Processing math: 5%

12.5 Chain Rules

Printed Page 849

849

1 Differentiate Functions of Two or More Variables Where Each Variable Is a Function of a Single Variable

Printed Page 849

NEED TO REVIEW?

The Chain Rule is discussed in Section 3.1, pp. 198-205.

Recall that the Chain Rule is used to find the derivative of a composite function. For functions of two or more variables, there are several versions of the Chain Rule. The first Chain Rule is used when the independent variables are each a function of a single variable t. For example, for the function z=f(x,y) of two variables, if x=x(t) and y=y(t), then the composite function z=f(x(t),y(t)) is a function of a single independent variable t.

THEOREM Chain Rule I: One Independent Variable

If x=x(t) and y=y(t) are differentiable functions of t, and if z=f(x,y) is a differentiable function of x and y, then z=f(x(t),y(t)) is a differentiable function of t. Moreover, \bbox[5px, border:1px solid black, #F9F7ED]{\bbox[#FAF8ED,5pt]{{ \dfrac{dz}{dt}=\dfrac{\partial z}{\partial x}\dfrac{dx}{dt}+\dfrac{\partial z}{\partial y}\dfrac{dy}{dt} }}}

Proof

Since \dfrac{dz}{dt}=\lim\limits_{\Delta t\rightarrow 0} \dfrac{\Delta z}{\Delta t}, we seek an expression for \Delta z. Since z=f(x,y) is differentiable, the change \Delta z is \begin{equation*} \Delta z=\frac{\partial z}{\partial x}\Delta x+\frac{\partial z}{\partial y} \Delta y+\eta _{1}\Delta x+\eta _{2}\Delta y \end{equation*}

where \eta _{1} and \eta _{2} are functions of \Delta x and \Delta y and \lim\limits_{(\Delta x, \Delta y)\rightarrow (0, 0)}\eta _{1}=0 and \lim\limits_{(\Delta x, \Delta y)\rightarrow (0, 0)} \eta _{2}=0. Next we divide both sides by \Delta t. \begin{equation*} \dfrac{\Delta z}{\Delta t}=\frac{\partial z}{\partial x}\dfrac{\Delta x}{ \Delta t}+\frac{\partial z}{\partial y}\dfrac{\Delta y}{\Delta t}+\eta _{1} \dfrac{\Delta x}{\Delta t}+\eta _{2}\dfrac{\Delta y}{\Delta t} \end{equation*}

Then \frac{dz}{dt}=\lim_{\Delta t\rightarrow 0}\frac{\Delta z}{\Delta t} =\lim_{\Delta t\rightarrow 0}\;\left[ \frac{\partial z}{\partial x}\frac{ \Delta x}{\Delta t}+\frac{\partial z}{\partial y}\frac{\Delta y}{\Delta t} +\eta _{1}\frac{\Delta x}{\Delta t}+\eta _{2}\frac{\Delta y}{\Delta t}\right]

In the right-hand expression, \dfrac{\partial z}{\partial x} and \dfrac{ \partial z}{\partial y} are evaluated at (x(t),y(t)) and do not depend on \Delta t. Also, since x=x( t) and y=y( t) are differentiable, \begin{equation*} \lim\limits_{\Delta t\rightarrow 0}\dfrac{\Delta x}{\Delta t}=\frac{dx}{dt} \qquad \hbox{and}\qquad \lim_{\Delta t\rightarrow 0}\dfrac{\Delta y}{\Delta t }=\dfrac{dy}{dt} \end{equation*}

Furthermore, as \Delta t\rightarrow 0, then (\Delta x,\Delta y)\rightarrow (0,0), so that \eta _{1}\rightarrow 0 and \eta _{2}\rightarrow 0. Putting this all together, we get \begin{eqnarray*} \frac{dz}{dt}& =&\frac{\partial z}{\partial x}\lim_{\Delta t\rightarrow 0} \frac{\Delta x}{\Delta t}+\frac{\partial z}{\partial y}\lim_{\Delta t\rightarrow 0}\frac{\Delta y}{\Delta t}+\lim_{\Delta t\rightarrow 0}\eta _{1}\cdot \lim_{\Delta t\rightarrow 0}\frac{\Delta x}{\Delta t}+\lim_{\Delta t\rightarrow 0}\eta _{2}\cdot \lim_{\Delta t\rightarrow 0}\frac{\Delta y}{ \Delta t} \nonumber \\[4pt] & =&\frac{\partial z}{\partial x}\frac{dx}{dt}+\frac{\partial z}{\partial y} \frac{dy}{dt}+0\cdot \frac{dx}{dt}+0\cdot \frac{dy}{dt}=\frac{\partial z}{ \partial x}\frac{dx}{dt}+\frac{\partial z}{\partial y}\frac{dy}{dt} \end{eqnarray*}

