Processing math: 100%

7.2 Integrals Containing Trigonometric Functions

Printed Page 480

In this section, we develop techniques to find certain trigonometric integrals. When studying these techniques, concentrate on the strategies used in the examples rather than trying to memorize the results.

1 Find Integrals of the form sinnxdx or cosnxdx, n2 an Integer

Printed Page 480

Although we could use integration by parts to obtain reduction formulas for integrals of the form sinnxdx or cosnxdx, n2 an integer, these integrals also can be found using other, often easier, techniques. We consider two cases:

Suppose we want to find sinnx dx when n3 is an odd integer. We begin by writing the integral in the form sinnx dx=sinn1xsinx dx

Since n is odd, (n1) is even and we can use the identity sin2x=1cos2x.

Then the substitution u=cosx, du=sinx dx, leads to an integral involving integer powers of u.

481

EXAMPLE 1Finding the Integral sin5xdx

Find sin5xdx.

NEED TO REVIEW?

The method of substitution is discussed in Section 5.6, pp. 387-393.

Solution Since the exponent 5 is odd, we write sin5xdx=sin4xsinxdx, and use the identity sin2x=1cos2x. sin5xdx=sin4xsinxdx=(sin2x)2sinxdx=(1cos2x)2sinxdx=(12cos2x+cos4x)sinxdx

Now we use the substitution u=cosx. Then du=sinxdx, and sin5xdx=(12u2+u4) du=u+23u315u5+C=cosx+23cos3x15cos5x+C

A similar technique is used to find cosnxdx, when n3 is an odd integer. In this case, we write cosnxdx=cosn1xcosxdx

and use the trigonometric identity cos2x=1sin2x. Then we use the substitution u=sinx. For example, cos3x dx=cos2xcosxdx=(1sin2x)cosxdx=u=sinxdu=cosxdx(1u2) du=uu33+C=sinxsin3x3+C

NOW WORK

Problem 3.

To find sinnxdx or cosnxdx when n2 is an even integer, the preceding strategy does not work. (Try it for yourself.) Instead, we use one of the identities below: sin2x=1cos(2x)2cos2x=1+cos(2x)2

to obtain a simpler integrand.

NEED TO REVIEW?

Trigonometric identities are discussed in Appendix A.4, pp. A-32 to A-35.

EXAMPLE 2Finding the Integral sin2xdx

Find sin2xdx.

Solution Since the exponent of sinx is an even integer, we use the identity sin2x=1cos(2x)2

Then sin2xdx=12[1cos(2x)]dx=12dx12cos(2x)dx=12x+C112cosudu2u=2x,du=2dx.=12x+C114sin(2x)+C2

482

Since C1 and C2 are constants, we write the solution as sin2xdx=12x14sin(2x)+C

where C=C1+C2.

NOTE

Usually we will just add the constant of integration at the end of the integration to avoid letting C=C1+C2.

NOW WORK

Problem 5.

EXAMPLE 3Finding the Average Value of a Function

Find the average value ˉy of the function f(x)=cos4x over the closed interval [0,π].

NEED TO REVIEW?

The average value of a function is discussed in Section 5.4, pp. 373-374.

Solution The average value ˉy of a function f over [a,b] is ˉy=1babaf(x)dx.

For f(x)=cos4x on [0,π], we have

Now

To find π0cos2(2x)dx, we use the identity cos2θ=1+cos(2θ)2 again to write cos2(2x)=1+cos(4x)2. Then π0cos2(2x)dx=π01+cos(4x)2dx=12[π0dx+π0cos(4x)dx]=12[π+4π0cosudu4]u=4xdu=4dx

So, from (1), ˉy=14π[π+0+π2]=38

If f is nonnegative on an interval [a,b], the average value of f over the interval [a,b] represents the height of a rectangle with width ba whose area equals the area under the graph of f from a to b. Figure 2 shows the graph of f from Example 3 and the rectangle of height ˉy=38 and base π whose area is equal to the area under the graph of f.

NOW WORK

Problem 57.

2 Find Integrals of the Form sinmxcosnxdx

Printed Page 483

483

Integrals of the form sinmxcosnxdx are found using variations of previous techniques. We discuss two cases:

EXAMPLE 4Finding the Integral sin5xcosxdx

Find sin5xcosxdx=sin5xcos1/2xdx.

Solution The exponent of sinx is 5, a positive, odd integer. We factor sinx from sin5x and write sin5xcos1/2xdx=sin4xcos1/2xsinxdx=(sin2x)2cos1/2xsinxdx=(1cos2x)2cos1/2xsinxdx

Now we use the substitution u=cosx. sin5xcos1/2xdx=(1cos2x)2cos1/2xsinxdx=u=cosxdu=sinx dx(1u2)2u1/2(du)=(u1/22u5/2+u9/2)du=23u3/2+47u7/2211u11/2+C=u3/2[23+47u2211u4]+C=u=cosx(cosx)3/2[23+47cos2x211cos4x]+C

NOW WORK

Problem 11.

