Name | File | Manuscript |
| slater2e_ch3_1.html | 53337682757a2e180c000000 |
DLAP questions | slater2e_ch3_1_dlap.xml | 53337682757a2e180c000000 |
3-1 Astronomers of antiquity used observation and reasoning to develop astonishing advances in the study of astronomy
| slater2e_ch3_2.html | 53337682757a2e180c000000 |
DLAP questions | slater2e_ch3_2_dlap.xml | 53337682757a2e180c000000 |
3-2 Nicolaus Copernicus devised the first comprehensive Sun-centered model
| slater2e_ch3_3.html | 53337682757a2e180c000000 |
DLAP questions | slater2e_ch3_3_dlap.xml | 53337682757a2e180c000000 |
3-3 Galileoâs discoveries of moons orbiting Jupiter and the phases of Venus strongly supported a heliocentric model
| slater2e_ch3_4.html | 53337682757a2e180c000000 |
DLAP questions | slater2e_ch3_4_dlap.xml | 53337682757a2e180c000000 |
3-4 Johannes Kepler proposed that planets orbit the Sun in elliptical paths, moving fastest when closest to the Sun, with the closest planets moving at the highest speeds
| slater2e_ch3_5.html | 53337682757a2e180c000000 |
DLAP questions | slater2e_ch3_5_dlap.xml | 53337682757a2e180c000000 |
3-5 Isaac Newton formulated three laws relating force and motion to describe fundamental properties of physical reality
| slater2e_ch3_6.html | 53337682757a2e180c000000 |
DLAP questions | slater2e_ch3_6_dlap.xml | 53337682757a2e180c000000 |
3-6 Newtonâs description of gravity accounts for Keplerâs laws and explains the motions of the planets
| slater2e_ch3_7.html | 53337682757a2e180c000000 |
DLAP questions | slater2e_ch3_7_dlap.xml | 53337682757a2e180c000000 |
Key Ideas and Terms | slater2e_ch3_8.html | 53337682757a2e180c000000 |
DLAP questions | slater2e_ch3_8_dlap.xml | 53337682757a2e180c000000 |
Questions | slater2e_ch3_9.html | 53337682757a2e180c000000 |
DLAP questions | slater2e_ch3_9_dlap.xml | 53337682757a2e180c000000 |
Answers | slater2e_ch3_10.html | 53337682757a2e180c000000 |
DLAP questions | slater2e_ch3_10_dlap.xml | 53337682757a2e180c000000 |
| slater2e_ch4_1.html | 5334c4c8757a2e5901000000 |
DLAP questions | slater2e_ch4_1_dlap.xml | 5334c4c8757a2e5901000000 |
4-1 The solar system has two broad categories of planets orbiting the Sun: terrestrial (Earthlike) and Jovian (Jupiterlike)
| slater2e_ch4_2.html | 5334c4c8757a2e5901000000 |
DLAP questions | slater2e_ch4_2_dlap.xml | 5334c4c8757a2e5901000000 |
4-2 Seven large moons are almost as big as the inner, terrestrial planets
| slater2e_ch4_3.html | 5334c4c8757a2e5901000000 |
DLAP questions | slater2e_ch4_3_dlap.xml | 5334c4c8757a2e5901000000 |
4-3 Spectroscopy reveals the chemical composition of the planets
| slater2e_ch4_4.html | 5334c4c8757a2e5901000000 |
DLAP questions | slater2e_ch4_4_dlap.xml | 5334c4c8757a2e5901000000 |
4-4 Small chunks of rock and ice also orbit the Sun: asteroids, trans-Neptunian objects, and comets
| slater2e_ch4_5.html | 5334c4c8757a2e5901000000 |
DLAP questions | slater2e_ch4_5_dlap.xml | 5334c4c8757a2e5901000000 |
4-5 The Sun and planets formed from a rotating solar nebula
| slater2e_ch4_6.html | 5334c4c8757a2e5901000000 |
DLAP questions | slater2e_ch4_6_dlap.xml | 5334c4c8757a2e5901000000 |
4-6 The planets formed by countless collisions of dust, rocks, and gas in the region surrounding our young Sun
| slater2e_ch4_7.html | 5334c4c8757a2e5901000000 |
DLAP questions | slater2e_ch4_7_dlap.xml | 5334c4c8757a2e5901000000 |
4-7 Understanding how our planets formed around the Sun suggests that planets around other stars are common
| slater2e_ch4_8.html | 5334c4c8757a2e5901000000 |
DLAP questions | slater2e_ch4_8_dlap.xml | 5334c4c8757a2e5901000000 |
Key Ideas and Terms | slater2e_ch4_9.html | 5334c4c8757a2e5901000000 |
