Printed Page 767
767
A vector function r=r(t) that is defined on a closed interval a≤t≤b traces out a curve as t varies over the interval. In this section, we analyze the curve geometrically by defining a tangent vector and a normal vector to the curve. We also express the arc length of a curve in terms of the unit tangent vector T.
The terms normal, perpendicular, and orthogonal all mean “meet at right angles.”
Printed Page 767
Suppose a vector function r=r(t) is defined on an interval [a,b] and is differentiable on (a,b). Then r=r(t) traces out a curve C as t varies over the interval. For a number t0, a<t0<b, there is a point P0 on C given by the vector r=r(t0). If h≠0, there is a point Q on C different from P0 given by the vector r(t0+h). The vector r(t0+h)−r(t0)h can be thought of as a secant vector in the direction from P0 to Q, as shown in Figure 8. Notice that whether h<0 or h>0, the direction of the secant vectors follows the orientation of C.
As h→0, the vector in the direction from P0 to Q moves along the curve C toward P0, getting closer and closer to the vector tangent to C at P0, as shown in Figure 9. The direction of the tangent vector follows the orientation of C. But as h→0, the vector r(t0+h)−r(t0)h approaches the derivative r′(t0). This leads to the following definition.
768
There is no tangent vector defined if \mathbf{r}^{\prime} (t_{0})=\mathbf{0}.
Suppose \mathbf{r}=\mathbf{r}(t) is a vector function defined on the interval [ a,b] and differentiable on the interval ( a,b) . Let P_{0} be the point on the curve C traced out by \mathbf{r}=\mathbf{r}(t) corresponding to t=t_{0}, a<t_{0}<b. If \mathbf{r}^{\prime} (t_{0})\neq \mathbf{0}, then the vector \mathbf{r^{\prime} }( t_{0}) is a tangent vector to the curve at t_{0}. The line containing P_{0} in the direction of \mathbf{r}^{\prime} (t_{0}) is the tangent line to the curve traced out by \mathbf{r}=\mathbf{r}(t) at t_{0}.
The angle between two nonzero vectors \mathbf{v} and \mathbf{w} is determined by \cos \theta =\dfrac{\mathbf{v}\,{\cdot}\,\mathbf{w}} {\left\Vert \mathbf{v}\right\Vert \left\Vert \mathbf{w}\right\Vert }, where 0\leq \theta \leq \pi.
Show that the acute angle between the tangent vector to the helix \mathbf{r}(t)=\cos t\mathbf{i}+\sin t\mathbf{j}+t\mathbf{k}\quad 0\,{\leq}\,t\,{\leq}\,2\pi
and the direction \mathbf{k} is \dfrac{\pi }{4} radian.
Solution A tangent vector at any point on the helix is given by \begin{equation*} \mathbf{r}^{\prime} (t)=-\sin t\mathbf{i}+\cos t\mathbf{j}+\mathbf{k} \end{equation*}
Then \left\Vert \mathbf{r}^{\prime} (t)\right\Vert\;= \sqrt{(-\sin t)^2 + \cos^2 t +1} = \sqrt{1+1} = \sqrt{2}.
The cosine of the acute angle \theta between \mathbf{r}^{\prime} (t) and \mathbf{k} is \begin{eqnarray*} &&\cos \theta =\frac{\mathbf{r}^{\prime} (t)\,{\cdot}\, \mathbf{k}}{\left\Vert \mathbf{r} ^{\prime} (t)\right\Vert \left\Vert \mathbf{k}\right\Vert }=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}\qquad \color{#0066A7}{\hbox{$\mathbf{r}^{\prime} (t)\,{\cdot}\, \mathbf{k} = 1$}}\\ \end{eqnarray*}
So, \theta =\dfrac{\pi }{4} radian. See Figure 10.
Printed Page 768
We now state the definition of a smooth curve in terms of vector functions. You may wish to compare this definition with the one given in Section 9.2, p. 647.