850

The tree diagram in Figure 38 may help you to remember the form of Chain Rule I.

Figure 38 \dfrac{dz}{dt} =\dfrac{\partial z}{\partial x} \dfrac{dx}{dt} + \dfrac{\partial z}{\partial y} \dfrac{dy}{dt}

EXAMPLE 1Differentiating a Function of Two Variables Where Each Variable Is a Function of t

Let z=x^{2}y-y^{2}x, where x=\sin t and y=e^{t}. Find \dfrac{dz}{dt}.

Solution We begin by finding the partial derivatives of z, \dfrac{\partial z}{\partial x} and \dfrac{\partial z}{\partial y}, and the derivatives \dfrac{dx}{dt} and \dfrac{dy}{dt}. \dfrac{\partial z}{\partial x}=2xy-y^{2}\qquad \dfrac{ \partial z}{\partial y}=x^{2}-2xy\qquad \dfrac{dx}{dt} =\cos t\qquad \dfrac{dy}{dt}=e^{t}

Then we use Chain Rule I to find \dfrac{dz}{dt}. \begin{eqnarray*} \frac{dz}{dt}\underset{ \underset{ \color{#0066A7}{\hbox{Chain Rule I}}} {\color{#0066A7}{\uparrow }}} {=}\frac{ \partial z}{\partial x}\frac{dx}{dt}+\frac{\partial z}{\partial y}\frac{dy}{ dt}=(2xy-y^{2})(\cos t)+(x^{2}-2xy)(e^{t}) \tag{1} \end{eqnarray*}

Since z is a function of t, we express \dfrac{dz}{dt} in terms of t. \begin{eqnarray*} \frac{dz}{dt}&&=(2e^{t}\sin t-e^{2t})(\cos t)+(\sin ^{2}t-2e^{t}\sin t)(e^{t})\qquad {\color{#0066A7}{\hbox{\(x=\sin t, y=e^{t}\)}}} \nonumber\\ &&=e^{t}[ \sin ( 2t) -e^{t}\cos t+\sin ^{2}t-2e^{t}\sin t] \qquad {\color{#0066A7}{\hbox{\(2\sin t\cos t =\sin (2t) \)}}} \tag{2} \end{eqnarray*}

When \dfrac{dz}{dt} is expressed in terms of x, y, and t, as in (1), we say it is expressed in mixed form. When \dfrac{dz}{dt} is expressed in terms of t alone, as in (2), we say it is in final form. When computations become involved, we will leave our answers in mixed form.

NOW WORK

Problem 3.

EXAMPLE 2Differentiating a Function of Two Variables Where Each Variable Is a Function of t

Let z=e^{x}\sin y, where x=e^{t} and y=\dfrac{\pi }{3}e^{-t}. Find \dfrac{dz}{dt} when t=0.

Solution We begin by finding the partial derivatives of z, \dfrac{\partial z}{\partial x} and \dfrac{\partial z}{\partial y}, and the derivatives \dfrac{dx}{dt} and \dfrac{dy}{dt}. \dfrac{\partial z}{\partial x}=e^{x}\sin y\qquad \dfrac{\partial z}{\partial y}=e^{x}\cos y\qquad \dfrac{dx}{dt}=e^{t}\qquad \dfrac{dy}{dt}=-\dfrac{\pi }{3}e^{-t}

Then we use Chain Rule I to find \dfrac{dz}{dt}. \begin{eqnarray*} \frac{dz}{dt}\underset{ \underset{ \color{#0066A7}{\hbox{Chain Rule I}}} {\color{#0066A7}{\uparrow }}} {=}\frac{ \partial z}{\partial x}\frac{dx}{dt}+\frac{\partial z}{\partial y}\frac{dy}{ dt}=(e^{x}\sin y)e^{t}+(e^{x}\cos y)\left( -\frac{\pi }{3}e^{-t}\right)\\[-9pt] \end{eqnarray*}