DLAP questions | slater2e_ch4_9_dlap.xml | 5334c4c8757a2e5901000000 |
Questions | slater2e_ch4_10.html | 5334c4c8757a2e5901000000 |
DLAP questions | slater2e_ch4_10_dlap.xml | 5334c4c8757a2e5901000000 |
Answers | slater2e_ch4_11.html | 5334c4c8757a2e5901000000 |
DLAP questions | slater2e_ch4_11_dlap.xml | 5334c4c8757a2e5901000000 |
| slater2e_ch1_1.html | 539229aa757a2e1c3a000000 |
DLAP questions | slater2e_ch1_1_dlap.xml | 539229aa757a2e1c3a000000 |
1-1 Astronomy is both an ancient cultural practice and a cutting-edge science
| slater2e_ch1_2.html | 539229aa757a2e1c3a000000 |
DLAP questions | slater2e_ch1_2_dlap.xml | 539229aa757a2e1c3a000000 |
1-2 The stars are grouped by constellations
| slater2e_ch1_3.html | 539229aa757a2e1c3a000000 |
DLAP questions | slater2e_ch1_3_dlap.xml | 539229aa757a2e1c3a000000 |
1-3 All of the observed celestial motions can be described if our planet earth spins once each day while it orbits around our sun each year
| slater2e_ch1_4.html | 539229aa757a2e1c3a000000 |
DLAP questions | slater2e_ch1_4_dlap.xml | 539229aa757a2e1c3a000000 |
1-4 The Sun appears to change position over the day and throughout the year, and these changes result in Earthâs seasons
| slater2e_ch1_5.html | 539229aa757a2e1c3a000000 |
DLAP questions | slater2e_ch1_5_dlap.xml | 539229aa757a2e1c3a000000 |
1-5 The Moon appears to change its position in the sky hourly and its phase throughout each month
| slater2e_ch1_6.html | 539229aa757a2e1c3a000000 |
DLAP questions | slater2e_ch1_6_dlap.xml | 539229aa757a2e1c3a000000 |
1-6 Eclipses occur only during rarely observed events when our sun, moon, and earth are perfectly aligned
| slater2e_ch1_7.html | 539229aa757a2e1c3a000000 |
DLAP questions | slater2e_ch1_7_dlap.xml | 539229aa757a2e1c3a000000 |
Key Ideas and Terms | slater2e_ch1_8.html | 539229aa757a2e1c3a000000 |
DLAP questions | slater2e_ch1_8_dlap.xml | 539229aa757a2e1c3a000000 |
Questions | slater2e_ch1_9.html | 539229aa757a2e1c3a000000 |
DLAP questions | slater2e_ch1_9_dlap.xml | 539229aa757a2e1c3a000000 |
Answers | slater2e_ch1_10.html | 539229aa757a2e1c3a000000 |
DLAP questions | slater2e_ch1_10_dlap.xml | 539229aa757a2e1c3a000000 |
| slater2e_ch2_1.html | 539229d1757a2e734500000f |
DLAP questions | slater2e_ch2_1_dlap.xml | 539229d1757a2e734500000f |
2-1 Light travels through empty space at a speed of nearly 300,000 km/s
| slater2e_ch2_2.html | 539229d1757a2e734500000f |
DLAP questions | slater2e_ch2_2_dlap.xml | 539229d1757a2e734500000f |
2-2 Glowing objects, like stars, emit an entire spectrum of light
| slater2e_ch2_3.html | 539229d1757a2e734500000f |
DLAP questions | slater2e_ch2_3_dlap.xml | 539229d1757a2e734500000f |
2-3 An objectâs temperature is revealed by the most intense wavelength of its spectrum of light
| slater2e_ch2_4.html | 539229d1757a2e734500000f |
DLAP questions | slater2e_ch2_4_dlap.xml | 539229d1757a2e734500000f |
2-4 An objectâs chemical composition is revealed by the unique pattern of its spectrum of light
| slater2e_ch2_5.html | 539229d1757a2e734500000f |
DLAP questions | slater2e_ch2_5_dlap.xml | 539229d1757a2e734500000f |
2-5 An objectâs motion through space is revealed by the precise wavelength positions of its spectrum of light
| slater2e_ch2_6.html | 539229d1757a2e734500000f |
DLAP questions | slater2e_ch2_6_dlap.xml | 539229d1757a2e734500000f |
2-6 Telescopes use lenses, mirrors, and electronics to concentrate and capture incoming light for study
| slater2e_ch2_7.html | 539229d1757a2e734500000f |
DLAP questions | slater2e_ch2_7_dlap.xml | 539229d1757a2e734500000f |
Key Ideas and Terms | slater2e_ch2_8.html | 539229d1757a2e734500000f |
DLAP questions | slater2e_ch2_8_dlap.xml | 539229d1757a2e734500000f |
