Printed Page 480
When you finish this section, you should be able to:
In this section, we develop techniques to find certain trigonometric integrals. When studying these techniques, concentrate on the strategies used in the examples rather than trying to memorize the results.
Printed Page 480
Although we could use integration by parts to obtain reduction formulas for integrals of the form ∫sinnxdx or ∫cosnxdx, n≥2 an integer, these integrals also can be found using other, often easier, techniques. We consider two cases:
Suppose we want to find ∫sinnx dx when n≥3 is an odd integer. We begin by writing the integral in the form ∫sinnx dx=∫sinn−1xsinx dx
Since n is odd, (n−1) is even and we can use the identity sin2x=1−cos2x.
Then the substitution u=cosx, du=−sinx dx, leads to an integral involving integer powers of u.
481
Find ∫sin5xdx.
The method of substitution is discussed in Section 5.6, pp. 387-393.
Solution Since the exponent 5 is odd, we write ∫sin5xdx=∫sin4xsinxdx, and use the identity sin2x=1−cos2x. ∫sin5xdx=∫sin4xsinxdx=∫(sin2x)2sinxdx=∫(1−cos2x)2sinxdx=∫(1−2cos2x+cos4x)sinxdx
Now we use the substitution u=cosx. Then du=−sinxdx, and ∫sin5xdx=−∫(1−2u2+u4) du=−u+23u3−15u5+C=−cosx+23cos3x−15cos5x+C
A similar technique is used to find ∫cosnxdx, when n≥3 is an odd integer. In this case, we write ∫cosnxdx=∫cosn−1xcosxdx
and use the trigonometric identity cos2x=1−sin2x. Then we use the substitution u=sinx. For example, ∫cos3x dx=∫cos2xcosxdx=∫(1−sin2x)cosxdx=↑u=sinxdu=cosxdx∫(1−u2) du=u−u33+C=sinx−sin3x3+C
To find ∫sinnxdx or ∫cosnxdx when n≥2 is an even integer, the preceding strategy does not work. (Try it for yourself.) Instead, we use one of the identities below: sin2x=1−cos(2x)2cos2x=1+cos(2x)2
to obtain a simpler integrand.
Trigonometric identities are discussed in Appendix A.4, pp. A-32 to A-35.
Find ∫sin2xdx.
Solution Since the exponent of sinx is an even integer, we use the identity sin2x=1−cos(2x)2
Then ∫sin2xdx=12∫[1−cos(2x)]dx=12∫dx−12∫cos(2x)dx=12x+C1−12∫cosudu2u=2x,du=2dx.=12x+C1−14sin(2x)+C2
482
Since C1 and C2 are constants, we write the solution as ∫sin2xdx=12x−14sin(2x)+C
where C=C1+C2.
Usually we will just add the constant of integration at the end of the integration to avoid letting C=C1+C2.
Find the average value ˉy of the function f(x)=cos4x over the closed interval [0,π].
The average value of a function is discussed in Section 5.4, pp. 373-374.
Solution The average value ˉy of a function f over [a,b] is ˉy=1b−a∫baf(x)dx.
For f(x)=cos4x on [0,π], we have
Now
To find ∫π0cos2(2x)dx, we use the identity cos2θ=1+cos(2θ)2 again to write cos2(2x)=1+cos(4x)2. Then ∫π0cos2(2x)dx=∫π01+cos(4x)2dx=12[∫π0dx+∫π0cos(4x)dx]=12[π+∫4π0cosudu4]u=4x; du=4dx
So, from (1), ˉy=14π[π+0+π2]=38
If f is nonnegative on an interval [a,b], the average value of f over the interval [a,b] represents the height of a rectangle with width b−a whose area equals the area under the graph of f from a to b. Figure 2 shows the graph of f from Example 3 and the rectangle of height ˉy=38 and base π whose area is equal to the area under the graph of f.
Printed Page 483
483
Integrals of the form ∫sinmxcosnxdx are found using variations of previous techniques. We discuss two cases:
Find ∫sin5x√cosxdx=∫sin5xcos1/2xdx.
