Printed Page 715
When you finish this section, you should be able to:
When working with vectors there are three types of multiplication. In Sections 10.1 and 10.2, we defined the scalar multiple of a vector v as the product of a scalar and a vector. The resulting product is a vector. Now we discuss the second of the three types of multiplication, the dot product. The dot product is the product of two vectors, but the result is a scalar. In Section 10.5, we investigate the third type of multiplication, called the cross product. One important use of the dot product is to find the angle between two vectors.
If v=v1i+v2j and w=w1i+w2j are two vectors in the plane, the dot product v⋅w is defined as v⋅w=v1w1+v2w2
Similarly, if v=v1i+v2j+v3k and w=w1i+w2j+w3k are two vectors in space, the dot product v⋅w is defined as v⋅w=v1w1+v2w2+v3w3
The dot product of two vectors is not a vector. It is a scalar. The dot product is sometimes called the scalar product.
Printed Page 715
(a) If v=2i−3j and w=i+j, then v⋅w=(2)(1)+(−3)(1)=2−3=−1w⋅v=(1)(2)+(1)(−3)=2−3=−1v⋅v=22+(−3)2=4+9=13w⋅w=12+12=2
(b) If v=2i−j+k and w=4i+2j−k, then v⋅w=(2)(4)+(−1)(2)+(1)(−1)w⋅v=(4)(2)+(2)(−1)+(−1)(1)=8−2−1=5=8−2−1=5v⋅v=4+1+1=6w⋅w=16+4+1=21
716
The results from Example 1 suggest some of the properties of the dot product.
If u, v, and w are vectors and a is any scalar, then:
We prove the magnitude property \mathbf{v}\,{\cdot}\, \mathbf{v}=\left\Vert \mathbf{v} \right\Vert ^{2} and the commutative property for vectors in space. The remaining proofs are left as exercises (see Problems 78-82).
To show \mathbf{v}\,{\cdot}\, \mathbf{v}=\left\Vert \mathbf{v} \right\Vert ^{2}, we let \mathbf{v}=v_{1}\mathbf{i}+v_{2}\mathbf{j}+v_{3} \mathbf{k}. Then \begin{equation*} \mathbf{v}\,{\cdot}\, \mathbf{v} =v_{1}v_{1}+v_{2}v_{2}+v_{3}v_{3}=v_{1}^{2}+v_{2}^{2}+v_{3}^{2}=\left\Vert \mathbf{v}\right\Vert ^{2} \end{equation*}
Commutative Property: Let \mathbf{u}=u_{1}\mathbf{i}+u_{2}\mathbf{j} +u_{3}\mathbf{k} and \mathbf{v}=v_{1}\mathbf{i}+v_{2}\mathbf{j} +v_{3}\mathbf{k}. Then \mathbf{u}\,{\cdot}\, \mathbf{v} =u_{1}v_{1}+u_{2}v_{2}+u_{3}v_{3}=v_{1}u_{1}+v_{2}u_{2}+v_{3}u_{3}=\mathbf{v} \,{\cdot}\, \mathbf{u}
A consequence of the property \mathbf{v}\,{\cdot}\, \mathbf{v}=\left\Vert \mathbf{ v}\right\Vert ^{2} is that for any vector \mathbf{v}, \bbox[5px, border:1px solid black, #F9F7ED]{ \mathbf{v}\,{\cdot}\, \mathbf{v}\geq 0\quad\hbox{and}\ \quad \mathbf{v }\,{\cdot}\, \mathbf{v}=0\quad\hbox{if and only if}\quad \mathbf{v}=\mathbf{0} }
Printed Page 716
If \mathbf{v} and \mathbf{w} are two nonzero vectors, we can position \mathbf{v} and \mathbf{w} so they have the same initial point. Then the vectors \mathbf{v}, \mathbf{w}, and \mathbf{w-v} form a triangle, as shown in Figure 35. We want to find an expression for the angle \theta between the vectors \mathbf{v} and \mathbf{ w}.
