Section 9.1
1. Plane curve; parameter
2. (c)
3. (d)
4. Cycloid
5. False
6. True
7. (a) x = 2y − 3
(b)
9. (a) x = 2y−3, 1 ≤ x ≤ 5
(b)
11. (a) x = ey
(b)
13. (a) x2 + y2 = 1
(b)
15. (a)
(b)
17. (a)
(b)
19. (a) x = 3
(b)
21. (a) x = 2
(b)
(c) x = 2, y = 4
(d)
23. (a) x = y2 + 5
(b)
(c) x ≥ 5, y ≥ 0
(d)
25. (a) y = (x − 1)3
(b)
(c) x ≥ 2, y ≥ 1
(d)
27. (a) x = sec tan-1 y
(b)
(c) x ≥ 1
(d)
29. (a) x = y2
(b)
(c) x ≥ 0, y ≥ 0
(d)
31. (a) x =
(b)
(c) x ≥ 0
(d)
33. (a) x =
(b)
(c) x > 0, y ≠ -1
(d)
35. (a)
(b)
(c) −2 ≤ x ≤ 1, −2 ≤ y ≤ 2
(d)
37. y = Answers will vary.
39. \(y = 2\sqrt{x^{2} - 4}\). Answers will vary.
41.
43. Answers will vary.
45. Answers will vary.
47. Answers will vary.
49. Answers will vary.
51. Answers will vary.
53. Answers will vary.
55. , 0 ≤ t ≤ 3
57. x = 3 sin (πt), y = 2 cos (πt), 0 ≤ t ≤ 2
59. (a)
(b)
(c)
(d)
61. \(I\rightarrow(d)\;\text{counterclockwise}\), \(II\rightarrow(a)\;\text{counterclockwise}\), \(III\rightarrow(b)\;\text{counterclockwise}\), \(IV\rightarrow(c)\;\text{counterclockwise}\)
63. I → (c) from (1, 0) to (−1, 0), I I → (b) from (−1, 0) to (1, 0), I I I → (a) clockwise, I V → (d) from to (1,0)
65. (a)
(b) x ≈ 8.66, y ≈ 10.53
67. Answers will vary.
69. (a) x(t) = (125 cos 40°)t, y(t) = −16t2 + (125 sin 40°)t + 3
(b) y ≈ 99.6 ft
(c) x ≈ 191.5 ft
(d) t ≈ 3.13 s
(e) y ≈ 97.7 ft
(f) t ≈ 5.06 s
(g) x ≈ 484.5 ft
71. (a) x(t) = (80 cos 35°)t, y(t) = −16t2 + (80 sin 35°)t + 6
(b) y ≈ 35.9 ft
(c) x ≈ 65.5 ft
(d) t ≈ 1.83 s
(e) y ≈ 36.4 ft
73. The first curve is counterclockwise from (2, 0); the second is clockwise from (0, 2). Answers will vary.
75.
77. See Student Solutions Manual.
79.
Section 9.2
1. (a)
2. True
3. Horizontal; vertical
4. False
5.
7.
9.
11.
13. (a) y =
(b)
15. (a) y =
(b)
17. (a) y =
(b)
19. (a) y = −2x + 2
(b)
21. (a) y = −x + 2
(b)
23. (a) y = −x +
(b)
25. (a) y =
(b)
27. Horizontal at ; vertical at (0, 0)
29. Horizontal at (1, 0), (1, 2); vertical at (0, 1), (2, 1)
31.
33.
35. 4π
37. 4π
39. (a) s =
(b) s ≈ 44.527
(c)
41. (a) s =
(b) s ≈ 8.429
(c)
43. (a) s = 4 ·
(b) s = 24
(c)
45. (a) Horizontal at
; vertical at (2, 0)
(b) t = 2, t = −2; see Student Solutions Manual
(c) y = 2x − 12, y = −2x + 12
(d)
47. (a) s =
(b) b = 1
49.
51.
53.
55.
57.
59. See Student Solutions Manual.
61. 0.73423
63.
65.
67.
Section 9.3
1. False
2. s =
3.
5.
7.
9.
11.
13. 4πa2
15.
17. 8π
19.
21. 768π
23. (a) Infinite
(b) π
25.
27. See Student Solutions Manual.
29.
Section 9.4
1. Pole, polar axis
2. False
3. False
4. True
5. True
6. True
7. x = r cos θ, y = r sin θ
8. Polar equation
9. A
11. C
13. B
15. A
17.
19.
21.
23.
25. (a)
(b)
(c)
27. (a) (2, −2π)
(b) (−2, π)
(c) (2, 2π)
29. (a)
(b)
(c)
31. (a)
(b)
(c)
33.
35.
37. (0, 5)
39. (2, −2)
41.
43.
45.
47.
49.