We can stop here and evaluate \dfrac{dz}{dt}. When t=0, then x=e^{0}=1 and y=\dfrac{\pi }{3}e^{0}=\dfrac{\pi }{3}. So, when t=0, \frac{dz}{dt}=\left( e\sin \frac{\pi }{3}\right) (1)+\left( e\cos \frac{\pi }{3}\right) \left( -\frac{\pi }{3}\right) =\frac{e\sqrt{3}}{2}-\frac{\pi e}{6 }=\frac{e}{6}(3\sqrt{3}-\pi )

NOW WORK

Problem 9.

851

Chain Rule I can be extended to functions of three or more variables, where each of these variables is a function of a single variable t. If z=f( x_{1},x_{2},\ldots,x_{n}) is differentiable and each variable x_{i}=x_{i}( t) , i=1,2,\ldots,n, is a differentiable function of t, then \bbox[5px, border:1px solid black, #F9F7ED]{\bbox[#FAF8ED,5pt]{{ \dfrac{dz}{dt}=\dfrac{\partial z}{\partial x_{1}} \dfrac{dx_{1}}{dt}+\dfrac{\partial z}{\partial x_{2}}\dfrac{dx_{2}}{dt}+ \cdots+\dfrac{\partial z}{\partial x_{n}}\dfrac{dx_{n}}{dt} }}}

where each of the partial derivatives \dfrac{\partial z}{\partial x_{1}}, \ldots,\dfrac{\partial z}{\partial x_{n}} is expressed in terms of t.

EXAMPLE 3Differentiating a Function of Three Variables Where Each Variable Is a Function of t

If w=x^{2}y+y^{2}z, where x=t, y=t^{2}, and z=t^{3}, then w is a function of t, and \begin{eqnarray*} \dfrac{dw}{dt}& =&\dfrac{\partial w}{\partial x}\dfrac{dx}{dt}+\dfrac{\partial w}{ \partial y}\dfrac{dy}{dt}+\dfrac{\partial w}{\partial z}\dfrac{dz}{dt}=\, \underset{\color{#0066A7}{\dfrac{\partial w}{\partial x}}}{\underbrace{(2xy)}}\underset{\color{#0066A7}{\dfrac{ dx}{dt}}}{\underbrace{(1)}}+\underset{\color{#0066A7}{\dfrac{\partial w}{\partial y}}}{ \underbrace{(x^{2}+2yz)}}\underset{\color{#0066A7}{\dfrac{dy}{dt}}}{\underbrace{(2t)}}+ \underset{\color{#0066A7}{\dfrac{\partial w}{\partial z}}}{\underbrace{(y^{2})}}\underset{\color{#0066A7}{ \dfrac{dz}{dt}}}{\underbrace{(3t^{2})}} \nonumber \\ &=& 2t^{3}+(t^{2}+2t^{5})(2t)+(t^{4})(3t^{2})=7t^{6}+4t^{3} \nonumber \end{eqnarray*}

NOW WORK

Problem 17.

2 Differentiate Functions of Two or More Variables Where Each Variable is a Function of Two or More Variables

Printed Page 851

A second version of the Chain Rule is used for differentiating z=f(x,y), where x and y are each functions of two independent variables u and v. For example, if x=g(u,v) and y=h(u,v), then the composite function z=f(x,y)=f( g(u,v),h(u,v)) is a function of the two variables u and v. We seek the partial derivatives \dfrac{\partial z}{\partial u} and \dfrac{\partial z}{\partial v}.