Since the sides of the triangle have lengths \Vert \mathbf{v}\Vert ,\Vert \mathbf{w}\Vert , and \Vert \mathbf{w}-\mathbf{v}\Vert , we can use the Law of Cosines to find the cosine of angle \theta . \begin{equation*} \Vert \mathbf{w}-\mathbf{v}\Vert ^{2}=\Vert \mathbf{v}\Vert ^{2}+\Vert \mathbf{w}\Vert ^{2}-2\Vert \mathbf{v}\Vert \Vert \mathbf{w}\Vert \cos \theta\tag{1} \end{equation*}
Now we use properties of the dot product to write this equation in terms of dot products. Since \mathbf{v}\,{\cdot}\, \mathbf{v}=\Vert \mathbf{v}\Vert ^{2}, we can write (1) in the form \begin{equation*} (\mathbf{w}-\mathbf{v})\,{\cdot}\, (\mathbf{w}-\mathbf{v})=\mathbf{v}\,{\cdot}\, \mathbf{ v}+\mathbf{w}\,{\cdot}\, \mathbf{w}-2\Vert \mathbf{v}\Vert \Vert \mathbf{w}\Vert \cos \theta\tag{2} \end{equation*}
The Law of Cosines states that c^{2}=a^{2}+b^{2}-2ab \cos \theta, where a,b, and c , are the lengths of the sides of a triangle and \theta is the angle opposite the side of length c. The Law of the Cosines is discussed in Appendix A.4, p. A-37.
Now we use the distributive property twice on the term (\mathbf{w}-\mathbf{v })\,{\cdot}\, (\mathbf{w}-\mathbf{v}). \begin{eqnarray*} (\mathbf{w}-\mathbf{v})\,{\cdot}\, (\mathbf{w}-\mathbf{v}) &=&\mathbf{w}\,{\cdot}\, \left( \mathbf{w-v}\right) -\mathbf{v}\,{\cdot}\, ( \mathbf{w-v}) \\[3pt] &=&\mathbf{w\,{\cdot}\, w-w\,{\cdot}\, v-v\,{\cdot}\, w+v\,{\cdot}\, v} \\[3pt] &=&\mathbf{w\,{\cdot}\, w+v\,{\cdot}\, v-2}( \mathbf{v\,{\cdot}\, w}) \end{eqnarray*}
717
We substitute this result back into equation (2) and simplify. This yields \begin{eqnarray*} \mathbf{w\,{\cdot}\, w+v\,{\cdot}\, v} -2 ( \mathbf{v\,{\cdot}\, w}) & =&\mathbf{v} \,{\cdot}\, \mathbf{v}+\mathbf{w}\,{\cdot}\, \mathbf{w}-2\Vert \mathbf{v}\Vert \Vert \mathbf{w}\Vert \cos \theta \\ \mathbf{v}\,{\cdot}\, \mathbf{w}&=& \Vert \mathbf{v}\Vert \Vert \mathbf{w}\Vert \cos \theta \end{eqnarray*}
We have proved the following result.
If \mathbf{v}\,{\cdot}\, \mathbf{w} >0, the angle between \mathbf{v} and \mathbf{w} is acute. If \mathbf{v}\,{\cdot}\, \mathbf{w} \lt 0, the angle between \mathbf{v} and \mathbf{w} is obtuse.
The angle \theta , where 0\leq \theta \leq \pi, between two nonzero vectors \mathbf{v} and \mathbf{w} is given by the formula \bbox[5px, border:1px solid black, #F9F7ED]{ \cos \theta =\dfrac{\mathbf{v }\,{\cdot}\, \mathbf{w}}{\Vert \mathbf{v}\Vert \Vert \mathbf{w}\Vert } }
Find the angle between the vectors \mathbf{v}=2\mathbf{i}-\mathbf{j}+ \mathbf{k} and \mathbf{w}=- \mathbf{i}+\mathbf{j}.