Let C denote a curve traced out by a vector function \mathbf{r}=\mathbf{r}(t) that is continuous for a\leq t\leq b. If the derivative \mathbf{r}^{\prime} (t) exists and is continuous on the interval ( a,b) and if \mathbf{r}^{\prime} (t) is never \mathbf{0} on ( a,b), then C is called a smooth curve.
Since \mathbf{r}^{\prime} ( t) is never \mathbf{0} for a smooth curve, such curves will have tangent vectors at every point.
The unit tangent vector and the unit normal vector are important for analyzing the geometry of a curve (Section 11.3) and for describing motion along a curve (Section 11.4).
For a smooth curve C traced out by the vector function \mathbf{r}=\mathbf{r}(t), a\leq t\leq b, the unit tangent vector \mathbf{T}(t) to C at t is \begin{equation*} \bbox[5px, border:1px solid black, #F9F7ED] {\mathbf{T}(t)=\dfrac{\mathbf{r}^{\prime} (t)}{\left\Vert \mathbf{r}^{\prime} (t)\right\Vert}} \end{equation*}
769
Show that the unit tangent vector \mathbf{T}(t) to the circle of radius R \begin{equation*} \mathbf{r}(t)=R\cos t\mathbf{i}+R\;\sin t\mathbf{j}\quad 0\leq t\leq 2\pi \end{equation*}
is everywhere orthogonal to \mathbf{r}(t). Graph \mathbf{r}=\mathbf{r}( t) and \mathbf{T}=\mathbf{T}( t).
Solution We begin by finding \mathbf{r}^{\prime} (t) and \left\Vert \mathbf{r}^{\prime} (t)\right\Vert: \begin{eqnarray*} \mathbf{r}^{\prime} (t)& =&\dfrac{d}{dt}( R\cos t) \mathbf{i}+ \dfrac{d}{dt}( R\;\sin t) \mathbf{j}=-R\;\sin t\mathbf{i}+R\cos t\mathbf{j} \\[6pt] \left\Vert \mathbf{r}^{\prime} (t)\right\Vert & =&\sqrt{(-R\;\sin t)^{2}+(R\cos t)^{2}}=R \end{eqnarray*}
Then the unit tangent vector is \begin{equation*} \mathbf{T}(t)=\frac{\mathbf{r}^{\prime} (t)}{\left\Vert \mathbf{r}^{\prime} (t)\right\Vert }=\dfrac{-R\;\sin t\mathbf{i}+R\;\cos t\mathbf{j}}{R}=-\!\sin t\mathbf{i}+\cos t\mathbf{j} \end{equation*}
To determine whether \mathbf{r}( t) is orthogonal to \mathbf{T}( t), we find their dot product. \begin{equation*} \mathbf{T}(t)\,{\cdot}\, \mathbf{r}(t)=( -\!\sin t\mathbf{i}+\cos t\mathbf{j}) \,{\cdot}\, ( R\;\cos t\mathbf{i}+R\;\sin t\mathbf{j}) =-R\;\sin t\cos t+R\;\sin t\cos t=0 \end{equation*}
for all t. That is, \mathbf{T}(t) is everywhere orthogonal to \mathbf{r}(t), as shown in Figure 11.
The following discussion leads to the definition of the principal unit normal vector.
Suppose a smooth curve C is traced out by a twice differentiable vector function \mathbf{r}=\mathbf{r}(t). Then the unit tangent vector \mathbf{T}(t) is differentiable. Also, since \mathbf{T}(t) is a unit vector, \mathbf{T}(t)\,{\cdot}\, \mathbf{T}(t)=1\quad \hbox{for all}\,t
If we differentiate this expression, we find \begin{array}{rcl@{\qquad}l} \dfrac{d}{dt}[\mathbf{T}(t)\,{\cdot}\, \mathbf{T}(t)]& =&\dfrac{d}{dt}( 1) & \color{#0066A7}{\hbox{Differentiate both sides.}} \\[12pt] \mathbf{T}^{\prime} (t)\,{\cdot}\, \mathbf{T}(t)+\mathbf{T}(t)\,{\cdot}\, \mathbf{T}^{\prime} (t) &=& 0 & \color{#0066A7}{\hbox{Use the dot product rule.}} \\[6pt] \mathbf{T}(t)\,{\cdot}\, \mathbf{T}^{\prime} (t)& =&0 & \color{#0066A7}{\hbox{Simplify.}} \end{array}
We conclude that \mathbf{T}^{\prime} (t) is a vector that is orthogonal to \mathbf{T}(t) at every point on the C. In particular, the vector \dfrac{\mathbf{T}^{\prime} (t)}{\left\Vert \mathbf{T}^{\prime} (t)\right\Vert } is a unit vector that is orthogonal to \mathbf{T}(t) at every point on the curve C.