Questions | slater2e_ch2_9.html | 539229d1757a2e734500000f |
DLAP questions | slater2e_ch2_9_dlap.xml | 539229d1757a2e734500000f |
Answers | slater2e_ch2_10.html | 539229d1757a2e734500000f |
DLAP questions | slater2e_ch2_10_dlap.xml | 539229d1757a2e734500000f |
| slater2e_ch5_1.html | 53922a01757a2ebb3c000006 |
DLAP questions | slater2e_ch5_1_dlap.xml | 53922a01757a2ebb3c000006 |
5-1 Most of Earthâs surface is covered with flowing water that radically changes the landscape
| slater2e_ch5_2.html | 53922a01757a2ebb3c000006 |
DLAP questions | slater2e_ch5_2_dlap.xml | 53922a01757a2ebb3c000006 |
5-2 Earth is surrounded by a thin, multilayered envelope of gas that has changed since life became prominent
| slater2e_ch5_3.html | 53922a01757a2ebb3c000006 |
DLAP questions | slater2e_ch5_3_dlap.xml | 53922a01757a2ebb3c000006 |
5-3 Volcanoes and earthquakes reveal energy from a molten interior driving Earthâs surface to shift positions
| slater2e_ch5_4.html | 53922a01757a2ebb3c000006 |
DLAP questions | slater2e_ch5_4_dlap.xml | 53922a01757a2ebb3c000006 |
5-4 Earthâs magnetic field emanating from its spinning, molten interior creates a protective shield from the Sunâs harmful radiation
| slater2e_ch5_5.html | 53922a01757a2ebb3c000006 |
DLAP questions | slater2e_ch5_5_dlap.xml | 53922a01757a2ebb3c000006 |
5-5 A rapidly growing population is altering our planetary habitat
| slater2e_ch5_6.html | 53922a01757a2ebb3c000006 |
DLAP questions | slater2e_ch5_6_dlap.xml | 53922a01757a2ebb3c000006 |
Key Ideas and Terms | slater2e_ch5_7.html | 53922a01757a2ebb3c000006 |
DLAP questions | slater2e_ch5_7_dlap.xml | 53922a01757a2ebb3c000006 |
Questions | slater2e_ch5_8.html | 53922a01757a2ebb3c000006 |
DLAP questions | slater2e_ch5_8_dlap.xml | 53922a01757a2ebb3c000006 |
Answers | slater2e_ch5_9.html | 53922a01757a2ebb3c000006 |
DLAP questions | slater2e_ch5_9_dlap.xml | 53922a01757a2ebb3c000006 |
| slater2e_ch6_1.html | 53922a15757a2e0943000007 |
DLAP questions | slater2e_ch6_1_dlap.xml | 53922a15757a2e0943000007 |
6-1 Comparing terrestrial planets and moons shows distinct similarities and dramatic differences in appearance
| slater2e_ch6_2.html | 53922a15757a2e0943000007 |
DLAP questions | slater2e_ch6_2_dlap.xml | 53922a15757a2e0943000007 |
6-2 Many terrestrial world surfaces are dominated by impact craters revealing the age of underlying processes
| slater2e_ch6_3.html | 53922a15757a2e0943000007 |
DLAP questions | slater2e_ch6_3_dlap.xml | 53922a15757a2e0943000007 |
6-3 Tectonics and volcanism influence surface features
| slater2e_ch6_4.html | 53922a15757a2e0943000007 |
DLAP questions | slater2e_ch6_4_dlap.xml | 53922a15757a2e0943000007 |
6-4 Atmospheres surrounding terrestrial planets vary considerably
| slater2e_ch6_5.html | 53922a15757a2e0943000007 |
DLAP questions | slater2e_ch6_5_dlap.xml | 53922a15757a2e0943000007 |
6-5 Evidence exists for water in locations besides Earth
| slater2e_ch6_6.html | 53922a15757a2e0943000007 |
DLAP questions | slater2e_ch6_6_dlap.xml | 53922a15757a2e0943000007 |
Key Ideas and Terms | slater2e_ch6_7.html | 53922a15757a2e0943000007 |
DLAP questions | slater2e_ch6_7_dlap.xml | 53922a15757a2e0943000007 |
Questions | slater2e_ch6_8.html | 53922a15757a2e0943000007 |
DLAP questions | slater2e_ch6_8_dlap.xml | 53922a15757a2e0943000007 |
Answers | slater2e_ch6_9.html | 53922a15757a2e0943000007 |
DLAP questions | slater2e_ch6_9_dlap.xml | 53922a15757a2e0943000007 |
| slater2e_ch7_1.html | 53922a2c757a2e786c000009 |
DLAP questions | slater2e_ch7_1_dlap.xml | 53922a2c757a2e786c000009 |
7-1 Dynamic atmospheres of Jupiter and Saturn change rapidly
| slater2e_ch7_2.html | 53922a2c757a2e786c000009 |