Solution We find \mathbf{v}\,{\cdot}\, \mathbf{w}, \Vert \mathbf{v} \Vert , and \Vert \mathbf{w}\Vert. \begin{eqnarray*} \mathbf{v}\,{\cdot}\, \mathbf{w} &=&(2) (-1) +(-1) (1) +(1) (0) =-2-1+0=-3 \\[4pt] \Vert \mathbf{v}\Vert &=&\sqrt{2^{2}+(-1) ^{2}+1^{2}}=\sqrt{6} \\[4pt] \Vert \mathbf{w}\Vert &=&\sqrt{(-1) ^{2}+1^{2}}=\sqrt{2} \end{eqnarray*}
Then if \theta is the angle between \mathbf{v} and \mathbf{w}, \begin{equation*} \cos \theta =\dfrac{\mathbf{v}\,{\cdot}\, \mathbf{w}}{\Vert \mathbf{v}\Vert \Vert \mathbf{w}\Vert }=\dfrac{-3}{( \sqrt{6}) (\sqrt{2}) }= \dfrac{-3}{\sqrt{12}}=-\dfrac{\sqrt{3}}{2} \end{equation*}
Since 0\leq \theta \leq \pi, the angle \theta between \mathbf{v} and \mathbf{w} is \dfrac{5\pi}{6} radians. See Figure 36.
An airplane has an air speed of 400 km/h and is headed east. Find the true direction of the airplane relative to the ground if there is a northwesterly wind of 80~\text{km}/~\text{h}.
Solution This is the same situation from Example 8 of Section 10.3. There, we found the velocity of the airplane relative to the ground is \mathbf{v}_{\mathrm{g}}=( 400+40\sqrt{2}) \mathbf{i}-40\sqrt{2 }\mathbf{j}.
The angle \theta between \mathbf{v}_{\mathrm{g}} and the vector \mathbf{i} (the positive x-axis) is given by \begin{eqnarray*} \cos \theta &=&\dfrac{\mathbf{v}_{\mathrm{g}}\,{\cdot}\, \mathbf{i}}{\Vert \mathbf{v}_{\mathrm{g}}\Vert \Vert \mathbf{i}\Vert }&=&\dfrac{ 400+40\sqrt{2}}{460.06}\approx 0.9924 \\[5pt] \theta &\approx &\cos ^{-1}(0.9924) \approx 7.07^\circ \end{eqnarray*}
The true direction of the plane is approximately 7.07^\circ south of east. See Figure 37.
Two nonzero vectors are orthogonal if the angle between them is a right angle (90^\circ). Whether two nonzero vectors are parallel or orthogonal is determined by the angle \theta between the two vectors. \bbox[5px, border:1px solid black, #F9F7ED]{ \begin{array} \hbox~\text{If the angle \(\theta\) between two nonzero vectors \(\mathbf{v}\) and \(\mathbf{ w}\) is \(0\) or \(\pi\), the vectors \(\mathbf{v}\) and \(\mathbf{w}\) are parallel.} \\ \hbox{If the angle \(\theta\) between two nonzero vectors \(\mathbf{v}\) and \(\mathbf{ w}\) is \(\dfrac{\pi }{2}\), the vectors \(\mathbf{v}\) and \(\mathbf{w}\) are orthogonal.} \end{array} }
718
Two nonzero vectors \mathbf{v} and \mathbf{w} are orthogonal if and only if \bbox[5px, border:1px solid black, #F9F7ED]{ \mathbf{v}\,{\cdot}\, \mathbf{w}=0 }
Orthogonal, perpendicular, and normal are all terms that mean “meet at a right angle.” It is customary to refer to two vectors as orthogonal, two lines as perpendicular, and a line and a plane or a vector and a plane as normal.