For a smooth curve C traced out by a vector function \mathbf{r}=\mathbf{r}(t), a\leq t\leq b, that is twice differentiable for a<t<b, the principal unit normal vector \mathbf{N}(t) to C at t is \begin{equation*} \bbox[5px, border:1px solid black, #F9F7ED] {\mathbf{N}(t)=\dfrac{\mathbf{T}^{\prime} (t)}{\left\Vert \mathbf{T}^{\prime} (t)\right\Vert }} \end{equation*}
Notice that the unit normal vector \mathbf{N} is not defined if \mathbf{T^{\prime} =0.} So, for example, lines do not have well-defined unit normals.
If C is a plane curve, there are two unit vectors that are orthogonal to the unit tangent vector \mathbf{T}, as shown in Figure 12(a). If C is a curve in space, there are infinitely many unit vectors that are orthogonal to the unit tangent vector \mathbf{T}, as shown in Figure 12(b). The definition of the principal unit normal vector identifies exactly one of the orthogonal vectors and gives it a name.
770
Find the principal unit normal vector \mathbf{N}(t) to the circle \mathbf{r}( t) =R\;\cos t\mathbf{i}+R\;\sin t\mathbf{j}, 0\leq t\leq 2\pi . (Refer to Example 2.) Graph \mathbf{r}=\mathbf{r}( t), and show a unit tangent vector and a unit normal vector.
Solution From Example 2, the unit tangent vector \mathbf{T}(t) is \begin{equation*} \mathbf{T}(t)=-\!\sin t\mathbf{i}+\cos t\mathbf{j} \end{equation*}
Since \mathbf{T}^{\prime} ( t) =-\cos t\mathbf{i}-\sin t\mathbf{j}, the principal unit normal vector \mathbf{N}(t) is \begin{equation*} \mathbf{N}(t)=\frac{\mathbf{T}^{\prime} (t)}{\left\Vert \mathbf{T}^{\prime} (t)\right\Vert }=\frac{-\!\cos t\mathbf{i}-\sin t\mathbf{j}}{\sqrt{(-\!\cos t)^{2}+(-\!\sin t)^{2}}}=-\cos t\mathbf{i}-\sin t\mathbf{j} \end{equation*}
Since \mathbf{r}( t) = R ( \cos t\mathbf{i}+\sin t\mathbf{j}), the vector \mathbf{N}( t) is parallel to -\mathbf{r}(t). That is, \mathbf{N}(t) is a unit vector opposite in direction to the vector \mathbf{r}(t), so \mathbf{N} is directed toward the center of the circle, as shown in Figure 13.
Show that the principal unit normal vector \mathbf{N}(t) of the helix \begin{equation*} \mathbf{r}(t)=\cos t\mathbf{i}+\sin t\mathbf{j}+t\mathbf{k} \end{equation*}
is orthogonal to the z-axis.
Solution We begin by finding \mathbf{r^{\prime} }( t) and \left\Vert \mathbf{r}^{\prime} ( t)\right \Vert. \begin{equation*} \mathbf{r}^{\prime} (t)=-\!\sin t\mathbf{i}+\cos t\mathbf{j}+\mathbf{k}\qquad \left\Vert \mathbf{r}^{\prime }(t)\right\Vert =\sqrt{ (-\!\sin t)^{2}+(\cos t)^{2}+1}=\sqrt{2} \end{equation*}
Then the unit tangent vector is \mathbf{T}(t)=\dfrac{\mathbf{r}^{\prime }(t)}{||\mathbf{r}^{\prime }(t)||}=\dfrac{-\!\sin t\mathbf{i}+\cos t\mathbf{j}+\mathbf{k}}{\sqrt{2}}.
