File | Title | Manuscript Id |
Chapter Introduction | lodish8e_ch5_1.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_1_dlap.xml | 572b8030757a2e1c31000000 |
5.1 Structure of Nucleic Acids
| lodish8e_ch5_2.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_2_dlap.xml | 572b8030757a2e1c31000000 |
A Nucleic Acid Strand Is a Linear Polymer with End-to-End Directionality
| lodish8e_ch5_3.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_3_dlap.xml | 572b8030757a2e1c31000000 |
Native DNA Is a Double Helix of Complementary Antiparallel Strands
| lodish8e_ch5_4.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_4_dlap.xml | 572b8030757a2e1c31000000 |
DNA Can Undergo Reversible Strand Separation
| lodish8e_ch5_5.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_5_dlap.xml | 572b8030757a2e1c31000000 |
Torsional Stress in DNA Is Relieved by Enzymes
| lodish8e_ch5_6.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_6_dlap.xml | 572b8030757a2e1c31000000 |
Different Types of RNA Exhibit Various Conformations Related to Their Functions
| lodish8e_ch5_7.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_7_dlap.xml | 572b8030757a2e1c31000000 |
Key Concepts of Section 5.1 | lodish8e_ch5_8.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_8_dlap.xml | 572b8030757a2e1c31000000 |
5.2 Transcription of Protein-Coding Genes and Formation of Functional mRNA
| lodish8e_ch5_9.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_9_dlap.xml | 572b8030757a2e1c31000000 |
A Template DNA Strand Is Transcribed into a Complementary RNA Chain by RNA Polymerase
| lodish8e_ch5_10.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_10_dlap.xml | 572b8030757a2e1c31000000 |
Organization of Genes Differs in Prokaryotic and Eukaryotic DNA
| lodish8e_ch5_11.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_11_dlap.xml | 572b8030757a2e1c31000000 |
Eukaryotic Precursor mRNAs Are Processed to Form Functional mRNAs
| lodish8e_ch5_12.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_12_dlap.xml | 572b8030757a2e1c31000000 |
Alternative RNA Splicing Increases the Number of Proteins Expressed from a Single Eukaryotic Gene
| lodish8e_ch5_13.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_13_dlap.xml | 572b8030757a2e1c31000000 |
Key Concepts of Section 5.2 | lodish8e_ch5_14.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_14_dlap.xml | 572b8030757a2e1c31000000 |
5.3 The Decoding of mRNA by tRNAs
| lodish8e_ch5_15.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_15_dlap.xml | 572b8030757a2e1c31000000 |
Messenger RNA Carries Information from DNA in a Three-Letter Genetic Code
| lodish8e_ch5_16.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_16_dlap.xml | 572b8030757a2e1c31000000 |
The Folded Structure of tRNA Promotes Its Decoding Functions
| lodish8e_ch5_17.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_17_dlap.xml | 572b8030757a2e1c31000000 |
Nonstandard Base Pairing Often Occurs Between Codons and Anticodons
| lodish8e_ch5_18.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_18_dlap.xml | 572b8030757a2e1c31000000 |
Amino Acids Become Activated When Covalently Linked to tRNAs
| lodish8e_ch5_19.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_19_dlap.xml | 572b8030757a2e1c31000000 |
Key Concepts of Section 5.3 | lodish8e_ch5_20.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_20_dlap.xml | 572b8030757a2e1c31000000 |
5.4 Stepwise Synthesis of Proteins on Ribosomes
| lodish8e_ch5_21.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_21_dlap.xml | 572b8030757a2e1c31000000 |
Ribosomes Are Protein-Synthesizing Machines
| lodish8e_ch5_22.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_22_dlap.xml | 572b8030757a2e1c31000000 |
Methionyl-tRNAiMet Recognizes the AUG Start Codon
| lodish8e_ch5_23.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_23_dlap.xml | 572b8030757a2e1c31000000 |
Eukaryotic Translation Initiation Usually Occurs at the First AUG Downstream from the 5′ End of an mRNA
| lodish8e_ch5_24.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_24_dlap.xml | 572b8030757a2e1c31000000 |
During Chain Elongation Each Incoming Aminoacyl-tRNA Moves Through Three Ribosomal Sites
| lodish8e_ch5_25.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_25_dlap.xml | 572b8030757a2e1c31000000 |
Translation Is Terminated by Release Factors When a Stop Codon Is Reached
| lodish8e_ch5_26.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_26_dlap.xml | 572b8030757a2e1c31000000 |
Polysomes and Rapid Ribosome Recycling Increase the Efficiency of Translation
| lodish8e_ch5_27.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_27_dlap.xml | 572b8030757a2e1c31000000 |
GTPase-Superfamily Proteins Function in Several Quality-Control Steps of Translation
