7.2 Integrals Containing Trigonometric Functions

Printed Page 480

In this section, we develop techniques to find certain trigonometric integrals. When studying these techniques, concentrate on the strategies used in the examples rather than trying to memorize the results.

1 Find Integrals of the form \(\int \sin ^{n}x\,dx\) or \(\int \cos ^{n}x\,dx\), \(n \ge 2\) an Integer

Printed Page 480

Although we could use integration by parts to obtain reduction formulas for integrals of the form \(\int \sin ^{n}x\,dx\) or \(\int \cos ^{n}x\,dx\), \(n \ge 2\) an integer, these integrals also can be found using other, often easier, techniques. We consider two cases:

Suppose we want to find \(\int \sin ^{n}x~dx\) when \(n \ge 3\) is an odd integer. We begin by writing the integral in the form \[\bbox[5px, border:1px solid black, #F9F7ED]{\int \sin^{n}x~dx = \int \sin^{n-1}x \sin x~dx} \]

Since \(n\) is odd, \((n-1)\) is even and we can use the identity \(\sin ^{2}x=1-\cos ^{2}x\).

Then the substitution \(u=\cos x\), \(du=-\sin x~dx\), leads to an integral involving integer powers of \(u\).

481

EXAMPLE 1Finding the Integral \(\int \sin^{5}x\,dx\)

Find \(\int \sin ^{5}x\,dx\).

NEED TO REVIEW?

The method of substitution is discussed in Section 5.6, pp. 387-393.

Solution Since the exponent 5 is odd, we write \(\int \sin ^{5}x\,dx=\int \sin ^{4}x \sin x\,dx\), and use the identity \(\sin ^{2}x=1-\cos ^{2}x\). \[ \begin{eqnarray*} \int \sin ^{5}x\,dx&=&\int \sin ^{4}x\sin x\,dx=\int (\sin ^{2}x) ^{2}\sin x\,dx=\int (1-\cos ^{2}x)^{2}\sin x\,dx\\[4pt] &=&\int (1-2\cos ^{2}x+\cos ^{4}x)\sin x\,dx \end{eqnarray*} \]

Now we use the substitution \(u=\cos x\). Then \(du=-\sin x\,dx\), and \[ \begin{eqnarray*} \int \sin ^{5}x\,dx&=&-\int (1-2u^{2}+u^{4})~du=-u+\dfrac{2}{3}u^{3}-\dfrac{1}{5}u^{5}+C\\[3pt] &=&-\cos x+\dfrac{2}{3}\cos ^{3}x-\dfrac{1}{5}\cos ^{5}x+C \end{eqnarray*} \]

A similar technique is used to find \(\int \cos ^{n}x\,dx,\) when \(n \geq 3\) is an odd integer. In this case, we write \[\bbox[5px, border:1px solid black, #F9F7ED]{ \int \cos ^{n}x\,dx=\int \cos ^{n-1}x\cos x\,dx } \]

and use the trigonometric identity \(\cos ^{2}x=1-\sin ^{2}x.\) Then we use the substitution \(u=\sin x\). For example, \[ \begin{eqnarray*} \int \cos ^{3}x~dx &=&\int \cos ^{2}x\,\cos x\,dx=\int ( 1-\sin ^{2}x) \cos x\,dx\\ &\underset{\underset{\underset{\color{#0066A7}{\hbox{\(du=\cos x\, dx\)}}}{\color{#0066A7}{\hbox{\(u=\sin x\)}}}}{\color{#0066A7}{\uparrow }}} {=}&\int (1-u^{2})~ du=u-\dfrac{u^{3}}{3}+C=\sin x- \dfrac{\sin ^{3}x}{3}+C\\ \end{eqnarray*} \]

NOW WORK

Problem 3.

To find \(\int \sin ^{n}x\,dx\) or \(\int \cos ^{n}x\,dx\) when \(n \geq 2\) is an even integer, the preceding strategy does not work. (Try it for yourself.) Instead, we use one of the identities below: \[\bbox[5px, border:1px solid black, #F9F7ED]{ \sin ^{2}x=\dfrac{1-\cos (2x) }{2}\qquad \cos ^{2}x=\dfrac{1+\cos (2x)} {2}} \]

to obtain a simpler integrand.

NEED TO REVIEW?

Trigonometric identities are discussed in Appendix A.4, pp. A-32 to A-35.