Since \begin{equation*} \mathbf{T}^{\prime} (t)=\dfrac{-\!\cos t\mathbf{i}-\sin t\mathbf{j}}{\sqrt{2} }\qquad \hbox{and}\qquad \left\Vert \mathbf{T}^{\prime }(t)\right\Vert =\sqrt{ \left( -\dfrac{\cos t}{\sqrt{2}}\right) ^{2}+\left( -\dfrac{\sin t}{\sqrt{2}} \right) ^{2}}=\dfrac{1}{\sqrt{2}} \end{equation*}
we have \begin{equation*} \mathbf{N}(t)=\dfrac{\mathbf{T}^{\prime} (t)}{\left\Vert \mathbf{T}^{\prime} (t)\right\Vert }=-\!\cos t\mathbf{i}-\sin t\mathbf{j} \end{equation*}
Since the direction of the z-axis is \mathbf{k}, it follows that \mathbf{N}(t)\,{\cdot}\, \mathbf{k}=0 for all t. So, \mathbf{N}(t) is always orthogonal to the z-axis, as shown in Figure 14.
Printed Page 770
A formula for the arc length of a smooth plane curve was derived in Chapter 9. The formula for the arc length of a smooth curve traced out by a vector function is given next.
If a smooth curve C is traced out by the vector function \mathbf{r}=\mathbf{r}(t), a\leq t\leq b, the arc length s along C from t=a to t=b is \begin{equation*} \bbox[5px, border:1px solid black, #F9F7ED] {s=\int_{a}^{b}\left\Vert \mathbf{r}^{\prime} (t)\right\Vert dt} \end{equation*}
771
For a smooth plane curve C, traced out by \mathbf{r}(t)=x(t)\mathbf{i}+y(t)\mathbf{j}\qquad a\leq t\leq b
we have \mathbf{r}^{\prime} (t)=\dfrac{dx}{dt}\mathbf{i}\,{+}\,\dfrac{dy}{dt}\mathbf{j}\qquad \hbox{and}\qquad \left\Vert \mathbf{r^{\prime} }( t)\right\Vert =\;\sqrt{ \left( \dfrac{dx}{dt}\right) ^{2}+\left( \dfrac{dy}{dt}\right) ^{2}}
The arc length of a smooth curve is discussed in Section 9.2, pp. 651-653.
The arc length of C from a to b is given by \begin{equation*} s=\int_{a}^{b}\sqrt{\left( \dfrac{dx}{dt}\right) ^{2}+\left( \dfrac{dy}{dt} \right) ^{2}}\,\,dt=\int_{a}^{b}\Vert \mathbf{r}^{\prime} ( t) \Vert dt \end{equation*}
For a smooth space curve C, traced out by \mathbf{r}(t)=x(t)\mathbf{i}+y(t)\mathbf{j}+z(t)\mathbf{k}\qquad a\leq t\leq b
we have \mathbf{r^{\prime} }(t)=\dfrac{dx}{dt}\mathbf{i}+\dfrac{dy}{dt}\mathbf{j}+ \dfrac{dz}{dt}\mathbf{k}\qquad \hbox{and}\qquad \left\Vert \mathbf{r^{\prime} }( t) \right\Vert =\sqrt{\left( \dfrac{dx}{dt}\right) ^{2}+\left( \dfrac{ dy}{dt}\right) ^{2}+\left( \dfrac{dz}{dt}\right) ^{2}}
The arc length of C from a to b is given by \begin{equation*} s=\int_{a}^{b}\sqrt{\left( \dfrac{dx}{dt}\right) ^{2}+\left( \dfrac{dy}{dt} \right) ^{2}+\left( \dfrac{dz}{dt}\right) ^{2}}\,\,dt=\int_{a}^{b}\left\Vert \mathbf{r}^{\prime} ( t) \right\Vert dt \end{equation*}
