File | Title | Manuscript Id |
Chapter Introduction | lodish8e_ch12_1.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_1_dlap.xml | 572b8b9d757a2e9231000000 |
12.1 First Step of Harvesting Energy from Glucose: Glycolysis
| lodish8e_ch12_2.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_2_dlap.xml | 572b8b9d757a2e9231000000 |
During Glycolysis (Stage I), Cytosolic Enzymes Convert Glucose to Pyruvate
| lodish8e_ch12_3.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_3_dlap.xml | 572b8b9d757a2e9231000000 |
The Rate of Glycolysis Is Adjusted to Meet the Cellâs Need for ATP
| lodish8e_ch12_4.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_4_dlap.xml | 572b8b9d757a2e9231000000 |
Glucose Is Fermented When Oxygen Is Scarce
| lodish8e_ch12_5.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_5_dlap.xml | 572b8b9d757a2e9231000000 |
Key Concepts of Section 12.1 | lodish8e_ch12_6.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_6_dlap.xml | 572b8b9d757a2e9231000000 |
12.2 The Structure and Functions of Mitochondria
| lodish8e_ch12_7.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_7_dlap.xml | 572b8b9d757a2e9231000000 |
Mitochondria Are Multifunctional Organelles
| lodish8e_ch12_8.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_8_dlap.xml | 572b8b9d757a2e9231000000 |
Mitochondria Have Two Structurally and Functionally Distinct Membranes
| lodish8e_ch12_9.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_9_dlap.xml | 572b8b9d757a2e9231000000 |
Mitochondria Contain DNA Located in the Matrix
| lodish8e_ch12_10.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_10_dlap.xml | 572b8b9d757a2e9231000000 |
The Size, Structure, and Coding Capacity of mtDNA Vary Considerably Among Organisms
| lodish8e_ch12_11.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_11_dlap.xml | 572b8b9d757a2e9231000000 |
Products of Mitochondrial Genes Are Not Exported
| lodish8e_ch12_12.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_12_dlap.xml | 572b8b9d757a2e9231000000 |
Mitochondria Evolved from a Single Endosymbiotic Event Involving a Rickettsia-Like Bacterium
| lodish8e_ch12_13.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_13_dlap.xml | 572b8b9d757a2e9231000000 |
Mitochondrial Genetic Codes Differ from the Standard Nuclear Code
| lodish8e_ch12_14.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_14_dlap.xml | 572b8b9d757a2e9231000000 |
Mutations in Mitochondrial DNA Cause Several Genetic Diseases in Humans
| lodish8e_ch12_15.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_15_dlap.xml | 572b8b9d757a2e9231000000 |
Mitochondria Are Dynamic Organelles That Interact Directly with One Another
| lodish8e_ch12_16.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_16_dlap.xml | 572b8b9d757a2e9231000000 |
Mitochondria Are Influenced by Direct Contacts with the Endoplasmic Reticulum
| lodish8e_ch12_17.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_17_dlap.xml | 572b8b9d757a2e9231000000 |
Key Concepts of Section 12.2 | lodish8e_ch12_18.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_18_dlap.xml | 572b8b9d757a2e9231000000 |
12.3 The Citric Acid Cycle and Fatty Acid Oxidation
| lodish8e_ch12_19.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_19_dlap.xml | 572b8b9d757a2e9231000000 |
In the First Part of Stage II, Pyruvate Is Converted to Acetyl CoA and High-Energy Electrons
| lodish8e_ch12_20.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_20_dlap.xml | 572b8b9d757a2e9231000000 |
In the Second Part of Stage II, the Citric Acid Cycle Oxidizes the Acetyl Group in Acetyl CoA to CO2 and Generates High-Energy Electrons
| lodish8e_ch12_21.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_21_dlap.xml | 572b8b9d757a2e9231000000 |
Transporters in the Inner Mitochondrial Membrane Help Maintain Appropriate Cytosolic and Matrix Concentrations of NAD+ and NADH
| lodish8e_ch12_22.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_22_dlap.xml | 572b8b9d757a2e9231000000 |
Mitochondrial Oxidation of Fatty Acids Generates ATP
| lodish8e_ch12_23.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_23_dlap.xml | 572b8b9d757a2e9231000000 |
Peroxisomal Oxidation of Fatty Acids Generates No ATP
| lodish8e_ch12_24.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_24_dlap.xml | 572b8b9d757a2e9231000000 |