EXAMPLE 2Finding the Integral \(\int \sin ^{2}x\,dx\)

Find \(\int \sin ^{2}x\,dx\).

Solution Since the exponent of \(\sin x\) is an even integer, we use the identity \[ \sin ^{2}x=\dfrac{1-\cos (2x) }{2} \]

Then \[ \begin{eqnarray*} \int \sin ^{2}x\,dx&=&\dfrac{1}{2}\int \,[ 1-\cos (2x) ] \,dx =\dfrac{1}{2}\int\, dx-\dfrac{1}{2}\int \cos (2x) \,dx \\[4pt] &=& \dfrac{1}{2} x + C_1 - \dfrac{1}{2} \int \cos u \dfrac{du}{2} \qquad {\color{#0066A7}{\hbox{\(u=2x, du=2\, dx\).}}} \\[4pt] &=& \dfrac{1}{2} x + C_1 - \dfrac{1}{4} \sin (2x) + C_2 \end{eqnarray*} \]

482

Since \(C_1\) and \(C_2\) are constants, we write the solution as \[ \int \sin^2 x \, dx =\dfrac{1}{2}x -\dfrac{1}{4} \sin (2x) +C \]

where \(C=C_1+C_2\).

NOTE

Usually we will just add the constant of integration at the end of the integration to avoid letting \(C=C_1+C_2\).

NOW WORK

Problem 5.

EXAMPLE 3Finding the Average Value of a Function

Find the average value \(\bar{y}\) of the function \(f( x) =\cos ^{4}x\) over the closed interval \([0,\pi]\).

NEED TO REVIEW?

The average value of a function is discussed in Section 5.4, pp. 373-374.

Solution The average value \(\bar{y}\) of a function \(f\) over \([a,b]\) is \(\bar{y}=\dfrac{1}{b-a}\int_{a}^{b}f(x)\,dx.\)

For \(f( x) =\cos ^{4}x\) on \([0,\pi]\), we have

Now

To find \(\int_{0}^{\pi }\cos ^{2}(2x)\, dx,\) we use the identity \( \cos ^{2}\theta =\dfrac{1+\cos (2\theta )}{2}\) again to write \(\cos ^{2}(2x) =\dfrac{1+\cos (4x) }{2}\). Then \[ \begin{eqnarray*} \int_{0}^{\pi }\cos ^{2}(2x) \,dx &=&\int_{0}^{\pi }\dfrac{ 1+\cos (4x) }{2}\,dx=\dfrac{1}{2}\left[ \int_{0}^{\pi }dx+\int_{0}^{\pi }\cos ( 4x) \,dx\right]\\[7pt] &=& \dfrac{1}{2}\left[ \pi +\int_{0}^{4\pi }\cos u\,\dfrac{du}{4}\right] \qquad {\color{#0066A7}{\hbox{\(u=4x\); \(du=4\,dx\)}}} \end{eqnarray*} \]

So, from (1), \[ \bar{y}=\dfrac{1}{4\pi }\left[ \pi +0+\dfrac{\pi }{2}\right] =\dfrac{3}{8} \]

If \(f\) is nonnegative on an interval \([ a,b]\), the average value of \(f\) over the interval \([ a,b]\) represents the height of a rectangle with width \(b-a\) whose area equals the area under the graph of \(f\) from \(a\) to \(b.\) Figure 2 shows the graph of \(f\) from Example 3 and the rectangle of height \(\bar{y}=\dfrac{3}{8}\) and base \(\pi\) whose area is equal to the area under the graph of \(f\).

NOW WORK

Problem 57.

2 Find Integrals of the Form \(\int\sin ^{m}x\,\cos ^{n}x\,dx\)

Printed Page 483

483

Integrals of the form \(\int \sin ^{m}x\,\cos ^{n}x\,dx\) are found using variations of previous techniques. We discuss two cases:

EXAMPLE 4Finding the Integral \(\int \sin ^{5}x\,\sqrt{\cos x}\,dx\)

Find \(\int \sin ^{5} x \sqrt{\cos x} dx = \int \sin^{5}x\,\cos ^{1/2}x\,dx\).