We use the formula for the angle between two nonzero vectors, namely \cos \theta =\dfrac{\mathbf{v}\,{\cdot}\, \mathbf{w}}{\left\Vert \mathbf{v}\right\Vert \left\Vert \mathbf{w}\right\Vert }.
If the vectors \mathbf{v} and \mathbf{w} are orthogonal, then the angle \theta between \mathbf{v} and \mathbf{w} is \dfrac{\pi}{2}. Since \cos\dfrac{\pi}{2}=0, it follows that \mathbf{v}\,{\cdot}\, \mathbf{w}=0.
Conversely, if \mathbf{v}\,{\cdot}\, \mathbf{w}=0, then \mathbf{v}=\mathbf{0} or \mathbf{w}=\mathbf{0}, or \cos \theta =0. Since \mathbf{v} and \mathbf{w} are nonzero vectors, \cos \theta =0, so \theta =\dfrac{\pi }{2 } and \mathbf{v} and \mathbf{w} are orthogonal.
Printed Page 718
The vectors \mathbf{v}=2\mathbf{i}-\mathbf{j}+5\mathbf{k} and \ \mathbf{w}=3\mathbf{i}+\mathbf{j}-\mathbf{k} are orthogonal, since \mathbf{v}\,{\cdot}\, \mathbf{w}=6-1-5=0
Since \mathbf{i}\,{\cdot}\, \mathbf{j}=1\,{\cdot}\, 0+ 0\,{\cdot}\, 1=0, the standard basis vectors \mathbf{i} and \mathbf{j} in the plane are orthogonal. The standard basis vectors \mathbf{i}, \mathbf{j}, and \mathbf{k} in space are mutually orthogonal, since \mathbf{i}\,{\cdot}\, \mathbf{j}=0, \mathbf{j}\,{\cdot}\, \mathbf{k}=0, and \mathbf{k}\,{\cdot}\, \mathbf{i}=0.
Find a scalar a so that the vectors \mathbf{v}=2a\mathbf{i}+\mathbf{j}- \mathbf{k} and \mathbf{w}=\mathbf{i}-a \mathbf{j}+\mathbf{k} are orthogonal.
Solution The vectors \mathbf{v} and \mathbf{w} are orthogonal if \mathbf{v}\,{\cdot}\, \mathbf{w}=0. So, \begin{eqnarray*} \mathbf{v}\,{\cdot}\, \mathbf{w}=2a-a-1&=& 0 \\[3pt] a&=& 1 \end{eqnarray*}
The vectors \mathbf{v}=2\mathbf{i}+\mathbf{j}-\mathbf{k} and \mathbf{w}= \mathbf{i}-\mathbf{j}+\mathbf{k} are orthogonal.
Printed Page 718
A nonzero vector \mathbf{v} in space can be described by specifying its direction, given by three direction angles \alpha , \beta , \gamma , and its magnitude \left\Vert \mathbf{v}\right\Vert. The direction angles as shown in Figure 38 are defined as \begin{eqnarray*} \alpha & =&\hbox{Angle between }\mathbf{v}\hbox{ and } \mathbf{i}\hbox{, the positive \(x\)-axis}, 0\leq \alpha \leq \pi \\ \beta & =&\hbox{Angle between }\mathbf{v}\hbox{ and } \mathbf{j}\hbox{, the positive \(y\)-axis}, 0\leq \beta \leq \pi \\ \gamma & =&\hbox{Angle between }\mathbf{v}\hbox{ and } \mathbf{k}\hbox{, the positive \(z\)-axis}, 0\leq \gamma \leq \pi \end{eqnarray*}