DLAP questions | slater2e_ch7_2_dlap.xml | 53922a2c757a2e786c000009 |
7-2 Uranus and Neptune have seemingly quiet atmospheres
| slater2e_ch7_3.html | 53922a2c757a2e786c000009 |
DLAP questions | slater2e_ch7_3_dlap.xml | 53922a2c757a2e786c000009 |
7-3 Saturnâs moon Titan and Neptuneâs moon Triton exhibit unexpected atmospheres
| slater2e_ch7_4.html | 53922a2c757a2e786c000009 |
DLAP questions | slater2e_ch7_4_dlap.xml | 53922a2c757a2e786c000009 |
7-4 All Jovian planet atmospheres are encircled by complex ring systems
| slater2e_ch7_5.html | 53922a2c757a2e786c000009 |
DLAP questions | slater2e_ch7_5_dlap.xml | 53922a2c757a2e786c000009 |
Key Ideas and Terms | slater2e_ch7_6.html | 53922a2c757a2e786c000009 |
DLAP questions | slater2e_ch7_6_dlap.xml | 53922a2c757a2e786c000009 |
Questions | slater2e_ch7_7.html | 53922a2c757a2e786c000009 |
DLAP questions | slater2e_ch7_7_dlap.xml | 53922a2c757a2e786c000009 |
Answers | slater2e_ch7_8.html | 53922a2c757a2e786c000009 |
DLAP questions | slater2e_ch7_8_dlap.xml | 53922a2c757a2e786c000009 |
| slater2e_ch8_1.html | 53922a41757a2ee66e000010 |
DLAP questions | slater2e_ch8_1_dlap.xml | 53922a41757a2ee66e000010 |
8-1 Planets and the chemical building blocks of life are found throughout space
| slater2e_ch8_2.html | 53922a41757a2ee66e000010 |
DLAP questions | slater2e_ch8_2_dlap.xml | 53922a41757a2ee66e000010 |
8-2 Europa and Mars have the potential for life to have evolved
| slater2e_ch8_3.html | 53922a41757a2ee66e000010 |
DLAP questions | slater2e_ch8_3_dlap.xml | 53922a41757a2ee66e000010 |
8-3 Meteorites from Mars have been scrutinized for life-forms
| slater2e_ch8_4.html | 53922a41757a2ee66e000010 |
DLAP questions | slater2e_ch8_4_dlap.xml | 53922a41757a2ee66e000010 |
8-4 The Drake equation helps scientists estimate how many civilizations may inhabit our Galaxy
| slater2e_ch8_5.html | 53922a41757a2ee66e000010 |
DLAP questions | slater2e_ch8_5_dlap.xml | 53922a41757a2ee66e000010 |
8-5 Searches with space-based infrared telescopes and Earth-based radio telescopes for Earthlike planets and alien civilizations are under way
| slater2e_ch8_6.html | 53922a41757a2ee66e000010 |
DLAP questions | slater2e_ch8_6_dlap.xml | 53922a41757a2ee66e000010 |
Key Ideas and Terms | slater2e_ch8_7.html | 53922a41757a2ee66e000010 |
DLAP questions | slater2e_ch8_7_dlap.xml | 53922a41757a2ee66e000010 |
Questions | slater2e_ch8_8.html | 53922a41757a2ee66e000010 |
DLAP questions | slater2e_ch8_8_dlap.xml | 53922a41757a2ee66e000010 |
Answers | slater2e_ch8_9.html | 53922a41757a2ee66e000010 |
DLAP questions | slater2e_ch8_9_dlap.xml | 53922a41757a2ee66e000010 |
| slater2e_ch9_1.html | 53922a51757a2e545d00000f |
DLAP questions | slater2e_ch9_1_dlap.xml | 53922a51757a2e545d00000f |
9-1 The Sunâs energy is generated by thermonuclear reactions in its core
| slater2e_ch9_2.html | 53922a51757a2e545d00000f |
DLAP questions | slater2e_ch9_2_dlap.xml | 53922a51757a2e545d00000f |
9-2 Energy slowly moves outward from the solar interior through several processes
| slater2e_ch9_3.html | 53922a51757a2e545d00000f |
DLAP questions | slater2e_ch9_3_dlap.xml | 53922a51757a2e545d00000f |
9-3 The Sunâs outer layers are the photosphere, chromosphere, and corona
| slater2e_ch9_4.html | 53922a51757a2e545d00000f |
DLAP questions | slater2e_ch9_4_dlap.xml | 53922a51757a2e545d00000f |
9-4 Sunspots are low-temperature regions in the photosphere
| slater2e_ch9_5.html | 53922a51757a2e545d00000f |
DLAP questions | slater2e_ch9_5_dlap.xml | 53922a51757a2e545d00000f |
9-5 The Sunâs magnetic field also produces other forms of solar activity and causes aurorae on Earth
| slater2e_ch9_6.html | 53922a51757a2e545d00000f |