THEOREM Chain Rule II: Two Independent Variables

Let z=f( g(u,v),h(u,v)) be the composite of z=f(x,y), where x=g(u,v) and y=h(u,v). If g and h are each continuous and have continuous first-order partial derivatives at a point (u,v) in the interior of the domains of both g and h, and if f is differentiable in some disk centered at the point (x,y)=( g(u,v),h(u,v)), then \bbox[5px, border:1px solid black, #F9F7ED]{\bbox[#FAF8ED,5pt]{{ \dfrac{\partial z}{\partial u}=\dfrac{\partial z}{\partial x}\dfrac{\partial x}{\partial u}+\dfrac{\partial z}{\partial y} \dfrac{\partial y}{\partial u} \qquad \hbox{and} \qquad \dfrac{\partial z}{ \partial v}=\dfrac{\partial z}{\partial x}\dfrac{\partial x}{\partial v}+ \dfrac{\partial z}{\partial y}\dfrac{\partial y}{\partial v} }}}

Proof

To find \dfrac{\partial z}{\partial u}, we hold v fixed. Then x=g(u,v) and y=h(u,v) are functions of u alone, and we can use Chain Rule I. Then \dfrac{\partial z}{\partial u}=\dfrac{\partial z}{ \partial x}\dfrac{dx}{du}+\dfrac{\partial z}{\partial y}\dfrac{dy}{du}. Now replace \dfrac{dx}{du} with \dfrac{\partial x}{\partial u}, and replace \dfrac{dy}{du} with \dfrac{\partial y}{\partial u}.

A similar argument is used for finding \dfrac{\partial z}{\partial v}.

The tree diagrams in Figures 39 and 40 on page 852 may help you remember the form of Chain Rule II.

852

Figure 39 \dfrac{\partial z}{\partial u} =\dfrac{\partial z}{\partial x} \dfrac{\partial x}{\partial u} + \dfrac{\partial z}{\partial y} \dfrac{\partial y}{\partial u}
Figure 40 \dfrac{\partial z}{\partial v} =\dfrac{\partial z}{\partial x} \dfrac{\partial x}{\partial v} + \dfrac{\partial z}{\partial y} \dfrac{\partial y}{\partial v}

EXAMPLE 4Differentiating a Function of Two Variables Where Each Variable Is a Function of Two Variables

Find \dfrac{\partial z}{\partial u} and \dfrac{\partial z}{\partial v} if z=f(x,y) =x^{2}+xy-y^{2} and x=e^{2u+v} and y=\ln \dfrac{ v}{u}.

Solution The function z=f(x,y) is a composite function of two independent variables u and v. So, we use Chain Rule II. \dfrac{\partial z}{\partial u}=\frac{\partial z}{\partial x}\frac{\partial x}{ \partial u}+\frac{\partial z}{\partial y}\frac{\partial y}{\partial u}

Since \dfrac{\partial z}{\partial x}=2x+y\qquad \dfrac{ \partial z}{\partial y}=x-2y\qquad \dfrac{\partial x }{\partial u}=2e^{2u+v}\qquad \dfrac{\partial y}{\partial u} =\dfrac{\partial }{\partial u}( \ln v-\ln u) =-\dfrac{1}{u}

we have \begin{eqnarray*} \frac{\partial z}{\partial u}&=&\underset{\color{#0066A7}{\dfrac{\partial z}{\partial x}}}{ \underbrace{(2x+y)}}\underset{\color{#0066A7}{\dfrac{\partial x}{\partial u}}}{\underbrace{ (2e^{2u+v})}}+\underset{\color{#0066A7}{\dfrac{\partial z}{\partial y}}}{\underbrace{(x-2y)}}\underset{\color{#0066A7}{\dfrac{\partial y}{\partial u}}} {\underbrace{\left( -\dfrac{1}{u}\right) }}\\[4pt] &=&\left(2e^{2u+v}+\ln \dfrac{v}{u}\right) ( 2e^{2u+v}) -\left(e^{2u+v}-2\ln \dfrac{v}{u}\right) \left( \dfrac{1}{u}\right) \qquad \color{#0066A7}{{\hbox{\(x=e^{2u+v}; y=\ln \dfrac{v}{u}\)}}} \end{eqnarray*}