Solution The exponent of \(\sin x\) is \(5,\) a positive, odd integer. We factor \(\sin x\) from \(\sin ^{5}x\) and write \begin{align*} \int \sin ^{5} x\cos ^{1/2} x\,dx &= \int \sin ^{4} x\,\cos ^{1/2} x\sin x\,dx=\int(\sin ^{2}x) ^{2}\,\cos ^{1/2} x\sin x\,dx\\[4pt] &=\int ( 1-\cos ^{2}x) ^{2}\cos ^{1/2} x\sin xdx \end{align*}

Now we use the substitution \(u=\cos x.\) \[ \begin{eqnarray*} \int \sin ^{5}x\,\cos ^{1/2}x\,dx &=&\int (1-\cos ^{2}x) ^{2}\,\cos ^{1/2}x\,\sin x\,dx \nonumber \\ &\underset{\underset{\underset{\color{#0066A7}{\hbox{\(du=-\sin x~dx\)}}}{\color{#0066A7}{\hbox{\(u=\cos x\)}}}}{\color{#0066A7}{\uparrow }}}{=}&\int (1-u^{2})^{2}u^{1/2}(-du) \nonumber \\ &=&-\int (u^{1/2}-2u^{5/2}+u^{9/2})\,du=-\dfrac{2}{3}u^{3/2}+\dfrac{4}{7}u^{7/2}-\dfrac{2}{11}u^{11/2}+C \nonumber \\ &=&u^{3/2}\left[ -\dfrac{2}{3}+\dfrac{4}{7}u^{2}-\dfrac{2}{11}u^{4}\right] +C \nonumber \\ &\underset{\underset{\color{#0066A7}{\hbox{\(u=\cos x\)}}}{\color{#0066A7}{\uparrow }}}{=}&(\cos x) ^{3/2}\left[ -\dfrac{2}{3}+\dfrac{4}{7}\cos ^{2}x-\dfrac{2}{11}\cos ^{4}x\right] +C \end{eqnarray*} \]

NOW WORK

Problem 11.

If \(m\) and \(n\) are both positive even integers in \(\int \sin ^{m}x\,\cos ^{n}x\,dx\), we use the trigonometric identity \(\sin ^{2}x+\cos ^{2}x=1\) to obtain a sum of integrals, each integral involving only even powers of either \(\sin x\) or \(\cos x\). For example, \[ \begin{equation*} \int \sin ^{2}x\cos ^{4}x\,dx=\int (1-\cos ^{2}x)\cos ^{4}x\,dx=\int \cos ^{4}x\,dx-\int \cos ^{6}x\,dx \end{equation*} \]

The two integrals on the right are now of the form \(\int \cos ^{n}x\,dx\), \(n\) a positive even integer, and we can integrate them using the techniques discussed in Examples 2 and 3.

3 Find Integrals of the Form \(\int \tan^{m}x\ \sec^{n}x~dx\) or \(\int \cot^{m}x csc^ {n}x~dx\)

Printed Page 483

We consider three cases involving integrals of the form \(\int \tan ^{m}x\,\sec ^{n}x\,dx\):

484

The idea is to express the integrand so that we can use either the substitution \(u=\tan x\) and \(du=\sec ^{2}x\,dx\) or the substitution \(u=\sec x\) and \(du=\sec x \tan x\,dx\), while leaving an even power of one of the functions. Then we use a Pythagorean identity to express the integrand in terms of only one trigonometric function.

EXAMPLE 5Finding the Integral \(\int \tan ^{3}x\,\sec ^{4}x\,dx\)

Find \(\int \tan ^{3} x\sec ^{4} x\,dx\).

Solution Here, \(\tan x\) is raised to the odd power \(3.\) We factor \(\tan x\) from \(\tan ^{3}x\) and use the identity \(\tan ^{2} x=\sec^{2}x-1.\) \[ \begin{eqnarray*} \begin{array}{@rcl@l} \int \tan ^{3}x\sec ^{4}x\,dx &=& \int \tan ^{2}x\,\tan x\,\sec ^{4}x\,dx & {\color{#0066A7}{\hbox{Factor tan \(x\) from \(\tan^{3} x\).}}}\\[6pt] &=& \int (\sec ^{2}x-1) \tan x\sec ^{4}x\,dx & {\color{#0066A7}{\hbox{\(\tan^{2} x = \sec^{2} x - 1\)}}}\\[6pt] &=& \int ( \sec ^{2}x-1) \sec^{3}x\sec x\tan x\,dx & {\color{#0066A7}{\hbox{Factor sec \(x\) from \(\sec^{4} x\).}}}\\[6pt] &=& \int (u^{2}-1) u^{3}du & {\color{#0066A7}{\hbox{Substitute \(u=\sec x\);}}}\\[-4pt] &&& {\color{#0066A7}{\hbox{\(du = \sec x\) \(\tan x\,dx\).}}}\\[6pt] &=& \int (u^{5}-u^{3}) \,du =\dfrac{u^{6}}{6}-\dfrac{u^{4}}{4}+C \underset{\underset{\color{#0066A7}{\hbox{\(u=\sec x\)}}}{\color{#0066A7}{\uparrow}}}{=} \dfrac{\sec ^{6}x}{6}-\dfrac{\sec ^{4}x}{4}+C &\\[-13pt] \end{array} \end{eqnarray*} \]

