Chapter ReviewPrinted Page 250
Basic Derivative Formulas:
Properties of Derivatives:
- Chain Rule: (f∘g)′(x)=f′(g(x))⋅g′(x) or dydx=dydu⋅dudx (p. 198)
- Power Rule for functions: ddx[g(x)]n=n[g(x)]n−1g′(x), where n is an integer (p. 203)
3.2 Implicit Differentiation; Derivatives of the Inverse Trigonometric Functions
Procedure: To differentiate an implicit function (p. 211):
- Assume y is a differentiable function of x.
- Differentiate both sides of the equation with respect to x.
- Solve the resulting equation for y′=dydx.
Basic Derivative Formulas:
Properties of Derivatives:
- Power Rule for rational exponents: ddxxp/q=pq⋅x(p/q)−1. provided xp/q and xp/q−1 are defined. (p. 213)
- Power Rule for functions: ddx[u(x)]r=r[u(x)]r−1u′(x), r a rational number; provided ur and ur−1 are defined. (p. 214)
Theorem: The derivative of an inverse function at a number (p. 215)
3.3 Derivatives of Logarithmic Functions
Basic Derivative Formulas:
Steps for Using Logarithmic Differentiation (p. 225):
- Step 1 If the function y=f(x) consists of products, quotients, and powers, take the natural logarithm of each side. Then simplify using properties of logarithms.
- Step 2 Differentiate implicitly, and use ddxlny=y′y.
- Step 3 Solve for y′, and replace y with f(x).
Theorems:
- Power Rule If a is a real number, then ddxxa=axa−1. (p. 226)
- The number e can be expressed as lim. (p. 227)
3.4 Differentials; Linear Approximations; Newton’s Method
- The differential dx of x is defined as dx=\Delta x≠ 0, where \Delta x is the change in x. The differential dy of y=f(x) is defined as dy=f^\prime ( x) dx. (p. 231)
- A linear approximation L( x) to a differentiable function f near x=x_{0} is given by L( x) =f( x_{0}) +f^\prime ( x_{0}) ( x-x_{0}). (p. 232)
- Newton’s Method for finding the zero of a function. (p. 235)
- Taylor Polynomial P_{n}( x) for f at x_{0}: \[ \begin{eqnarray*} P_{n}( x) &=& f( x_{0}) + f^\prime ( x_{0}) (x-x_{0}) + \dfrac{f^{\prime \prime} ( x_{0}) }{2!}( x-x_{0}) ^{2}+\cdots \\ &&+\,\dfrac{f^{( n) }( x_{0}) }{n!}( x-x_{0}) ^{n}\quad (p. 240) \end{eqnarray*} \]
Definitions:
- Hyperbolic sine: y=\sinh x=\frac{e^{x}-e^{-x}}{2} (p. 243)
- Hyperbolic cosine: y=\cosh x=\frac{e^{x}+e^{-x}}{2} (p. 243)
Hyperbolic Identities (pp. 244-245):
- \tanh x = \frac{\sinh x}{\cosh x}
- \coth x = \frac{\cosh x}{\sinh x}
- {\rm sech}\, x = \frac{1}{\cosh x}
- {\rm csch}\, x = \frac{1}{\sinh x}
- \cosh ^{2}x-\sinh ^{2}x=1
- \tanh ^{2}x+\text{sech}^{2}x=1
- \coth ^{2}x-\text{csch}^{2}x=1
- Sum Formulas: \begin{eqnarray*} \sinh (A+B) &=&\sinh A\cosh B+\cosh A\sinh B\\ \cosh (A+B) &=&\cosh A\cosh B+\sinh A\sinh B \end{eqnarray*}
- Even/odd Properties: \sinh (-A) =-\sinh A\qquad \cosh (-A) =\cosh A
Inverse Hyperbolic Functions (p. 247):
- y=\sinh ^{-1}x=\ln \big( x+ \sqrt{x^{2}+1}\big) for all real x
- y=\cosh ^{-1}x=\ln \big( x+ \sqrt{x^{2}-1}\big) x ≥ 1
- y=\tanh ^{-1}x=\frac{1}{2}\ln \left(\frac{1+x}{1-x}\right) \vert x\vert < 1
- y=\coth ^{-1}x=\frac{1}{2}\ln \left(\frac{x+1}{x-1}\right) \vert x\vert > 1
Basic Derivative Formulas (pp. 245, 248):
- \dfrac{d}{dx}\sinh x=\cosh x
- \dfrac{d}{dx}\text{sech}~x=-\text{sech}~x\tanh x
- \dfrac{d}{dx}\cosh =\sinh x
- \dfrac{d}{dx}\text{csch}~x=-\text{csch}~x\coth x
- \dfrac{d}{dx}\tanh x=\text{sech}^{2}x
- \dfrac{d}{dx}\coth x=-\text{csch}^{2}x
- \dfrac{d}{dx}\sinh ^{-1}x=\frac{1}{\sqrt{x^{2}+1}}
- \dfrac{d}{dx}\cosh ^{-1}x=\frac{1}{\sqrt{x^{2}-1}}\quad x > 1
- \frac{d}{dx}\tanh ^{-1}x=\frac{1}{1-x^{2}} \quad \vert x\vert < 1
Section |
You should be able to… |
Example |
Review Exercises |
3.1 |
1 Differentiate a composite function (p. 198) |
1-5 |
1, 13, 24 |
|
2 Differentiate y = a^{x}, a > 0, a≠ 1 (p. 202) |
6 |
19, 22 |
|
3 Use the Power Rule for functions to find a derivative (p. 202) |
7, 8 |
1, 11, 12, 14, 17 |
|
4 Use the Chain Rule for multiple composite functions (p. 204) |
9 |
15, 18, 61 |
3.2 |
1 Find a derivative using implicit differentiation (p. 209) |
1-4 |
43-52, 73, 81 |
|
2 Find higher-order derivatives using implicit differentiation (p. 212) |
5 |
49-52 |
|
3 Differentiate functions with rational exponents (p. 213) |
6, 7 |
2-8, 15, 16, 61-64 |
|
4 Find the derivative of an inverse function (p. 214) |
8 |
53, 54 |
|
5 Differentiate inverse trigonometric functions (p. 216) |
9, 10 |
32-38 |
3.3 |
1 Differentiate logarithmic functions (p. 222) |
1-3 |
20, 21, 23, 25-30, 52, 72 |
|
2 Use logarithmic differentiation (p. 225) |
4-7 |
9, 10, 31, 71 |
|
3 Express e as a limit (p. 227) |
8 |
55, 56 |
3.4 |
1 Find the differential of a function and interpret it geometrically (p. 230) |
1 |
65, 69, 70 |
|
2 Find the linear approximation to a function (p. 232) |
2 |
67 |
|
3 Use differentials in applications (p. 233) |
3, 4 |
66, 68 |
|
4 Use Newton’s Method to approximate a real zero of a function (p. 234) |
5, 6 |
78-80 |
3.5 |
1 Find a Taylor Polynomial (p. 240) |
1-3 |
74-77 |
3.6 |
1 Define the hyperbolic functions (p. 243) |
1 |
57, 58 |
|
2 Establish identities for hyperbolic functions (p. 244) |
2 |
59, 60 |
|
3 Differentiate hyperbolic functions (p. 245) |
3, 4 |
39-41 |
|
4 Differentiate inverse hyperbolic functions (p. 246) |
5-7 |
42 |