Similarly, since \dfrac{\partial x}{\partial v}=e^{2u+v} and \dfrac{ \partial y}{\partial v}=\dfrac{1}{v}, we have \begin{eqnarray*} \dfrac{\partial z}{\partial v}&=&\underset{\color{#0066A7}{\dfrac{\partial z}{\partial x}}}{ \underbrace{(2x+y)}}\underset{\color{#0066A7}{\dfrac{\partial x}{\partial v}}}{\underbrace{ (e^{2u+v})}}+\underset{\color{#0066A7}{\dfrac{\partial z}{\partial y}}}{\underbrace{(x-2y)}} \underset{\color{#0066A7}{\dfrac{\partial y}{\partial v}}}{\underbrace{\left( \dfrac{1}{v} \right) }}\\[4pt] &=&\left( 2e^{2u+v}+\ln \dfrac{v}{u}\right) ( e^{2u+v}) +\left( e^{2u+v}-2~\ln \dfrac{v}{u}\right) \left( \dfrac{1}{v}\right) \qquad \color{#0066A7}{{\hbox{\(x=e^{2u+v}; y=\ln \dfrac{v}{u}\)}}}\qquad \end{eqnarray*}

Notice that since z is a function of u and v, the final form of \dfrac{ \partial z}{\partial u} and \dfrac{\partial z}{\partial v} is expressed in terms of only u and v.

NOW WORK

Problem 31.

The form of Chain Rule II stays the same if z is a function of m\geq 3 variables. That is, if z=f(x_{1}, x_{2}, \ldots , x_{m}) is a differentiable function, and if each of the variables x_{1}=g_{1}(u_{1},u_{2}, \ldots , u_{n}), x_{2}=g_{2}(u_{1},u_{2}, \ldots , u_{n}), \ldots , x_{m}=g_{m}(u_{1}, u_{2}, \ldots , u_{n}) has continuous first-order partial derivatives, then the composite function z=f(g_{1} (u_1,\ldots,u_n), g_{2}(u_1,\ldots,u_n), \ldots , g_{m}(u_1,\ldots,u_n)) is a function of u_{1}, u_{2}, \ldots , u_{n}, and the partial derivatives are found using an extension of Chain Rule II. \begin{eqnarray*} \dfrac{\partial z}{\partial u_{1}} &=&\dfrac{\partial z}{\partial x_{1}} \dfrac{\partial x_{1}}{\partial u_{1}}+\dfrac{\partial z}{\partial x_{2}} \dfrac{\partial x_{2}}{\partial u_{1}}+\cdots +\dfrac{\partial z}{\partial x_{m}}\dfrac{\partial x_{m}}{\partial u_{1}} \\[4pt] \dfrac{\partial z}{\partial u_{2}} &=&\dfrac{\partial z}{\partial x_{1}} \dfrac{\partial x_{1}}{\partial u_{2}}+\dfrac{\partial z}{\partial x_{2}} \dfrac{\partial x_{2}}{\partial u_{2}}+\cdots +\dfrac{\partial z}{\partial x_{m}}\dfrac{\partial x_{m}}{\partial u_{2}} \\[4pt] &&\vdots \\[4pt] \dfrac{\partial z}{\partial u_{n}} &=&\dfrac{\partial z}{\partial x_{1}} \dfrac{\partial x_{1}}{\partial u_{n}}+\dfrac{\partial z}{\partial x_{2}} \dfrac{\partial x_{2}}{\partial u_{n}}+\cdots +\dfrac{\partial z}{\partial x_{m}}\dfrac{\partial x_{m}}{\partial u_{n}} \end{eqnarray*}

853

These partial derivatives can be written more compactly as \frac{\partial z}{\partial u_{i}}=\sum_{j=1}^{m}\frac{\partial z}{\partial x_{j}}\frac{\partial x_{j}}{\partial u_{i}}\qquad i=1, 2, \ldots , n

EXAMPLE 5Differentiating a Function of Three Variables Where Each Variable Is a Function of Four Variables

Find \dfrac{\partial f}{\partial u}, \dfrac{\partial f}{\partial v}, \dfrac{\partial f}{\partial w}, \dfrac{\partial f}{\partial t} for the function f(x,y,z)=x^{2}+y^{2}+z^{2}, where x=uvwt, y=e^{u+v+w+t}, and z=u+2v+3w+4t.

