When you finish this section, you should be able to:
The trigonometric functions are discussed in Section P.6, pp. 49-56.
To find the derivatives of \(y=sin x\) and \(y=cos x\), we use the limits \[ \lim\limits_{\theta \rightarrow 0}\dfrac{\sin \theta }{\theta }=1\qquad \hbox{and}\qquad \lim\limits_{\theta \rightarrow 0} \dfrac{\cos \theta -1}{\theta }=0 \]
that were established in Section 1.4.
186
The derivative of \(y\) = sin \(x\) is \(y^\prime =\cos x\). That is, \[\bbox[5px, border:1px solid black, #F9F7ED]{\bbox[5pt] {y^\prime = \dfrac{d}{dx}\sin x=\cos x}} \]
Basic trigonometric identities are discussed in Appendix A.4, pp. A-32 to A-35.
\begin{array}{lcll} y^\prime &=&\lim\limits_{h\rightarrow 0}\dfrac{\sin(x+h) -\sin x }{h} & {\color{#0066A7}{\hbox{The definition of a derivative.}}} \\ &=&\lim\limits_{h\rightarrow 0}\dfrac{\sin x\cos h+\sin h\cos x-\sin x}{h} & {\color{#0066A7}{\hbox{\(\sin (A+B) =\sin A\,\cos B+\sin B\,\cos A.\)}}} \\ &=&\lim\limits_{h\rightarrow 0}\left[ \dfrac{\sin x\cos h-\sin x}{h}+\dfrac{\sin h\cos x}{h}\right] & {\color{#0066A7}{\hbox{Rearrange terms.}}} \\ &=&\lim\limits_{h\rightarrow 0}\left[ \sin x\cdot \dfrac{\cos h-1}{h}+\dfrac{\sin h}{h}\cdot \cos x\right] & {\color{#0066A7}{\hbox{Factor.}}} \\ &=&\left[\lim\limits_{h\rightarrow 0}\sin x\right]\! \left[\lim\limits_{h\rightarrow 0} \dfrac{\cos h-1}{h}\right] +\left[\lim\limits_{h\rightarrow 0}\cos x\right]\!\left[ \lim\limits_{h\rightarrow 0}\dfrac{\sin h}{h}\right] & {\color{#0066A7}{\hbox{Use properties of limits.}}}\\ &=&\sin x\cdot 0+\cos x\cdot 1=\cos x & {\color{#0066A7}{\hbox{\(\lim\limits_{\theta \rightarrow 0}\dfrac{\cos \theta -1}{\theta } =0 ; \quad \lim\limits_{\theta \rightarrow 0}\dfrac{\sin \theta}{\theta } =1.\)}}} \end{array}
The geometry of the derivative \(\dfrac{d}{dx}\sin x=\cos x\) is shown in Figure 26. On the graph of \(f(x) =\sin x\), the horizontal tangents are marked as well as the tangent lines that have slopes of 1 and −1. The derivative function is plotted on the second graph and those points are connected with a smooth curve.
Find \(y^\prime\) if:
Solution
187
Problems 5 and 29.
The derivative of \(y= \cos x\) is \[\bbox[5px, border:1px solid black, #F9F7ED]{ y^\prime =\dfrac{d}{dx}\cos x=-\sin x } \]
You are asked to prove this in Problem 75.
Find the derivative of each function:
Solution
Problem 13.
Find all points on the graph of \(f(x) =x+\sin x\) where the tangent line is horizontal.
Solution Since tangent lines are horizontal at points on the graph of \(f\) where \(f^\prime (x) =0,\) we begin by finding \(f^\prime\): \[f^\prime (x) =1+\cos x\] Now we solve the equation \(f^\prime (x) =0.\) \begin{array}{rcl@{\qquad}l} f^\prime (x) &=& 1+\cos x=0 \\[0pt] \cos x &=& -1 \\[0pt] x &=& (2k+1) \pi &\hbox{where }{k}\hbox{ is an integer} \end{array}
188
The graph of \(f( x) =x+\sin x\) has a horizontal tangent line at each of the points \(( ( 2k+1) \pi , ( 2k+1) \pi )\), \(k\) an integer. See Figure 27 for the graph of \(f\) with the horizontal tangent lines marked. Notice that each of the points with a horizontal tangent line lies on the line \(y=x.\)
Problem 57.
The derivatives of the remaining four trigonometric functions are obtained using trigonometric identities and basic derivative rules. We establish the formula for the derivative of \(y=\tan x\) in Example 4. You are asked to prove formulas for the derivative of the secant function, the cosecant function, and the cotangent function in the exercises. (See Problems 76–78.)