51. E
53. F
55. H
57. D
59. The circle centered at (0,0) of radius 4.
61. A line through the origin.
63. The line \(y=4\).
65. The line \(x = −2\).
67. The circle centered at (1,0) of radius 1.
69. The circle centered at (0, −2) of radius 2.
71. The circle centered at (2,0) of radius 2 excluding the pole.
73. The circle centered at (0, −1) of radius 1, excluding the pole.
75. r =
77. r = 4 cos θ
79. r2 cos2 θ + 4r sin θ − 1 = 0
81. r =
83.
85. y =
87. = 4
89. y = x tan(x2 + y2)
91. y =
93. y = 4x
95. (a) x = −10, y = 36
(b) (37.363, 1.842)
(c) x = −3, y = −35
(d) (35.128, 4.627)
97. See Student Solutions Manual
99. See Student Solutions Manual
101. See Student Solutions Manual
103. (a)
(b) Answers will vary.
(c)
(d) Answers will vary.
105. See Student Solutions Manual.
107. See Student Solutions Manual.
Section 9.5
1. True
2. a, c, b
3. True
4. 3
5. (a)
(b)
7. (a)
(b)
9. (a)
(b)
11. (a)
(b)
13.
15.
17.
19.
21. 2
23. 3 + 3 cos θ
25. 4 + sin θ
27. y =
29. y =
31. y =
33. (a)
(b)
35. (a)
(b)
37. (a)
(b)
39. (a)
(b)
41. (a)
(b)
43. (a)
(b)
,
45. (a)
(b)
47. (a)
(b)
49. See Student Solutions Manual.
51. \(\pi\sqrt{1+4\pi^{2}}+\dfrac{1}{2}\ln(2\pi + \sqrt{4\pi^{2} + 1}) \)
53. 8
55. Answers will vary.
57. Horizontal: vertical:
59. Horizontal: , , y = 2, y = −2; vertical: , , x = 2, x = −2
61. Horizontal: ; vertical:
63. (a) Answers will vary.
(b) See Student Solutions Manual.
65. See Student Solutions Manual.
67. (a)
(b)
(c) ≈ 8.404
Section 9.6
1.
2. True
3. False
4. True
5.
7.
9.
11.
13.
15.
17. 16π
19. 2π
21. 2
23.
25.
27.
29.
31.
33.
35.
37.
39.
41.
43.
45.
47.
49.
51. (a)
(b) Answers will vary
53.
55. See Student Solutions Manual.
57.
Section 9.7
1. (a)
2. Answers will vary.
3. Answers will vary.
4. False
5. A parabola, e = 1, directrix perpendicular to the polar axis p = 1 units to the right of the pole
7. A hyperbola, e = , directrix parallel to the polar axis p = units below the pole
9. An ellipse, e = , directrix perpendicular to the polar axis p = units to the left of the pole
11. A parabola, e = 1, directrix parallel to the polar axis p = units above the pole
13. (a) Ellipse
(b)
(c)
15. (a) Hyperbola
(b) 3(x + 2)2 − y2 = 3
(c)
17. (a) Ellipse
(b)
(c)
19. (a) Ellipse
(b) 4y2 + 3(x − 2)2 = 48
(c)
21. undefined
23. 0
25. undefined
27. r =
29. r =
31. r =
33. (a) 0.967
(b) 0.587 AU
(c) 35 AU
(d)
35. (a) See Student Solutions Manual.
(b) Answers will vary.
(c) Answers will vary.
37. See Student Solutions Manual.
39. See Student Solutions Manual.
Review Exercises
1. (a) x = −4y + 2
(b)
(c) No restrictions
3. (a) y =
(b)
(c) x ≥ 0, y ≥ 0
5. (a) y + 1 = x
(b)
(c) 1 ≤ x ≤ 2, 0 ≤ y ≤ 1
7. (a) y =
(b)
9. (a) y =
(b)
11. Answers will vary.
13.
15.
17.
19. (5, 0.927), (−5, 4.068)
21.
23. y = x tan ln(x2 + y2)
25.
27. y =
29. cos2 θ − sin2 θ = r2, r ≠ 0
31. r =
33. The circle centered at (1,0) of radius 1.
35.
37. (a)
(b) x = 4 cos(2θ) cos θ , y = 4 cos(2θ) sin θ
39. (a)
(b)
41. (a)
(b)
43. (a)
(b)
45. (a)
(b)
47. (a) An ellipse
(b)
(c)
49.
51. Vertical: (0, 2), (2, 2); horizontal: (1, 5), (1,−1)
53. \(s=\dfrac{1}{3}\dfrac{\sqrt{13}}{2}+\dfrac{9}{8}\ln\left(1+\dfrac{\sqrt{13}}{2}\right)-\dfrac{9}{8}\ln\left(\dfrac{\sqrt{13}}{2}\right)\)
55. \(s=\dfrac{3}{2}+\dfrac{1}{4}\ln2\)
57.
59.
61.
63.
65.
67. 16π