Solution We use an extension of Chain Rule II. \begin{array}{lllllll} \dfrac{\partial f}{\partial u} &=&\dfrac{\partial f}{\partial x}\dfrac{\partial x}{\partial u}+\dfrac{\partial f}{\partial y}\dfrac{\partial y}{\partial u}+ \dfrac{\partial f}{\partial z}\dfrac{\partial z}{\partial u} & \dfrac{ \partial f}{\partial v}&=&\dfrac{\partial f}{\partial x}\dfrac{\partial x}{ \partial v}+\dfrac{\partial f}{\partial y}\dfrac{\partial y}{\partial v}+\dfrac{ \partial f}{\partial z}\dfrac{\partial z}{\partial v} \nonumber\\ &=&(2x)(vwt)+(2y)(e^{u+v+w+t})+(2z)(1) & &=&(2x)(uwt)+(2y)(e^{u+v+w+t})+(2z)(2) \nonumber \\ &=&2uv^{2}w^{2}t^{2}+2e^{2(u+v+w+t)}+2(u+2v+3w+4t) & &=&2u^{2}vw^{2}t^{2}+2e^{2(u+v+w+t)}+4(u+2v+3w+4t) \nonumber \\[1pc] \dfrac{\partial f}{\partial w} &=&\dfrac{\partial f}{\partial x}\dfrac{\partial x}{\partial w}+\dfrac{\partial f}{\partial y}\dfrac{\partial y}{\partial w}+ \dfrac{\partial f}{\partial z}\dfrac{\partial z}{\partial w} & \dfrac{\partial f}{ \partial t}&=&\dfrac{\partial f}{\partial x}\dfrac{\partial x}{\partial t}+\dfrac{ \partial f}{\partial y}\dfrac{\partial y}{\partial t}+\dfrac{\partial f}{ \partial z}\dfrac{\partial z}{\partial t} \nonumber \\ &=&(2x)(uvt)+(2y)(e^{u+v+w+t})+(2z)(3) & &=&(2x)(uvw)+(2y)(e^{u+v+w+t})+(2z)(4) \nonumber \\ &=&2u^{2}v^{2}wt^{2}+2e^{2(u+v+w+t)}+6(u+2v+3w+4t) & &=&2u^{2}v^{2}w^{2}t+2e^{2(u+v+w+t)}+8(u+2v+3w+4t) \end{array}

Again, notice that the partial derivatives of f in Example 5 are expressed in terms of u, v, w, and t alone.

NOW WORK

Problem 37.

3 Differentiate an Implicitly-Defined Function of Two or More Variables

Printed Page 853

NEED TO REVIEW?

Implicit differentiation is discussed in Section 3.2, pp. 209-213.

If a differentiable function y=f(x) of one variable is defined implicitly by the equation F(x,y)=0, then F( x,f(x) ) =0. We can find the derivative \dfrac{dy}{dx} as follows. Let z=F(u,y)\qquad \hbox{where}\quad u=x \quad \hbox{and} \quad y=f(x)

Since u and y are functions of one independent variable x, we use Chain Rule I to find \dfrac{dz}{dx}. \frac{dz}{dx}=\frac{\partial F}{\partial u}\cdot \frac{du}{dx}+\frac{ \partial F}{\partial y}\cdot \frac{dy}{dx}

854

Since the composite function z=F(u,y)=F(x,f(x))\equiv 0, the derivative \dfrac{ dz}{dx}=0. Also because u=x, \dfrac{\partial F}{\partial u}=\dfrac{ \partial F}{\partial x} and \dfrac{du}{dx}=1. So, \begin{equation*} 0=\frac{\partial F}{\partial x}(1)+\frac{\partial F}{\partial y}\cdot \frac{ dy}{dx} \end{equation*}

Now if \dfrac{\partial F}{\partial y}\neq 0, we can solve for \dfrac{dy}{ dx}. \dfrac{dy}{dx}=-\dfrac{\dfrac{\partial F}{ \partial x}}{\dfrac{\partial F}{\partial y}}=-\dfrac{F_{x}}{F_{y}}\qquad \dfrac{\partial F}{\partial y}\neq 0

Implicit Differentiation Formula I

Suppose F is a differentiable function and y=f(x) is a function defined implicitly by the equation F(x,y)=0. Then \begin{equation*} \bbox[5px, border:1px solid black, #F9F7ED]{\bbox[#FAF8ED,5pt]{{ \dfrac{dy}{dx}=-\dfrac{F_{x}(x,y)}{F_{y}(x,y)} }}} \tag{3} \end{equation*}

provided \dfrac{\partial F}{\partial y}=F_{y}(x,y)\neq 0.