Find the arc length of:
(a) The circle \mathbf{r}(t)=R\;\cos t\mathbf{i}+R\;\sin t\mathbf{j} from t=0 to t=2\pi
(b) The circular helix \mathbf{r}(t)=R\;\cos t\mathbf{i}+R\;\sin t\mathbf{j}+t\mathbf{k} from t=0 to t=2\pi
Solution (a) We begin by finding \mathbf{r^{\prime} }( t) and \left\Vert \mathbf{r^{\prime} }( t) \right\Vert : \mathbf{r}^{\prime} (t)=-R\;\sin t\mathbf{i}+R\;\cos t\mathbf{j}\qquad \left\Vert \mathbf{r}^{\prime} (t)\right\Vert =\sqrt{(-R\;\sin t)^{2}+(R\;\cos t)^{2}}=R
Now we use the formula for arc length. \begin{equation*} s=\int_{a}^{b}\left\Vert \mathbf{r}^{\prime} (t)\right\Vert dt=\int_{0}^{2\pi }Rdt=\big[ R\hbox{ }t\big] _{0}^{2\pi }=2\pi R \end{equation*}
which is the familiar formula for the circumference of a circle. See Figure 15.
(b) We begin by finding \mathbf{r^{\prime} }( t) and \left\Vert \mathbf{r^{\prime} }( t) \right\Vert. \begin{eqnarray*} \mathbf{r}^{\prime} (t) &=&-R\;\sin t\mathbf{i}\,{+}\,R\;\cos t\mathbf{j}+\mathbf{k},\\[6pt] \left\Vert \mathbf{r}^{\prime} (t)\right\Vert &=& \sqrt{\!(-R\;\sin t)^{2}\,{+}\,(R\;\cos t)^{2}\,{+}\,1^{2}}\,{=}\,\sqrt{R^{2}\,{+}\,1} \end{eqnarray*}
Then \begin{equation*} ~s=\int_{a}^{b}\left\Vert \mathbf{r}^{\prime} ( t) \right\Vert dt=\int_{0}^{2\pi }\sqrt{R^{2}+1}~dt=\left[ \sqrt{R^{2}+1}\,t\right] _{0}^{2\pi }=2\pi \sqrt{R^{2}+1} \end{equation*}
See Figure 16.
For most vector functions, finding arc length requires technology.
772
Use technology to find the arc length s of the ellipse shown in Figure 17 traced out by the vector function \mathbf{r}( t) =2\cos t\mathbf{i}+3\sin t\mathbf{j} from t=0 to t=\dfrac{\pi }{2}.
Solution We begin by finding \mathbf{r^{\prime} }( t) and \left\Vert \mathbf{r^{\prime} }( t) \right\Vert . \mathbf{r}^{\prime} (t)=-2\sin t\mathbf{i}+3\cos t\mathbf{j}\qquad \left\Vert \mathbf{r}^{\prime} (t)\right\Vert =\sqrt{4\sin ^{2}t+9\cos ^{2}t}
Now we use the formula for arc length. \begin{equation*} s=\int_{a}^{b}\left\Vert \mathbf{r}^{\prime} (t)\right\Vert dt=\int_{0}^{\pi /2}\sqrt{4\sin ^{2}t+9\cos ^{2}t}\,dt \end{equation*}
This is an integral that has no antiderivative in terms of elementary functions. To obtain a numerical approximation to the arc length, we use a CAS or a graphing utility.
When entering the integral in WolframAlpha, we find \begin{equation*} \int_{0}^{\pi /2}\sqrt{4\sin ^{2}t+9\cos ^{2}t}\,dt\approx 3.96636 \end{equation*}
If we use a TI-84 to find the value of this integral, we obtain the same result. The screen shot is given in Figure 18.