Show that the derivative of \(y\) = tan \(x\) is \[\bbox[5px, border:1px solid black, #F9F7ED]{ y^\prime =\dfrac{d}{dx}\tan x=\sec ^{2}x} \]
Solution \[ \begin{eqnarray*} y^\prime &=&\dfrac{d}{dx}\tan x\underset{\underset{\color{#0066A7}{\hbox{Identity}}}{\color{#0066A7}{\uparrow }}}{=}\dfrac{d}{dx}\dfrac{\sin x}{\cos x}\underset{\underset{\color{#0066A7}{\hbox{Quotient Rule}}}{\color{#0066A7}{\uparrow }}}{=}\dfrac{\left[ \dfrac{d}{dx}\sin x\right] \cos x-\sin x\left[ \dfrac{d}{dx}\cos x\right] }{\cos ^{2}x} \\ &=&\dfrac{\cos x\cdot \cos x-\sin x\cdot (-\sin x)}{\cos ^{2}x}=\dfrac{\cos ^{2}x+\sin ^{2}x}{\cos ^{2}x}=\dfrac{1}{\cos ^{2}x}=\sec ^{2}x \end{eqnarray*} \]
Problem 15.
Table 4 lists the derivatives of the six trigonometric functions along with the domain of each derivative.
Derivative Function | Domain of the Derivative Function |
---|---|
\(\dfrac{d}{dx}\sin x=\cos x\) | \(( -\infty ,\infty ) \) |
\(\dfrac{d}{dx}\cos x=-\sin x\) | \(( -\infty ,\infty ) \) |
\(\dfrac{d}{dx}\tan x=\sec ^{2}x\) | \(\left\{ x|x\neq \dfrac{2k+1}{2}\pi, k\hbox{ an integer}\right\} \) |
\(\dfrac{d}{dx}\cot x=-\csc ^{2}x\) | \(\{ x|x\neq k\pi, k \hbox{ an integer}\} \) |
\(\dfrac{d}{dx}\csc x=-\csc x\cot x\) | \(\{ x|x\neq k\pi, k\hbox{ an integer}\} \) |
\(\dfrac{d}{dx}\sec x=\sec x\tan x\) | \(\left\{ x|x\neq \dfrac{2k+1}{2}\pi, k\hbox{ an integer}\right\} \) |
189
Find \(f'' \left( \dfrac{\pi }{4}\right) \) if \(f( x) =\sec x\).
If the trigonometric function begins with the letter \(c\), that is, cosine, cotangent, or cosecant, then its derivative has a minus sign.
Solution If \(f( x) =\sec x\), then \(f^\prime (x) =\sec x\tan x\) and \[ \begin{eqnarray*} f'' ( x) &=&\dfrac{d}{dx}( \sec x\tan x) \underset{\underset{\color{#0066A7}{\hbox{Use the Product Rule.}}}{{{\color{#0066A7}\uparrow }}}}= \sec x\!\left( \dfrac{d}{dx}\tan x\right) +\left( \dfrac{d}{dx}\sec x\right) \tan x \\ \\ &=&\sec x\cdot \sec ^{2}x+( \sec x\tan x) \tan x=\sec ^{3}x+\sec x\tan ^{2}x \end{eqnarray*} \]
Now, \[ \begin{eqnarray*} f'' \left( \dfrac{\pi }{4}\right) =\sec ^{3}\!\left( \dfrac{\pi }{4} \right) +\sec\! \left( \dfrac{\pi }{4}\right) \tan ^{2}\!\left( \dfrac{\pi }{4} \right) \underset{\underset{\color{#0066A7}{\hbox{sec} \dfrac{\pi }{4}=\sqrt{2};\hbox{ tan}\dfrac{\pi }{4}=1}} {{{\color{#0066A7}\uparrow }}}}= ( \sqrt{2}) ^{3}+\sqrt{2}\cdot 1^{2}=2 \sqrt{2}+\sqrt{2}=3\sqrt{2} \\ \end{eqnarray*} \]
Problem 45.
Simple harmonic motion is a repetitive motion that can be modeled by a trigonometric function. A swinging pendulum and an oscillating spring are examples of simple harmonic motion.
An object hangs on a spring, making it 2 m long in its equilibrium position. See Figure 28. If the object is pulled down 1 m and released, it will oscillate up and down. The length \(l\) of the spring after \( t\) seconds is modeled by the function \(l( t) =2+\cos t\).
Solution
190
Figure 29 shows the graphs of the length of the spring \(y=l( t)\), the velocity \(y=v( t)\), and the acceleration \(y=a( t)\).
Problem 65.