DLAP questions | slater2e_ch9_6_dlap.xml | 53922a51757a2e545d00000f |
Key Ideas and Terms | slater2e_ch9_7.html | 53922a51757a2e545d00000f |
DLAP questions | slater2e_ch9_7_dlap.xml | 53922a51757a2e545d00000f |
Questions | slater2e_ch9_8.html | 53922a51757a2e545d00000f |
DLAP questions | slater2e_ch9_8_dlap.xml | 53922a51757a2e545d00000f |
Answers | slater2e_ch9_9.html | 53922a51757a2e545d00000f |
DLAP questions | slater2e_ch9_9_dlap.xml | 53922a51757a2e545d00000f |
| slater2e_ch10_1.html | 53922a64757a2e4848000002 |
DLAP questions | slater2e_ch10_1_dlap.xml | 53922a64757a2e4848000002 |
10-1 Measuring the distances to nearby stars utilizes an effect called parallax
| slater2e_ch10_2.html | 53922a64757a2e4848000002 |
DLAP questions | slater2e_ch10_2_dlap.xml | 53922a64757a2e4848000002 |
10-2 A starâs brightness can be described in terms of luminosity or magnitude
| slater2e_ch10_3.html | 53922a64757a2e4848000002 |
DLAP questions | slater2e_ch10_3_dlap.xml | 53922a64757a2e4848000002 |
10-3 A starâs distance can be determined by comparing its luminosity and brightness
| slater2e_ch10_4.html | 53922a64757a2e4848000002 |
DLAP questions | slater2e_ch10_4_dlap.xml | 53922a64757a2e4848000002 |
10-4 A starâs color depends on its surface temperature
| slater2e_ch10_5.html | 53922a64757a2e4848000002 |
DLAP questions | slater2e_ch10_5_dlap.xml | 53922a64757a2e4848000002 |
10-5 The spectra of stars reveal their chemical compositions as well as surface temperatures and sizes
| slater2e_ch10_6.html | 53922a64757a2e4848000002 |
DLAP questions | slater2e_ch10_6_dlap.xml | 53922a64757a2e4848000002 |
10-6 Stars come in a wide variety of sizes and masses
| slater2e_ch10_7.html | 53922a64757a2e4848000002 |
DLAP questions | slater2e_ch10_7_dlap.xml | 53922a64757a2e4848000002 |
10-7 Hertzsprung-Russell (H-R) diagrams reveal the different kinds of stars
| slater2e_ch10_8.html | 53922a64757a2e4848000002 |
DLAP questions | slater2e_ch10_8_dlap.xml | 53922a64757a2e4848000002 |
Key Ideas and Terms | slater2e_ch10_9.html | 53922a64757a2e4848000002 |
DLAP questions | slater2e_ch10_9_dlap.xml | 53922a64757a2e4848000002 |
Questions | slater2e_ch10_10.html | 53922a64757a2e4848000002 |
DLAP questions | slater2e_ch10_10_dlap.xml | 53922a64757a2e4848000002 |
Answers | slater2e_ch10_11.html | 53922a64757a2e4848000002 |
DLAP questions | slater2e_ch10_11_dlap.xml | 53922a64757a2e4848000002 |
| slater2e_ch11_1.html | 53922a72757a2e4848000003 |
DLAP questions | slater2e_ch11_1_dlap.xml | 53922a72757a2e4848000003 |
11-1 Stars form from the gravitational collapse of immense clouds of interstellar gas and dust
| slater2e_ch11_2.html | 53922a72757a2e4848000003 |
DLAP questions | slater2e_ch11_2_dlap.xml | 53922a72757a2e4848000003 |
11-2 Most stars shine throughout their lives by converting hydrogen into helium through nuclear fusion
| slater2e_ch11_3.html | 53922a72757a2e4848000003 |
DLAP questions | slater2e_ch11_3_dlap.xml | 53922a72757a2e4848000003 |
11-3 Careful observations of star clusters provide insight into how a starâs mass influences how stars change over time
| slater2e_ch11_4.html | 53922a72757a2e4848000003 |
DLAP questions | slater2e_ch11_4_dlap.xml | 53922a72757a2e4848000003 |
11-4 Stars slowly become red giants
| slater2e_ch11_5.html | 53922a72757a2e4848000003 |
DLAP questions | slater2e_ch11_5_dlap.xml | 53922a72757a2e4848000003 |
11-5 Low-mass stars pulsate and eject planetary nebulae, leaving behind a white dwarf at the end of their life cycles
| slater2e_ch11_6.html | 53922a72757a2e4848000003 |
DLAP questions | slater2e_ch11_6_dlap.xml | 53922a72757a2e4848000003 |
Key Ideas and Terms | slater2e_ch11_7.html | 53922a72757a2e4848000003 |