Key Concepts of Section 12.3 | lodish8e_ch12_25.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_25_dlap.xml | 572b8b9d757a2e9231000000 |
12.4 The Electron-Transport Chain and Generation of the Proton-Motive Force
| lodish8e_ch12_26.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_26_dlap.xml | 572b8b9d757a2e9231000000 |
Oxidation of NADH and FADH2 Releases a Significant Amount of Energy
| lodish8e_ch12_27.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_27_dlap.xml | 572b8b9d757a2e9231000000 |
Electron Transport in Mitochondria Is Coupled to Proton Pumping
| lodish8e_ch12_28.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_28_dlap.xml | 572b8b9d757a2e9231000000 |
Electrons Flow âDownhillâ Through a Series of Electron Carriers
| lodish8e_ch12_29.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_29_dlap.xml | 572b8b9d757a2e9231000000 |
Four Large Multiprotein Complexes Couple Electron Transport to Proton Pumping Across the Inner Mitochondrial Membrane
| lodish8e_ch12_30.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_30_dlap.xml | 572b8b9d757a2e9231000000 |
The Reduction Potentials of Electron Carriers in the Electron-Transport Chain Favor Electron Flow from NADH to O2 | lodish8e_ch12_31.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_31_dlap.xml | 572b8b9d757a2e9231000000 |
The Multiprotein Complexes of the Electron-Transport Chain Assemble into Supercomplexes
| lodish8e_ch12_32.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_32_dlap.xml | 572b8b9d757a2e9231000000 |
Reactive Oxygen Species Are By-Products of Electron Transport
| lodish8e_ch12_33.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_33_dlap.xml | 572b8b9d757a2e9231000000 |
Experiments Using Purified Electron-Transport Chain Complexes Established the Stoichiometry of Proton Pumping
| lodish8e_ch12_34.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_34_dlap.xml | 572b8b9d757a2e9231000000 |
The Proton-Motive Force in Mitochondria Is Due Largely to a Voltage Gradient Across the Inner Membrane
| lodish8e_ch12_35.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_35_dlap.xml | 572b8b9d757a2e9231000000 |
Key Concepts of Section 12.4 | lodish8e_ch12_36.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_36_dlap.xml | 572b8b9d757a2e9231000000 |
12.5 Harnessing the Proton-Motive Force to Synthesize ATP
| lodish8e_ch12_37.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_37_dlap.xml | 572b8b9d757a2e9231000000 |
The Mechanism of ATP Synthesis Is Shared Among Bacteria, Mitochondria, and Chloroplasts
| lodish8e_ch12_38.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_38_dlap.xml | 572b8b9d757a2e9231000000 |
ATP Synthase Comprises F0 and F1 Multiprotein Complexes
| lodish8e_ch12_39.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_39_dlap.xml | 572b8b9d757a2e9231000000 |
Rotation of the F1 γ Subunit, Driven by Proton Movement Through F0, Powers ATP Synthesis
| lodish8e_ch12_40.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_40_dlap.xml | 572b8b9d757a2e9231000000 |
Multiple Protons Must Pass Through ATP Synthase to Synthesize One ATP
| lodish8e_ch12_41.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_41_dlap.xml | 572b8b9d757a2e9231000000 |
F0 c Ring Rotation Is Driven by Protons Flowing Through Transmembrane Channels
| lodish8e_ch12_42.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_42_dlap.xml | 572b8b9d757a2e9231000000 |
ATP-ADP Exchange Across the Inner Mitochondrial Membrane Is Powered by the Proton-Motive Force
| lodish8e_ch12_43.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_43_dlap.xml | 572b8b9d757a2e9231000000 |
The Rate of Mitochondrial Oxidation Normally Depends on ADP Levels
| lodish8e_ch12_44.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_44_dlap.xml | 572b8b9d757a2e9231000000 |
Mitochondria in Brown Fat Use the Proton-Motive Force to Generate Heat
| lodish8e_ch12_45.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_45_dlap.xml | 572b8b9d757a2e9231000000 |
Key Concepts of Section 12.5 | lodish8e_ch12_46.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_46_dlap.xml | 572b8b9d757a2e9231000000 |
12.6 Photosynthesis and Light-Absorbing Pigments
| lodish8e_ch12_47.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_47_dlap.xml | 572b8b9d757a2e9231000000 |
Thylakoid Membranes in Chloroplasts Are the Sites of Photosynthesis in Plants
| lodish8e_ch12_48.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_48_dlap.xml | 572b8b9d757a2e9231000000 |