We seek expressions for \alpha , \beta , and \gamma in terms of the components of a nonzero vector \mathbf{v}. Let \mathbf{v}=v_{1}\mathbf{i} +v_{2}\mathbf{j}+v_{3}\mathbf{k} denote a nonzero vector. The angle \alpha between \mathbf{v} and \mathbf{i}, which lies on the positive x -axis, is given by \begin{equation*} \cos \alpha =\frac{\mathbf{v}\,{\cdot}\, \mathbf{i}}{\Vert \mathbf{v}\Vert \Vert \mathbf{i}\Vert }=\frac{v_{1}}{\Vert \mathbf{v}\Vert } \end{equation*}
Similarly, \begin{equation*} \cos \beta =\dfrac{\mathbf{v\,{\cdot}\, j}}{\left\Vert \mathbf{v}\right\Vert \left\Vert \mathbf{j}\right\Vert }=\frac{v_{2}}{\Vert \mathbf{v}\Vert }\qquad\hbox{and}\qquad \cos \gamma =\dfrac{\mathbf{v\,{\cdot}\, k}}{\left\Vert \mathbf{v}\right\Vert \left\Vert \mathbf{k}\right\Vert }=\frac{v_{3}}{\Vert \mathbf{v}\Vert } \end{equation*}
719
The components of \mathbf{v} are v_{1}=\left\Vert \mathbf{v}\right\Vert \cos \alpha\qquad v_{2}=\left\Vert \mathbf{v}\right\Vert \cos \beta\qquad v_{3}=\left\Vert \mathbf{v}\right\Vert \cos \gamma
If \mathbf{v}=v_{1}\mathbf{i}+v_{2}\mathbf{j}+v_{3}\mathbf{k} is a nonzero vector in space, then \bbox[5px, border:1px solid black, #F9F7ED]{ \begin{array}{l} \cos \alpha =\dfrac{v_{1}}{\sqrt{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}}}=\dfrac{ v_{1}}{\Vert \mathbf{v}\Vert }\qquad \cos \beta =\dfrac{v_{2}}{ \sqrt{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}}}=\dfrac{v_{2}}{\Vert \mathbf{v}\Vert }\\ \cos \gamma =\dfrac{v_{3}}{\sqrt{v_{1}^{2}+v_{2}^{2}+v_{3}^{2} }}=\dfrac{v_{3}}{\Vert \mathbf{v}\Vert } \end{array} } \bbox[5px, border:1px solid black, #F9F7ED]{ \mathbf{v=}\left\Vert \mathbf{v}\right\Vert [ \cos \alpha \mathbf{i} +\cos \beta \mathbf{j}+\cos \gamma \mathbf{k}] }
This result gives the vector \mathbf{v} when its magnitude and direction are known. The numbers \cos \alpha , \cos \beta , and \cos \gamma are called the direction cosines of the vector \mathbf{v}. In Problem 62, you are asked to show that \cos ^{2} \alpha +\cos ^{2}\beta +\cos ^{2}\gamma =1. In other words, the vector \cos \alpha \mathbf{i}+\cos \beta \mathbf{j} +\cos \gamma \mathbf{k} is a unit vector.
Solution (a) The magnitude of \mathbf{v} is \begin{equation*} \Vert \mathbf{v}\Vert =\sqrt{(-3)^{2}+2^{2}+(-6)^{2}}=\sqrt{49}=7 \end{equation*}
The direction cosines of the vector \mathbf{v} are \cos \alpha =\dfrac{v_{1}}{\left\Vert \mathbf{v}\right\Vert }=\dfrac{-3}{7} \qquad \cos \beta =\dfrac{v_{2}}{\left\Vert \mathbf{v}\right\Vert }= \dfrac{2}{7} \qquad \cos \gamma =\dfrac{v_{3}}{\left\Vert \mathbf{v}\right\Vert }=\dfrac{-6}{7}
(b) Now \mathbf{v=}\left\Vert \mathbf{v}\right\Vert \left[ \cos \alpha {\bf i} + \cos \beta \mathbf{j}+\cos \gamma \mathbf{k}\right] =7\!\left( -\dfrac{3}{7}\mathbf{i}+\dfrac{2}{7}\mathbf{j}-\dfrac{6}{7}\mathbf{k }\right)\! .