NOW WORK

Problem 19.

EXAMPLE 6Finding the Integral \(\int \tan ^{2}x\,\sec ^{4}x\,dx\)

Find \(\int \tan ^{2}x\sec ^{4}x\,dx.\)

Solution Here, \(\sec x\) is raised to a positive even power. We factor \(\sec ^{2}x\) from \(\sec ^{4}x\) and use the identity \(\sec ^{2}x=1+\tan ^{2}x.\) Then \[ \begin{eqnarray*} \begin{array}{rcl@l} \int \tan ^{2}x\sec ^{4}x\,dx &=&\int \tan ^{2}x\sec ^{2}x\cdot \sec ^{2}x\,dx & {\color{#0066A7}{\hbox{Factor \(\sec^2 x\) from \(\sec^4 x\).}}} \\[5pt] &=&\int \tan ^{2}x(1+\tan ^{2}x)\sec ^{2}x\,dx & {\color{#0066A7}{\hbox{\(\sec ^{2}{x=1+}\tan ^{2}{x}\)}}} \nonumber \\[5pt] &=&\int u^{2}(1+u^{2})\,du & {\color{#0066A7}{\hbox{Substitute \(u=\tan x\);}}} \nonumber \\[0pt] &&&{\color{#0066A7}{\hbox{\(du=\sec ^{2} x\,dx\).}}}\nonumber \\[5pt] &=&\int (u^{2}+u^{4})\,du = \dfrac{u^{3}}{3}+\frac{u^{5}}{5}+C \underset{\underset{\color{#0066A7}{\hbox{\(u=\tan x\)}}}{\color{#0066A7}{\uparrow}}}{=}\dfrac{\tan ^{3}x}{3}+\dfrac{\tan ^{5}x}{5}+C\\[-8pt] \end{array} \end{eqnarray*} \]

NOW WORK

Problem 21.

When the tangent function is raised to a positive even integer \(m\) and the secant function is raised to a positive odd integer \(n,\) the approach is slightly different. Rather than factoring, we begin by using the identity \(\tan ^{2}x=\sec ^{2}x-1.\)

485

EXAMPLE 7Finding the Integral \(\int \tan ^{2}x\,\sec x\,dx\).

Find \(\int \tan ^{2}x\sec x\,dx\).

Solution Here, tan \(x\) is raised to an even power and sec \(x\) to an odd power. We use the identity \(\tan ^{2}x=\sec ^{2}x-1\) to write \[ \begin{eqnarray*} \int \tan ^{2}x\sec x\,dx &=&\int (\sec ^{2}x-1)\sec x\,dx=\int ( \sec ^{3}x-\sec x)~dx\nonumber\\[4pt] &=&\int \sec ^{3}x\,dx-\int \sec x\,dx\tag{2} \end{eqnarray*} \]

Next we integrate \(\int \sec ^{3}x\,dx\) by parts. Choose \[ \begin{array}{rcl@{\qquad}c@{\qquad}rcl} u &=&\sec x &\hbox{and}& dv &=&\sec ^{2}x\,dx \\[3pt] du &=&\sec x\tan x\,dx &\hbox{}& v &=&\int \sec ^{2}x\,dx=\tan x \end{array} \]