| lodish8e_ch5_28.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_28_dlap.xml | 572b8030757a2e1c31000000 |
Nonsense Mutations Cause Premature Termination of Protein Synthesis
| lodish8e_ch5_29.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_29_dlap.xml | 572b8030757a2e1c31000000 |
Key Concepts of Section 5.4 | lodish8e_ch5_30.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_30_dlap.xml | 572b8030757a2e1c31000000 |
5.5 DNA Replication
| lodish8e_ch5_31.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_31_dlap.xml | 572b8030757a2e1c31000000 |
DNA Polymerases Require a Primer to Initiate Replication
| lodish8e_ch5_32.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_32_dlap.xml | 572b8030757a2e1c31000000 |
Duplex DNA Is Unwound, and Daughter Strands Are Formed at the DNA Replication Fork
| lodish8e_ch5_33.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_33_dlap.xml | 572b8030757a2e1c31000000 |
Several Proteins Participate in DNA Replication
| lodish8e_ch5_34.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_34_dlap.xml | 572b8030757a2e1c31000000 |
DNA Replication Occurs Bidirectionally from Each Origin
| lodish8e_ch5_35.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_35_dlap.xml | 572b8030757a2e1c31000000 |
Key Concepts of Section 5.5 | lodish8e_ch5_36.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_36_dlap.xml | 572b8030757a2e1c31000000 |
5.6 DNA Repair and Recombination
| lodish8e_ch5_37.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_37_dlap.xml | 572b8030757a2e1c31000000 |
DNA Polymerases Introduce Copying Errors and Also Correct Them
| lodish8e_ch5_38.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_38_dlap.xml | 572b8030757a2e1c31000000 |
Chemical and Radiation Damage to DNA Can Lead to Mutations
| lodish8e_ch5_39.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_39_dlap.xml | 572b8030757a2e1c31000000 |
High-Fidelity DNA Excision-Repair Systems Recognize and Repair Damage
| lodish8e_ch5_40.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_40_dlap.xml | 572b8030757a2e1c31000000 |
Base Excision Repairs T-G Mismatches and Damaged Bases
| lodish8e_ch5_41.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_41_dlap.xml | 572b8030757a2e1c31000000 |
Mismatch Excision Repairs Other Mismatches and Small Insertions and Deletions
| lodish8e_ch5_42.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_42_dlap.xml | 572b8030757a2e1c31000000 |
Nucleotide Excision Repairs Chemical Adducts that Distort Normal DNA Shape
| lodish8e_ch5_43.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_43_dlap.xml | 572b8030757a2e1c31000000 |
Two Systems Use Recombination to Repair Double-Strand Breaks in DNA
| lodish8e_ch5_44.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_44_dlap.xml | 572b8030757a2e1c31000000 |
Homologous Recombination Can Repair DNA Damage and Generate Genetic Diversity
| lodish8e_ch5_45.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_45_dlap.xml | 572b8030757a2e1c31000000 |
Key Concepts of Section 5.6 | lodish8e_ch5_46.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_46_dlap.xml | 572b8030757a2e1c31000000 |
5.7 Viruses: Parasites of the Cellular Genetic System
| lodish8e_ch5_47.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_47_dlap.xml | 572b8030757a2e1c31000000 |
Most Viral Host Ranges Are Narrow
| lodish8e_ch5_48.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_48_dlap.xml | 572b8030757a2e1c31000000 |
Viral Capsids Are Regular Arrays of One or a Few Types of Protein
| lodish8e_ch5_49.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_49_dlap.xml | 572b8030757a2e1c31000000 |
Viruses Can Be Cloned and Counted in Plaque Assays
| lodish8e_ch5_50.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_50_dlap.xml | 572b8030757a2e1c31000000 |
Lytic Viral Growth Cycles Lead to Death of Host Cells
| lodish8e_ch5_51.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_51_dlap.xml | 572b8030757a2e1c31000000 |
Viral DNA Is Integrated into the Host-Cell Genome in Some Nonlytic Viral Growth Cycles
| lodish8e_ch5_52.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_52_dlap.xml | 572b8030757a2e1c31000000 |
Key Concepts of Section 5.7 | lodish8e_ch5_53.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_53_dlap.xml | 572b8030757a2e1c31000000 |
Key Terms
| lodish8e_ch5_54.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_54_dlap.xml | 572b8030757a2e1c31000000 |
Review the Concepts
| lodish8e_ch5_55.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_55_dlap.xml | 572b8030757a2e1c31000000 |
Extended References
| lodish8e_ch5_56.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_56_dlap.xml | 572b8030757a2e1c31000000 |
Perspectives for the Future
| lodish8e_ch5_57.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_57_dlap.xml | 572b8030757a2e1c31000000 |