Chloroplasts Contain Large DNAs Often Encoding More Than a Hundred Proteins
| lodish8e_ch12_49.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_49_dlap.xml | 572b8b9d757a2e9231000000 |
Three of the Four Stages in Photosynthesis Occur Only During Illumination
| lodish8e_ch12_50.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_50_dlap.xml | 572b8b9d757a2e9231000000 |
Photosystems Comprise a Reaction Center and Associated Light-Harvesting Complexes
| lodish8e_ch12_51.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_51_dlap.xml | 572b8b9d757a2e9231000000 |
Photoelectron Transport from Energized Reaction-Center Chlorophyll a Produces a Charge Separation
| lodish8e_ch12_52.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_52_dlap.xml | 572b8b9d757a2e9231000000 |
Internal Antennas and Light-Harvesting Complexes Increase the Efficiency of Photosynthesis
| lodish8e_ch12_53.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_53_dlap.xml | 572b8b9d757a2e9231000000 |
Key Concepts of Section 12.6 | lodish8e_ch12_54.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_54_dlap.xml | 572b8b9d757a2e9231000000 |
12.7 Molecular Analysis of Photosystems
| lodish8e_ch12_55.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_55_dlap.xml | 572b8b9d757a2e9231000000 |
The Single Photosystem of Purple Bacteria Generates a Proton-Motive Force but No O2 | lodish8e_ch12_56.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_56_dlap.xml | 572b8b9d757a2e9231000000 |
Chloroplasts Contain Two Functionally and Spatially Distinct Photosystems
| lodish8e_ch12_57.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_57_dlap.xml | 572b8b9d757a2e9231000000 |
Linear Electron Flow Through Both Plant Photosystems Generates a Proton-Motive Force, O2, and NADPH
| lodish8e_ch12_58.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_58_dlap.xml | 572b8b9d757a2e9231000000 |
An Oxygen-Evolving Complex Is Located on the Luminal Surface of the PSII Reaction Center
| lodish8e_ch12_59.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_59_dlap.xml | 572b8b9d757a2e9231000000 |
Multiple Mechanisms Protect Cells Against Damage from Reactive Oxygen Species During Photoelectron Transport
| lodish8e_ch12_60.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_60_dlap.xml | 572b8b9d757a2e9231000000 |
Cyclic Electron Flow Through PSI Generates a Proton-Motive Force but No NADPH or O2 | lodish8e_ch12_61.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_61_dlap.xml | 572b8b9d757a2e9231000000 |
Relative Activities of Photosystems I and II Are Regulated
| lodish8e_ch12_62.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_62_dlap.xml | 572b8b9d757a2e9231000000 |
Key Concepts of Section 12.7 | lodish8e_ch12_63.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_63_dlap.xml | 572b8b9d757a2e9231000000 |
12.8 CO2 Metabolism During Photosynthesis
| lodish8e_ch12_64.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_64_dlap.xml | 572b8b9d757a2e9231000000 |
Rubisco Fixes CO2 in the Chloroplast Stroma
| lodish8e_ch12_65.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_65_dlap.xml | 572b8b9d757a2e9231000000 |
Synthesis of Sucrose Using Fixed CO2 Is Completed in the Cytosol
| lodish8e_ch12_66.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_66_dlap.xml | 572b8b9d757a2e9231000000 |
Light and Rubisco Activase Stimulate CO2 Fixation
| lodish8e_ch12_67.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_67_dlap.xml | 572b8b9d757a2e9231000000 |
Photorespiration Competes with Carbon Fixation and Is Reduced in C4 Plants
| lodish8e_ch12_68.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_68_dlap.xml | 572b8b9d757a2e9231000000 |
Key Concepts of Section 12.8 | lodish8e_ch12_69.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_69_dlap.xml | 572b8b9d757a2e9231000000 |
Key Terms
| lodish8e_ch12_70.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_70_dlap.xml | 572b8b9d757a2e9231000000 |
Review the Concepts
| lodish8e_ch12_71.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_71_dlap.xml | 572b8b9d757a2e9231000000 |
Extended References
| lodish8e_ch12_72.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_72_dlap.xml | 572b8b9d757a2e9231000000 |
Perspectives for the Future
| lodish8e_ch12_73.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_73_dlap.xml | 572b8b9d757a2e9231000000 |