EXAMPLE 6Differentiating an Implicitly Defined Function

Find \dfrac{dy}{dx} if y=f(x) is defined implicitly by F(x,y)=e^{y}\cos x-x-1=0.

Solution First we find the partial derivatives of F. F_{x}=\dfrac{\partial F}{\partial x}=-e^{y}\sin x-1\qquad \hbox{and} \qquad F_{y}=\dfrac{ \partial F}{\partial y}=e^{y}\cos x

Then we use (3). If e^{y}\cos x\neq 0, \frac{dy}{dx}=-\frac{F_{x}}{F_{y}}=-\frac{-e^{y}\sin x-1}{e^{y}\cos x}=\frac{e^{y}\sin x+1}{e^{y}\cos x}

NOW WORK

Problem 41.

If a differentiable function z=f(x,y) of two variables is defined implicitly by the equation F(x,y,z)=0, we can find the partial derivatives \dfrac{\partial z}{\partial x} and \dfrac{\partial z}{\partial y} by using Chain Rule II.

We begin by letting w=F(u,v,z), where u=x, v=y, and z=f(x,y). Since the composite function w=F( x,y,f(x, y)) \equiv 0, it follows that \dfrac{\partial w}{\partial x}=0 and \dfrac{\partial w}{ \partial y}=0. To find an expression for \dfrac{\partial w}{\partial x}, we use Chain Rule II. \begin{equation*} \frac{\partial w}{\partial x}=\frac{\partial F}{\partial u}\cdot \frac{ \partial u}{\partial x}+\frac{\partial F}{\partial v}\cdot \frac{\partial v}{ \partial x}+\frac{\partial F}{\partial z}\cdot \frac{\partial z}{\partial x} =0 \end{equation*}

Since u=x, then \dfrac{\partial F}{\partial u}=\dfrac{\partial F}{ \partial x} and \dfrac{\partial u}{\partial x}=1, and since v=y, then \dfrac{\partial F}{\partial v}=\dfrac{\partial F}{\partial y} and \dfrac{ \partial v}{\partial x}=0. So, \begin{eqnarray*} \frac{\partial F}{\partial x}\cdot 1 +\frac{\partial F}{\partial y}\cdot 0+\frac{\partial F}{\partial z}\cdot \frac{\partial z}{\partial x} &=&0 \\[4pt] \frac{\partial F}{\partial x}+\frac{\partial F}{\partial z}\cdot \frac{\partial z}{\partial x} &=&0 \end{eqnarray*}

855

If \dfrac{\partial F}{\partial z}\neq 0, it follows that \begin{equation*} \frac{\partial z}{\partial x}=-\frac{\dfrac{\partial F}{\partial x}}{\dfrac{ \partial F}{\partial z}}=-\frac{F_{x}(x,y,z)}{F_{z}(x,y,z)} \end{equation*}

In a similar way, it can be shown that \frac{\partial z}{\partial y}=-\frac{F_{y}(x,y,z)}{F_{z}(x,y,z)}

Implicit Differentiation Formulas II

If a differentiable function z=f(x,y) is defined implicitly by the equation F(x,y,z)=0, then \begin{equation*} \bbox[5px, border:1px solid black, #F9F7ED]{\bbox[#FAF8ED,5pt]{{ \dfrac{\partial z}{\partial x}=-\dfrac{F_{x}(x,y,z)}{ F_{z}(x,y,z)}\qquad \hbox{and} \qquad \dfrac{\partial z}{\partial y}=-\dfrac{F_{y}(x,y,z)}{ F_{z}(x,y,z)} }}} \tag{4} \end{equation*}

provided \dfrac{\partial F}{\partial z}=F_{z}(x,y,z)\neq 0.

EXAMPLE 7Differentiating an Implicitly Defined Function

Find \dfrac{\partial z}{\partial x} and \dfrac{\partial z}{\partial y} if z=f(x,y) is defined implicitly by the function F(x,y,z)=x^{2}z^{2}+y^{2}-z^{2}+6yz-10=0.