Printed Page 719
In many applications, it is important to find “how much” of a vector is applied along a given direction. In Figure 39, the force \mathbf{F} due to gravity pulls the block toward the center of Earth. To study the effect of gravity on the block, it is necessary to determine how much of \mathbf{F} is actually pulling the block down the incline (\mathbf{F}_{1}) and how much is pressing the block against the incline (\mathbf{F}_{2}) at a right angle to the incline. Decomposing \mathbf{F} into \mathbf{F}_{1} and \mathbf{F}_{2} allows us to determine when friction is overcome, allowing the block to slide down the incline.
The vector \mathbf{v}_{2} orthogonal to \mathbf{w} is sometimes denoted by orth_{\bf w} {\bf v}.
Suppose \mathbf{v} and \mathbf{w} are two nonzero vectors with the same initial point P. We seek to decompose \mathbf{v} into two vectors: \mathbf{v}_{1}, parallel to \mathbf{w}, and \mathbf{v}_{2}, orthogonal to \mathbf{w}. The vector \mathbf{v}_{1} is called the vector projection of \mathbf{v} onto \mathbf{w} and is denoted by proj_{\mathbf{w}}\mathbf{v}. See Figure 40(a) and 40(b) on page 720.
We obtain the vector \mathbf{v}_{1} as follows: We drop a perpendicular from the terminal point of \mathbf{v} to the line containing \mathbf{w}. The vector \mathbf{v}_{1} is the vector from P to the intersection of the line containing \mathbf{w} and the perpendicular. Since \mathbf{v}=\mathbf{v}_{1}+\mathbf{v} _{2}, the dot product \mathbf{v}\,{\cdot}\, \mathbf{w} is \begin{eqnarray*} &&\mathbf{v}\,{\cdot}\, \mathbf{w}\underset{\underset{{\color{#0066A7}{\hbox{\(\mathbf{v=v}_{1}+\mathbf{v}_{2}\)}}}}{\color{#0066A7}{\uparrow}}}{=}(\mathbf{v}_{1}+\mathbf{v}_{2})\,{\cdot}\, \mathbf{w} \underset{\underset{{\color{#0066A7}{\hbox{Distribute}}}}{\color{#0066A7}{\uparrow}}}{=}\mathbf{v}_{1}\,{\cdot}\, \mathbf{w}+\mathbf{v }_{2}\,{\cdot}\, \mathbf{w}\tag{1} \end{eqnarray*}
720
Since \mathbf{v}_{2} is orthogonal to \mathbf{w}, the dot product \mathbf{v}_{2}\,{\cdot}\, \mathbf{w}=0. Since \mathbf{v}_{1} is parallel to \mathbf{w}, there is a scalar a for which \mathbf{v}_{1}=a\mathbf{w}. We make these substitutions in equation (1). \begin{eqnarray*} \mathbf{v}\,{\cdot}\, \mathbf{w} &=&a\,\mathbf{w}\,{\cdot}\, \mathbf{w}+0=a\Vert \mathbf{w}\Vert ^{2} \\[5pt] a &=&\frac{\mathbf{v}\,{\cdot}\, \mathbf{w}}{\Vert \mathbf{w}\Vert ^{2}} \end{eqnarray*}