DLAP questions | slater2e_ch11_7_dlap.xml | 53922a72757a2e4848000003 |
Questions | slater2e_ch11_8.html | 53922a72757a2e4848000003 |
DLAP questions | slater2e_ch11_8_dlap.xml | 53922a72757a2e4848000003 |
Answers | slater2e_ch11_9.html | 53922a72757a2e4848000003 |
DLAP questions | slater2e_ch11_9_dlap.xml | 53922a72757a2e4848000003 |
| slater2e_ch12_1.html | 53922a9d757a2e4548000005 |
DLAP questions | slater2e_ch12_1_dlap.xml | 53922a9d757a2e4548000005 |
12-1 High-mass stars create heavy elements in their cores before violently blowing apart in supernova explosions, leaving behind remnants
| slater2e_ch12_2.html | 53922a9d757a2e4548000005 |
DLAP questions | slater2e_ch12_2_dlap.xml | 53922a9d757a2e4548000005 |
12-2 Core-collapse supernovae can leave behind remnants, neutron stars, and pulsars
| slater2e_ch12_3.html | 53922a9d757a2e4548000005 |
DLAP questions | slater2e_ch12_3_dlap.xml | 53922a9d757a2e4548000005 |
12-3 Black holes are created in the death throes of the most massive of stars
| slater2e_ch12_4.html | 53922a9d757a2e4548000005 |
DLAP questions | slater2e_ch12_4_dlap.xml | 53922a9d757a2e4548000005 |
12-4 Black holes cannot be seen directly
| slater2e_ch12_5.html | 53922a9d757a2e4548000005 |
DLAP questions | slater2e_ch12_5_dlap.xml | 53922a9d757a2e4548000005 |
12-5 White dwarfs and pulsars in close binary systems can become novae, bursters, and supernovae
| slater2e_ch12_6.html | 53922a9d757a2e4548000005 |
DLAP questions | slater2e_ch12_6_dlap.xml | 53922a9d757a2e4548000005 |
Key Ideas and Terms | slater2e_ch12_7.html | 53922a9d757a2e4548000005 |
DLAP questions | slater2e_ch12_7_dlap.xml | 53922a9d757a2e4548000005 |
Questions | slater2e_ch12_8.html | 53922a9d757a2e4548000005 |
DLAP questions | slater2e_ch12_8_dlap.xml | 53922a9d757a2e4548000005 |
Answers | slater2e_ch12_9.html | 53922a9d757a2e4548000005 |
DLAP questions | slater2e_ch12_9_dlap.xml | 53922a9d757a2e4548000005 |
| slater2e_ch13_1.html | 53922aab757a2e4548000006 |
DLAP questions | slater2e_ch13_1_dlap.xml | 53922aab757a2e4548000006 |
13-1 The Sun is located in the disk of our Galaxy, about 25,000 light-years from the galactic center
| slater2e_ch13_2.html | 53922aab757a2e4548000006 |
DLAP questions | slater2e_ch13_2_dlap.xml | 53922aab757a2e4548000006 |
13-2 Observations of different types of dust, gas, stars, and star clusters reveal the shape of our Galaxy
| slater2e_ch13_3.html | 53922aab757a2e4548000006 |
DLAP questions | slater2e_ch13_3_dlap.xml | 53922aab757a2e4548000006 |
13-3 Observations of star-forming regions reveal that our Galaxy has spiral arms
| slater2e_ch13_4.html | 53922aab757a2e4548000006 |
DLAP questions | slater2e_ch13_4_dlap.xml | 53922aab757a2e4548000006 |
13-4 Measuring the rotation of our Galaxy reveals the presence of dark matter
| slater2e_ch13_5.html | 53922aab757a2e4548000006 |
DLAP questions | slater2e_ch13_5_dlap.xml | 53922aab757a2e4548000006 |
13-5 Spiral arms are caused by density waves that sweep around our Galaxy
| slater2e_ch13_6.html | 53922aab757a2e4548000006 |
DLAP questions | slater2e_ch13_6_dlap.xml | 53922aab757a2e4548000006 |
13-6 Infrared and radio observations are used to probe the galactic nucleus
| slater2e_ch13_7.html | 53922aab757a2e4548000006 |
DLAP questions | slater2e_ch13_7_dlap.xml | 53922aab757a2e4548000006 |
Key Ideas and Terms | slater2e_ch13_8.html | 53922aab757a2e4548000006 |
DLAP questions | slater2e_ch13_8_dlap.xml | 53922aab757a2e4548000006 |
Questions | slater2e_ch13_9.html | 53922aab757a2e4548000006 |
DLAP questions | slater2e_ch13_9_dlap.xml | 53922aab757a2e4548000006 |
Answers | slater2e_ch13_10.html | 53922aab757a2e4548000006 |
DLAP questions | slater2e_ch13_10_dlap.xml | 53922aab757a2e4548000006 |
