\rightarrow 0}(1+h) ^{1/h}=e \]
(b) The limit derived in (a) is valid when \(h\rightarrow 0^{+}\). So if we let \(n=\dfrac{1}{h}\), then as \(h\rightarrow 0^{+}\), \(n= \dfrac{1}{h}\rightarrow \infty\) and \[ e=\lim\limits_{n\rightarrow \infty }\left( 1+\dfrac{1}{n}\right) ^{n} \]
Table 2 shows the values of \(\left( 1+\dfrac{1}{n}\right) ^{n}\) for selected values of \(n.\)
228
Correct to nine decimal places, \(e= 2.\;718\;281\;828.\)
Express each limit in terms of the number \(e\):
Solution (a) This limit resembles \(\lim\limits_{h\rightarrow 0}(1+h) ^{1/h}\), and with some manipulation, it can be expressed in terms of \(\lim\limits_{h\rightarrow 0}(1+h) ^{1/h}\). \[ ( 1+2h) ^{1/h}= [ ( 1+2h) ^{1/( 2h) } ] ^{2} \]
Now let \(k=2h,\) and note that \(h\rightarrow 0\) is equivalent to \( 2h=k\rightarrow 0\). So, \[ \begin{eqnarray*} && \lim\limits_{h\rightarrow 0}( 1+2h) ^{1/h}=\lim\limits_{k\rightarrow 0}\left[ \left( 1+k\right) ^{1/k}\right] ^{2}=\left[ \lim\limits_{k\rightarrow 0}\left( 1+k\right) ^{1/k}\right] ^{2} \underset{\underset{\color{#0066A7}{\hbox{\((2)\)}}}{\color{#0066A7}{\uparrow}}}{=} e^{2} \\[-10pt] && \end{eqnarray*} \]
(b) This limit resembles \(\lim\limits_{n\rightarrow \infty} \left( 1+\dfrac{1}{n}\right) ^{n}\). We rewrite it as follows: \[ \left( 1+\dfrac{3}{n}\right) ^{2n}=\left[ \left( 1+\dfrac{3}{n}\right) ^{2n} \right] ^{3/3}=\left[ \left( 1+\dfrac{3}{n}\right) ^{n/3}\right] ^{6} \]
Let \(k=\dfrac{n}{3}\). Since \(n\rightarrow \infty\) is equivalent to \(\dfrac{n }{3}=k\rightarrow \infty \,\), we find that \[ \begin{eqnarray*} && \lim\limits_{n\rightarrow \infty }\left( 1+\dfrac{3}{n}\right) ^{2n}=\lim\limits_{k\rightarrow \infty }\left[ \left( 1+\dfrac{1}{k}\right) ^{k}\right] ^{6}=\left[ \lim\limits_{k\rightarrow \infty }\left( 1+\dfrac{1}{ k}\right) ^{k}\right] ^{6} \underset{\underset{\color{#0066A7}{\hbox{\((2)\)}}}{\color{#0066A7}{\uparrow}}}{=} e^{6} \end{eqnarray*} \]
Problem 77.
The number \(e\) occurs in many applications. For example, in finance, the number \(e\) is used to find continuously compounded interest. See the discussion preceding Problem 89.