Solution The exponent of sinx is 5, a positive, odd integer. We factor sinx from sin5x and write ∫sin5xcos1/2xdx=∫sin4xcos1/2xsinxdx=∫(sin2x)2cos1/2xsinxdx=∫(1−cos2x)2cos1/2xsinxdx
Now we use the substitution u=cosx. ∫sin5xcos1/2xdx=∫(1−cos2x)2cos1/2xsinxdx=↑u=cosxdu=−sinx dx∫(1−u2)2u1/2(−du)=−∫(u1/2−2u5/2+u9/2)du=−23u3/2+47u7/2−211u11/2+C=u3/2[−23+47u2−211u4]+C=↑u=cosx(cosx)3/2[−23+47cos2x−211cos4x]+C
If m and n are both positive even integers in ∫sinmxcosnxdx, we use the trigonometric identity sin2x+cos2x=1 to obtain a sum of integrals, each integral involving only even powers of either sinx or cosx. For example, ∫sin2xcos4xdx=∫(1−cos2x)cos4xdx=∫cos4xdx−∫cos6xdx
The two integrals on the right are now of the form ∫cosnxdx, n a positive even integer, and we can integrate them using the techniques discussed in Examples 2 and 3.
Printed Page 483
We consider three cases involving integrals of the form ∫tanmxsecnxdx:
484
The idea is to express the integrand so that we can use either the substitution u=tanx and du=sec2xdx or the substitution u=secx and du=secxtanxdx, while leaving an even power of one of the functions. Then we use a Pythagorean identity to express the integrand in terms of only one trigonometric function.
Find ∫tan3xsec4xdx.
Solution Here, tanx is raised to the odd power 3. We factor tanx from tan3x and use the identity tan2x=sec2x−1. ∫tan3xsec4xdx=∫tan2xtanxsec4xdxFactor tan x from tan3x.=∫(sec2x−1)tanxsec4xdxtan2x=sec2x−1=∫(sec2x−1)sec3xsecxtanxdxFactor sec x from sec4x.=∫(u2−1)u3duSubstitute u=secx;du=secx tanxdx.=∫(u5−u3)du=u66−u44+C=↑u=secxsec6x6−sec4x4+C
Find ∫tan2xsec4xdx.
Solution Here, secx is raised to a positive even power. We factor sec2x from sec4x and use the identity sec2x=1+tan2x. Then ∫tan2xsec4xdx=∫tan2xsec2x⋅sec2xdxFactor sec2x from sec4x.=∫tan2x(1+tan2x)sec2xdxsec2x=1+tan2x=∫u2(1+u2)duSubstitute u=tanx;du=sec2xdx.=∫(u2+u4)du=u33+u55+C=↑u=tanxtan3x3+tan5x5+C
When the tangent function is raised to a positive even integer m and the secant function is raised to a positive odd integer n, the approach is slightly different. Rather than factoring, we begin by using the identity tan2x=sec2x−1.
485
Find ∫tan2xsecxdx.
Solution Here, tan x is raised to an even power and sec x to an odd power. We use the identity tan2x=sec2x−1 to write ∫tan2xsecxdx=∫(sec2x−1)secxdx=∫(sec3x−secx) dx=∫sec3xdx−∫secxdx
Next we integrate ∫sec3xdx by parts. Choose u=secxanddv=sec2xdxdu=secxtanxdxv=∫sec2xdx=tanx
Then ∫sec3xdx=secxtanx−∫tan2xsecxdx∫udv=uv−∫vdu=secxtanx−∫(sec2x−1)secxdxtan2x=sec2x−1=secxtanx−∫sec3xdx+∫secxdxWrite the integral as thesum of two integrals.2∫sec3xdx=secxtanx+∫secxdxAdd ∫sec3x dx to both sides.∫sec3xdx=12[secxtanx+ln|secx+tanx|]Solve for ∫sec3x dx;∫secx dx=ln|secx+tanx|.
Now we substitute this result in (2). ∫tan2xsecxdx=∫sec3xdx−∫secxdx=12[secxtanx+ln|secx+tanx|]−ln|secx+tanx|+C=12[secxtanx−ln|secx+tanx|]+C
Substituting n=3 into the reduction formula for ∫secnxdx (derived in Example 8 of Section 7.1) could also have been used to find ∫sec3xdx.
To find integrals of the form ∫cotmxcscnxdx, we use the same strategies, but with the identity csc2x=1+cot2x.
Printed Page 485
Trigonometric integrals of the form ∫sin(ax)sin(bx)dx∫sin(ax)cos(bx)dx∫cos(ax)cos(bx)dx
are integrated using the product-to-sum identities:
These identities transform the integrand into a sum of sines and/or cosines.
486
Find ∫sin(3x)sin(2x)dx.
Solution We use the product-to-sum identity 2sinAsinB=cos(A−B)−cos(A+B).
Then 2sin(3x)sin(2x)=cos(3x−2x)−cos(3x+2x)sin(3x)sin(2x)=12[cosx−cos(5x)]
Then ∫sin(3x)sin(2x)dx=12∫[cosx−cos(5x)]dx=12∫cosx dx−12∫cos(5x)dx=↑u=5xdu=5 dx12sinx−12∫cosudu5=12sinx−110sin(5x)+C