Then \begin{equation*} \mathbf{v}_{1}=a\mathbf{w}=\frac{\mathbf{v}\,{\cdot}\, \mathbf{w}}{\Vert \mathbf{w} \Vert ^{2}}\,\mathbf{w} \end{equation*}
If \mathbf{v} and \mathbf{w} are two nonzero vectors, the vector projection of \mathbf{v} onto \mathbf{w} is \bbox[5px, border:1px solid black, #F9F7ED]{ \hbox{proj}_{\mathbf{w}}\mathbf{v}=\dfrac{\mathbf{v}\,{\cdot}\, \mathbf{w}}{\Vert \mathbf{w}\Vert ^{2}}\mathbf{w} }
The decomposition of \mathbf{v} into \mathbf{v}_{1} and \mathbf{v}_{2} , where \mathbf{v}_{1} is parallel to \mathbf{w} and \mathbf{v}_{2} is orthogonal to \mathbf{w}, is \bbox[5px, border:1px solid black, #F9F7ED]{ \mathbf{v}_{1}=\dfrac{\mathbf{v}\,{\cdot}\, \mathbf{w}}{\Vert \mathbf{w}\Vert ^{2}}\mathbf{w}\qquad \mathbf{v}_{2}= \mathbf{v-v}_{1} }
Find the vector projection of \mathbf{v}=2\mathbf{i}-\mathbf{j}+\mathbf{k} onto \mathbf{w}=\mathbf{i}+\mathbf{j}+\mathbf{k}. Decompose \mathbf{v} into two vectors \mathbf{v}_{1} and \mathbf{v}_{2}, where \mathbf{v} _{1} is parallel to \mathbf{w} and \mathbf{v}_{2} is orthogonal to \mathbf{w}.
Solution We use the formula for the projection of \mathbf{v} onto \mathbf{w}. \begin{eqnarray*} \mathbf{v}_{1}& =&\hbox{proj}_{\mathbf{w}}\mathbf{v}=\frac{\mathbf{v}\,{\cdot}\, \mathbf{w}}{\Vert \mathbf{w}\Vert ^{2}}\mathbf{w} \underset{\underset{\underset{{\color{#0066A7}{\hbox{\(\Vert \mathbf{w}\Vert =\sqrt{1^{2}+1^{2} +1^{2}} =\sqrt{3}\)}}}} {\color{#0066A7}{\hbox{\(\mathbf{v}\,{\cdot}\, \mathbf{w=}2-1+1=2\)}}}} {\color{#0066A7}{\uparrow }}}{=}\frac{2}{(\sqrt{3})^{2}}\mathbf{w}=\frac{2}{3}( \mathbf{i}+\mathbf{j}+\mathbf{k})=\frac{2}{3}\,\mathbf{i}+\frac{2}{3}\, \mathbf{j}+\frac{2}{3}\,\mathbf{k} \\ \mathbf{v}_{2}& =&\mathbf{v}-\mathbf{v}_{1}=(2\mathbf{i}-\mathbf{j}+\mathbf{k} )-\left( \frac{2}{3}\,\mathbf{i}+\frac{2}{3}\,\mathbf{j}+\frac{2}{3}\, \mathbf{k}\right) =\frac{4}{3}\,\mathbf{i}-\frac{5}{3}\,\mathbf{j}+\frac{1}{3 }\,\mathbf{k} \end{eqnarray*}
Printed Page 720
Work is defined as the energy transferred to or from an object by a force acting on the object.
The work W done by a constant force \mathbf{F} in moving an object from A to B along a straight line in the direction of \mathbf{F} is defined to be W=\Vert \mathbf{F}\Vert \Vert \skew5\overrightarrow{\it AB}\Vert \qquad {\color{#0066A7}{\hbox{Work \(=\) force } {\times} \hbox{ distance}}}
In this definition, it is assumed that the constant force \mathbf{F} is applied along the line of motion \skew5\overrightarrow{\it AB}, as shown in Figure 41.