Solution First we find the partial derivatives of F. \begin{equation*} F_{x}=\dfrac{\partial F}{\partial x}=2xz^{2}\qquad F_{y}=\dfrac{ \partial F}{\partial y}=2y+6z\qquad F_{z}=\dfrac{\partial F}{\partial z} =2x^{2}z-2z+6y \end{equation*}

Then we use (4). If F_{z}=2x^{2}z-2z+6y\neq 0, \dfrac{\partial z}{\partial x}=-\dfrac{2xz^{2}}{2x^{2}z-2z+6y}=-\dfrac{ xz^{2}}{x^{2}z-z+3y}

and \dfrac{\partial z}{\partial y}=-\dfrac{2y+6z}{ 2x^{2}z-2z+6y}=-\dfrac{y+3z}{x^{2}z-z+3y}

NOW WORK

Problem 49.

4 Use a Chain Rule in a Proof

Printed Page 853

The Chain Rules are often used in proofs involving functions of two or more variables.

EXAMPLE 8Using a Chain Rule in a Proof

Let p=f(v-w, v-u, u-w) be a differentiable function. Show that \frac{\partial p}{\partial u}+\frac{\partial p}{\partial v}+\frac{\partial p}{\partial w}=0

Solution Let x=v-w, y=v-u, and z=u-w. Then p=f(x,y,z). We use an extension of Chain Rule II. Since \dfrac{\partial x}{\partial u}=0, \dfrac{\partial y}{\partial u} =-1, and \dfrac{\partial z}{\partial u}=1, we have \frac{\partial p}{\partial u}=\frac{\partial p}{\partial x}\frac{\partial x}{ \partial u}+\frac{\partial p}{\partial y}\frac{\partial y}{\partial u}+\frac{ \partial p}{\partial z}\frac{\partial z}{\partial u}=\frac{\partial p}{ \partial x}(0)+\frac{\partial p}{\partial y}(-1)+\frac{\partial p}{\partial z }(1)=-\frac{\partial p}{\partial y}+\frac{\partial p}{\partial z}\hbox{ }

856

Since \dfrac{\partial x}{\partial v}=1, \dfrac{\partial y}{\partial v}=1, and \dfrac{\partial z}{\partial v}=0, we have \frac{\partial p}{\partial v}=\frac{\partial p}{\partial x}\frac{\partial x}{ \partial v}+\frac{\partial p}{\partial y}\frac{\partial y}{\partial v}+\frac{ \partial p}{\partial z}\frac{\partial z}{\partial v}=\frac{\partial p}{ \partial x}(1)+\frac{\partial p}{\partial y}(1)+\frac{\partial p}{\partial z} (0)=\frac{\partial p}{\partial x}+\frac{\partial p}{\partial y}

Since \dfrac{\partial x}{\partial w}=-1, \dfrac{\partial y}{\partial w} =0, and \dfrac{\partial z}{\partial w}=-1, we have \frac{\partial p}{\partial w}=\frac{\partial p}{\partial x}\frac{\partial x}{ \partial w}+\frac{\partial p}{\partial y}\frac{\partial y}{\partial w}+\frac{ \partial p}{\partial z}\frac{\partial z}{\partial w}=\frac{\partial p}{ \partial x}(-1)+\frac{\partial p}{\partial y}(0)+\frac{\partial p}{\partial z }(-1)=-\frac{\partial p}{\partial x}-\frac{\partial p}{\partial z}

Adding these, we get \underset{\color{#0066A7}{\hbox{ }\hspace{5pc}\dfrac{{\partial p}}{{\partial u}}}}{\dfrac{ \partial p}{\partial u}+\dfrac{\partial p}{\partial v}+\dfrac{\partial p}{ \partial w}=\underbrace{\left( -\frac{\partial p}{\partial y}+\frac{\partial p}{\partial z}\right) }}+\underset{\color{#0066A7}{\dfrac{{\partial p}}{{ \partial v}}}}{\underbrace{\left( \frac{\partial p}{\partial x}+\frac{ \partial p}{\partial y}\right) }}+\underset{\color{#0066A7}{\dfrac{{\partial p}}{ {\partial w}}}}{\underbrace{\left( -\frac{\partial p}{\partial x}- \frac{\partial p}{\partial z}\right) \,\,\,}}=0

NOW WORK

Problem 65.