If m and n are both positive even integers in sinmxcosnxdx, we use the trigonometric identity sin2x+cos2x=1 to obtain a sum of integrals, each integral involving only even powers of either sinx or cosx. For example, sin2xcos4xdx=(1cos2x)cos4xdx=cos4xdxcos6xdx

The two integrals on the right are now of the form cosnxdx, n a positive even integer, and we can integrate them using the techniques discussed in Examples 2 and 3.

3 Find Integrals of the Form tanmx secnx dx or cotmxcscnx dx

Printed Page 483

We consider three cases involving integrals of the form tanmxsecnxdx:

484

The idea is to express the integrand so that we can use either the substitution u=tanx and du=sec2xdx or the substitution u=secx and du=secxtanxdx, while leaving an even power of one of the functions. Then we use a Pythagorean identity to express the integrand in terms of only one trigonometric function.

EXAMPLE 5Finding the Integral tan3xsec4xdx

Find tan3xsec4xdx.

Solution Here, tanx is raised to the odd power 3. We factor tanx from tan3x and use the identity tan2x=sec2x1. tan3xsec4xdx=tan2xtanxsec4xdxFactor tan x from tan3x.=(sec2x1)tanxsec4xdxtan2x=sec2x1=(sec2x1)sec3xsecxtanxdxFactor sec x from sec4x.=(u21)u3duSubstitute u=secx;du=secx tanxdx.=(u5u3)du=u66u44+C=u=secxsec6x6sec4x4+C

NOW WORK

Problem 19.

EXAMPLE 6Finding the Integral tan2xsec4xdx

Find tan2xsec4xdx.

Solution Here, secx is raised to a positive even power. We factor sec2x from sec4x and use the identity sec2x=1+tan2x. Then tan2xsec4xdx=tan2xsec2xsec2xdxFactor sec2x from sec4x.=tan2x(1+tan2x)sec2xdxsec2x=1+tan2x=u2(1+u2)duSubstitute u=tanx;du=sec2xdx.=(u2+u4)du=u33+u55+C=u=tanxtan3x3+tan5x5+C

NOW WORK

Problem 21.

When the tangent function is raised to a positive even integer m and the secant function is raised to a positive odd integer n, the approach is slightly different. Rather than factoring, we begin by using the identity tan2x=sec2x1.

485

EXAMPLE 7Finding the Integral tan2xsecxdx.

Find tan2xsecxdx.

Solution Here, tan x is raised to an even power and sec x to an odd power. We use the identity tan2x=sec2x1 to write tan2xsecxdx=(sec2x1)secxdx=(sec3xsecx) dx=sec3xdxsecxdx

Next we integrate sec3xdx by parts. Choose u=secxanddv=sec2xdxdu=secxtanxdxv=sec2xdx=tanx

Then sec3xdx=secxtanxtan2xsecxdxudv=uvvdu=secxtanx(sec2x1)secxdxtan2x=sec2x1=secxtanxsec3xdx+secxdxWrite the integral as thesum of two integrals.2sec3xdx=secxtanx+secxdxAdd sec3x dx to both sides.sec3xdx=12[secxtanx+ln|secx+tanx|]Solve for sec3x dx;secx dx=ln|secx+tanx|.

Now we substitute this result in (2). tan2xsecxdx=sec3xdxsecxdx=12[secxtanx+ln|secx+tanx|]ln|secx+tanx|+C=12[secxtanxln|secx+tanx|]+C

NOTE

Substituting n=3 into the reduction formula for secnxdx (derived in Example 8 of Section 7.1) could also have been used to find sec3xdx.

NOW WORK

Problem 23.

To find integrals of the form cotmxcscnxdx, we use the same strategies, but with the identity csc2x=1+cot2x.

4 Find Integrals of the Form sin(ax) sin(bx)dx, sin(ax)cos(bx)dx, or cos(ax)cos(bx)dx

Printed Page 485

Trigonometric integrals of the form sin(ax)sin(bx)dxsin(ax)cos(bx)dxcos(ax)cos(bx)dx

are integrated using the product-to-sum identities:

  • 2sinAsinB=cos(AB)cos(A+B)
  • 2sinAcosB=sin(A+B)+sin(AB)
  • 2cosAcosB=cos(AB)+cos(A+B)

These identities transform the integrand into a sum of sines and/or cosines.

486

EXAMPLE 8Finding the Integral sin(3x)sin(2x)dx

Find sin(3x)sin(2x)dx.

Solution We use the product-to-sum identity 2sinAsinB=cos(AB)cos(A+B).

Then 2sin(3x)sin(2x)=cos(3x2x)cos(3x+2x)sin(3x)sin(2x)=12[cosxcos(5x)]

Then sin(3x)sin(2x)dx=12[cosxcos(5x)]dx=12cosx dx12cos(5x)dx=u=5xdu=5 dx12sinx12cosudu5=12sinx110sin(5x)+C

NOW WORK

Problem 27.