| slater2e_ch14_1.html | 53922ac3757a2e0a43000001 |
DLAP questions | slater2e_ch14_1_dlap.xml | 53922ac3757a2e0a43000001 |
14-1 When galaxies were first discovered, it was not clear that they lie far beyond the Milky Way until their variable stars were carefully observed
| slater2e_ch14_2.html | 53922ac3757a2e0a43000001 |
DLAP questions | slater2e_ch14_2_dlap.xml | 53922ac3757a2e0a43000001 |
14-2 Hubble devised a system for classifying galaxies according to their appearance
| slater2e_ch14_3.html | 53922ac3757a2e0a43000001 |
DLAP questions | slater2e_ch14_3_dlap.xml | 53922ac3757a2e0a43000001 |
14-3 Exploding stars release similar amounts of light and their distance can be inferred by measuring their apparent brightness
| slater2e_ch14_4.html | 53922ac3757a2e0a43000001 |
DLAP questions | slater2e_ch14_4_dlap.xml | 53922ac3757a2e0a43000001 |
14-4 Galaxies are found in clusters and superclusters
| slater2e_ch14_5.html | 53922ac3757a2e0a43000001 |
DLAP questions | slater2e_ch14_5_dlap.xml | 53922ac3757a2e0a43000001 |
14-5 Colliding galaxies produce starbursts, spiral arms, and other spectacular phenomena
| slater2e_ch14_6.html | 53922ac3757a2e0a43000001 |
DLAP questions | slater2e_ch14_6_dlap.xml | 53922ac3757a2e0a43000001 |
14-6 Dark matter can be inferred by observing the motions of galaxy clusters
| slater2e_ch14_7.html | 53922ac3757a2e0a43000001 |
DLAP questions | slater2e_ch14_7_dlap.xml | 53922ac3757a2e0a43000001 |
14-7 Quasars are the ultraluminous centers of the most distant galaxies
| slater2e_ch14_8.html | 53922ac3757a2e0a43000001 |
DLAP questions | slater2e_ch14_8_dlap.xml | 53922ac3757a2e0a43000001 |
14-8 Supermassive black holes may be the âcentral enginesâ that power active galaxies
| slater2e_ch14_9.html | 53922ac3757a2e0a43000001 |
DLAP questions | slater2e_ch14_9_dlap.xml | 53922ac3757a2e0a43000001 |
14-9 Galaxies may have formed from the merger of smaller objects
| slater2e_ch14_10.html | 53922ac3757a2e0a43000001 |
DLAP questions | slater2e_ch14_10_dlap.xml | 53922ac3757a2e0a43000001 |
Key Ideas and Terms | slater2e_ch14_11.html | 53922ac3757a2e0a43000001 |
DLAP questions | slater2e_ch14_11_dlap.xml | 53922ac3757a2e0a43000001 |
Questions | slater2e_ch14_12.html | 53922ac3757a2e0a43000001 |
DLAP questions | slater2e_ch14_12_dlap.xml | 53922ac3757a2e0a43000001 |
Answers | slater2e_ch14_13.html | 53922ac3757a2e0a43000001 |
DLAP questions | slater2e_ch14_13_dlap.xml | 53922ac3757a2e0a43000001 |
| slater2e_ch15_1.html | 53922ad3757a2e1c3a000001 |
DLAP questions | slater2e_ch15_1_dlap.xml | 53922ad3757a2e1c3a000001 |
15-1 The darkness of the night sky tells us about the nature of the universe
| slater2e_ch15_2.html | 53922ad3757a2e1c3a000001 |
DLAP questions | slater2e_ch15_2_dlap.xml | 53922ad3757a2e1c3a000001 |
15-2 Our observations show us that the universe is expanding
| slater2e_ch15_3.html | 53922ad3757a2e1c3a000001 |
DLAP questions | slater2e_ch15_3_dlap.xml | 53922ad3757a2e1c3a000001 |
15-3 The expanding universe emerged from a cataclysmic event called the Big Bang
| slater2e_ch15_4.html | 53922ad3757a2e1c3a000001 |
DLAP questions | slater2e_ch15_4_dlap.xml | 53922ad3757a2e1c3a000001 |
15-4 The microwave radiation that fills all space is compelling evidence of a hot Big Bang
| slater2e_ch15_5.html | 53922ad3757a2e1c3a000001 |
DLAP questions | slater2e_ch15_5_dlap.xml | 53922ad3757a2e1c3a000001 |
15-5 The universe was a rapidly expanding, hot, opaque plasma during its first 300,000 years and has slowly cooled
| slater2e_ch15_6.html | 53922ad3757a2e1c3a000001 |
DLAP questions | slater2e_ch15_6_dlap.xml | 53922ad3757a2e1c3a000001 |