Then \[ \begin{array}{@rcl@{\quad}l} \int \sec ^{3}x\,dx &=&\sec x\,\tan x-\int \tan ^{2}x\,\sec x\,dx & {\color{#0066A7}{\int udv = uv-\int vdu}}\\ &=&\sec x\,\tan x-\int ( \sec ^{2}x-1) \,\sec x\,dx & {\color{#0066A7}{\hbox{\(\tan ^{2}{x=}\sec ^{2}{x-1}\)}}} \\ &=&\sec x\,\tan x-\int \sec ^{3}x\,dx+\int \sec x\,dx & {\color{#0066A7}{\hbox{Write the integral as the}}} \\ &&& {\color{#0066A7}{\hbox{sum of two integrals.}}} \\ 2\int \sec ^{3}x\,dx &=&\sec x\,\tan x+\int \sec x\,dx & {\color{#0066A7}{\hbox{Add \(\int \sec ^{3}x~dx\) to both sides.}}} \\ \int \sec ^{3}x\,dx &=&\dfrac{1}{2}[ \sec x\,\tan x+\ln \vert \sec x+\tan x\vert ] & {\color{#0066A7}{\hbox{Solve for \(\int \sec ^{3}x~dx\);} }}\\ &&&{\color{#0066A7}{\hbox{\(\int \sec x~dx=\ln \left\vert \sec {x+}\tan {x}\right\vert\).}}} \end{array} \]

Now we substitute this result in (2). \[ \begin{eqnarray*} \int \tan ^{2}x\sec x\,dx &=&\int \sec ^{3}x\,dx-\int \sec x\,dx\\[4pt] &=& \dfrac{1}{2}\left[ \sec x\,\tan x+\ln \vert \sec x+\tan x\vert \right] -\ln \vert \sec x+\tan x\vert +C \nonumber \\[4pt] &=&\dfrac{1}{2}\left[ \sec x\tan x-\ln \,\vert \sec x+\tan x\vert \right] +C \end{eqnarray*} \]

NOTE

Substituting \(n = 3\) into the reduction formula for \(\int \sec ^{n} x\,dx\) (derived in Example 8 of Section 7.1) could also have been used to find \(\int \sec ^{3} x\,dx.\)

NOW WORK

Problem 23.

To find integrals of the form \(\int \cot ^{m}x\csc ^{n}x\,dx\), we use the same strategies, but with the identity \(\csc ^{2}x=1+\cot ^{2}x.\)

4 Find Integrals of the Form \(\int \sin (ax)\) \(\sin (bx) \,dx\), \(\int \sin (ax) \cos (bx) \,dx\), or \(\int \cos (ax) \cos (bx) \,dx\)

Printed Page 485

Trigonometric integrals of the form \[ \begin{equation*} {\int \sin (ax) \sin (bx) \,dx\qquad \int \sin (ax) \cos (bx) \,dx\qquad \int \cos (ax) \cos (bx) \,dx} \end{equation*} \]

are integrated using the product-to-sum identities:

  • \(2\sin A\sin B=\cos (A-B)-\cos (A+B)\)
  • \(2\sin A\cos B=\sin (A+B)+\sin (A-B)\)
  • \(2\cos A\cos B=\cos (A-B)+\cos (A+B)\)

These identities transform the integrand into a sum of sines and/or cosines.

486

EXAMPLE 8Finding the Integral \(\int \sin (3x) \sin (2x) \,dx\)

Find \(\int \sin (3x) \sin (2x) \,dx\).

Solution We use the product-to-sum identity \(2\sin A\sin B=\cos(A-B)-\cos (A+B).\)

Then \[ \begin{eqnarray*} 2\sin (3x) \sin (2x) &=&\cos (3x-2x) -\cos (3x+2x) \\[4pt] \sin (3x) \sin (2x) &=&\dfrac{1}{2}[ \cos x-\cos (5x) ] \end{eqnarray*} \]

Then \[ \begin{eqnarray*} \int \sin (3x) \sin (2x) \,dx&=&\dfrac{1}{2}\int [\cos x-\cos (5x) ] \,dx=\dfrac{1}{2}\int \cos x~dx-\dfrac{1}{2}\int \cos (5x) \,dx\\[5pt] &&\underset{\underset{\underset{\color{#0066A7}{\hbox{\(du=5~dx\)}}}{\color{#0066A7}{\hbox{\(u=5x\)}}}}{\color{#0066A7}{\uparrow }}}{=} \dfrac{1}{2}\sin x-\dfrac{1}{2}\int \cos u\,\dfrac{du}{5}=\dfrac{1}{2}\sin x-\dfrac{1}{10}\sin (5x) +C \end{eqnarray*} \]

NOW WORK

Problem 27.