If the constant force \mathbf{F} is not along the line of motion, but instead is at an angle \theta to the direction of motion, as in Figure 42, then the work W done by \mathbf{F} in moving an object from A to B is defined as the dot product. \bbox[5px, border:1px solid black, #F9F7ED]{ W=\mathbf{F}\,{\cdot}\, \skew5\overrightarrow{\it AB} }
721
This definition is compatible with the force times distance definition, since \begin{eqnarray*} W& =&(\hbox{Amount of force in the direction of }\skew5\overrightarrow{\it AB})(\hbox{ distance}) \\[4pt] & =& \Vert \hbox{proj}_{\skew5\overrightarrow{\it AB}} \mathbf{F} \Vert \Vert \skew5\overrightarrow{\it AB} \Vert = \left[ \dfrac{\mathbf{F}\,{\cdot}\, \skew5\overrightarrow{\it AB}}{ \Vert \skew5\overrightarrow{\it AB} \Vert ^{2}} \Vert \skew5\overrightarrow{\it AB} \Vert \right] \Vert \skew5\overrightarrow{\it AB} \Vert =\mathbf{F}\,{\cdot}\, \skew5\overrightarrow{\it AB} \end{eqnarray*}
Find the work done by a force of 2 newtons (N) acting in the direction \mathbf{i}+\mathbf{j}+\mathbf{k} in moving an object 1 m from (0, 0, 0) to (1, 0, 0).
Solution We need to express the force \mathbf{F} in terms of its magnitude and direction. The unit vector \mathbf{u} in the direction \mathbf{v}=\mathbf{i}+\mathbf{j}+\mathbf{k} is \mathbf{u}=\dfrac{\mathbf{v}}{\left\Vert \mathbf{v}\right\Vert }=\dfrac{ \mathbf{i}+\mathbf{j}+\mathbf{k}}{\sqrt{3}}=\dfrac{1}{\sqrt{3}}\mathbf{i}+ \dfrac{1}{\sqrt{3}}\mathbf{j}+\dfrac{1}{\sqrt{3}}\mathbf{k}
Since the force vector \mathbf{F} has magnitude 2, we have \mathbf{F}=2\left( \frac{1}{\sqrt{3}}\mathbf{i}+\dfrac{1}{\sqrt{3}}\mathbf{j} +\dfrac{1}{\sqrt{3}}\mathbf{k}\right) =\dfrac{2}{\sqrt{3}}( \mathbf{i}+ \mathbf{j}+\mathbf{k})
The line of motion of the object from ( 0,0,0) to \left( 1,0,0\right) is \skew5\overrightarrow{\it AB}=\mathbf{i}. The work W is therefore W=\mathbf{F}\,{\cdot}\, \skew5\overrightarrow{\it AB}=\frac{2}{\sqrt{3}}(\mathbf{i}+\mathbf{j }+\mathbf{k})\,{\cdot}\ \mathbf{i}=\frac{2}{\sqrt{3}}\hbox{ joules}
1 joule =1 newton\cdotmeter; 1~\text {J} =1~\text {N}\cdot\ \text{m}.
Figure 43 shows a man pushing on a lawn mower handle with a force of 30 lb. How much work is done in moving the lawn mower a distance of 75 ft if the handle makes an angle of 60^{\circ } with the ground?
Solution We set up the coordinate system so that the lawn mower is moved from (0,0) to (75,0). Then the motion occurs along \skew5\overrightarrow{\it AB}=75\,\mathbf{i}. The force vector \mathbf{F}, as shown in Figure 44, makes an angle of 300^\circ to the positive x-axis. Since \Vert \mathbf{F} \Vert = 30, \mathbf{F} is given by \begin{equation*} \mathbf{F}=30[ (\cos 300^{\circ })\mathbf{i}+(\sin 300^{\circ })\mathbf{ j}] =30\left[ \dfrac{1}{2}\mathbf{i}-\dfrac{\sqrt{3}}{2}\mathbf{j} \right] =15\mathbf{i}-15\sqrt{3}\mathbf{j} \end{equation*}
Then the work W done is W=\mathbf{F}\,{\cdot}\, \skew5\overrightarrow{\it AB}=(15\mathbf{i}-15\sqrt{3}\mathbf{j} )\,{\cdot}\, 75\mathbf{i}=1125 \hbox{ft-lb}