15-6 The shape of the universe indicates its matter and energy content
| slater2e_ch15_7.html | 53922ad3757a2e1c3a000001 |
DLAP questions | slater2e_ch15_7_dlap.xml | 53922ad3757a2e1c3a000001 |
15-7 Observations of distant supernovae indicate that we live in an accelerating universe
| slater2e_ch15_8.html | 53922ad3757a2e1c3a000001 |
DLAP questions | slater2e_ch15_8_dlap.xml | 53922ad3757a2e1c3a000001 |
Key Ideas and Terms | slater2e_ch15_9.html | 53922ad3757a2e1c3a000001 |
DLAP questions | slater2e_ch15_9_dlap.xml | 53922ad3757a2e1c3a000001 |
Questions | slater2e_ch15_10.html | 53922ad3757a2e1c3a000001 |
DLAP questions | slater2e_ch15_10_dlap.xml | 53922ad3757a2e1c3a000001 |
Answers | slater2e_ch15_11.html | 53922ad3757a2e1c3a000001 |
DLAP questions | slater2e_ch15_11_dlap.xml | 53922ad3757a2e1c3a000001 |
| slater2e_fm1_1.html | 53922aff757a2e4848000004 |
DLAP questions | slater2e_fm1_1_dlap.xml | 53922aff757a2e4848000004 |
About the Authors | slater2e_fm1_2.html | 53922aff757a2e4848000004 |
DLAP questions | slater2e_fm1_2_dlap.xml | 53922aff757a2e4848000004 |
Brief Contents | slater2e_fm1_3.html | 53922aff757a2e4848000004 |
DLAP questions | slater2e_fm1_3_dlap.xml | 53922aff757a2e4848000004 |
Contents | slater2e_fm1_4.html | 53922aff757a2e4848000004 |
DLAP questions | slater2e_fm1_4_dlap.xml | 53922aff757a2e4848000004 |
A Letter From the Authors | slater2e_fm1_5.html | 53922aff757a2e4848000004 |
DLAP questions | slater2e_fm1_5_dlap.xml | 53922aff757a2e4848000004 |
Preface | slater2e_fm1_6.html | 53922aff757a2e4848000004 |
DLAP questions | slater2e_fm1_6_dlap.xml | 53922aff757a2e4848000004 |
Index | slater2e_index1_1.html | 53922b1a757a2eb641000004 |
DLAP questions | slater2e_index1_1_dlap.xml | 53922b1a757a2eb641000004 |
Star Charts | slater2e_sc1_1.html | 53922b31757a2e0443000002 |
DLAP questions | slater2e_sc1_1_dlap.xml | 53922b31757a2e0443000002 |
Appendix Introduction | slater2e_app1_1.html | 53922b64757a2e0943000008 |
DLAP questions | slater2e_app1_1_dlap.xml | 53922b64757a2e0943000008 |
Appendix 1: The Planets: Orbital Data | slater2e_app1_2.html | 53922b64757a2e0943000008 |
DLAP questions | slater2e_app1_2_dlap.xml | 53922b64757a2e0943000008 |
Appendix 2: The Planets: Physical Data | slater2e_app1_3.html | 53922b64757a2e0943000008 |
DLAP questions | slater2e_app1_3_dlap.xml | 53922b64757a2e0943000008 |
Appendix 3: Satellites of the Planets | slater2e_app1_4.html | 53922b64757a2e0943000008 |
DLAP questions | slater2e_app1_4_dlap.xml | 53922b64757a2e0943000008 |
Appendix 4: The Nearest Stars | slater2e_app1_5.html | 53922b64757a2e0943000008 |
DLAP questions | slater2e_app1_5_dlap.xml | 53922b64757a2e0943000008 |
Appendix 5: The Visually Brightest Stars | slater2e_app1_6.html | 53922b64757a2e0943000008 |
DLAP questions | slater2e_app1_6_dlap.xml | 53922b64757a2e0943000008 |
Appendix 6: Some Useful Mathematics | slater2e_app1_7.html | 53922b64757a2e0943000008 |
DLAP questions | slater2e_app1_7_dlap.xml | 53922b64757a2e0943000008 |
Appendix 7: Some Important Astronomical Quantities | slater2e_app1_8.html | 53922b64757a2e0943000008 |
DLAP questions | slater2e_app1_8_dlap.xml | 53922b64757a2e0943000008 |
Appendix 8: Some Important Physical Constants | slater2e_app1_9.html | 53922b64757a2e0943000008 |
DLAP questions | slater2e_app1_9_dlap.xml | 53922b64757a2e0943000008 |
Appendix 9: Powers-of-Ten Notation | slater2e_app1_10.html | 53922b64757a2e0943000008 |
DLAP questions | slater2e_app1_10_dlap.xml | 53922b64757a2e0943000008 |
Appendix 10: Jupiterâs Galilean Satellites Compared with the Moon, Mercury, and Mars | slater2e_app1_11.html | 53922b64757a2e0943000008 |
DLAP questions | slater2e_app1_11_dlap.xml | 53922b64757a2e0943000008 |