Name | File | Manuscript |
[Unknown Title] | universe10e_ch1_1.html | 53483524757a2e594f000000 |
DLAP questions | universe10e_ch1_1_dlap.xml | 53483524757a2e594f000000 |
1-1 To understand the universe, astronomers use the laws of physics to construct testable theories and models
| universe10e_ch1_2.html | 53483524757a2e594f000000 |
DLAP questions | universe10e_ch1_2_dlap.xml | 53483524757a2e594f000000 |
1-2 By exploring the planets, astronomers uncover clues about the formation of the solar system
| universe10e_ch1_3.html | 53483524757a2e594f000000 |
DLAP questions | universe10e_ch1_3_dlap.xml | 53483524757a2e594f000000 |
1-3 By studying stars and nebulae, astronomers discover how stars are born, grow old, and die
| universe10e_ch1_4.html | 53483524757a2e594f000000 |
DLAP questions | universe10e_ch1_4_dlap.xml | 53483524757a2e594f000000 |
1-4 By observing galaxies, astronomers learn about the origin and fate of the universe
| universe10e_ch1_5.html | 53483524757a2e594f000000 |
DLAP questions | universe10e_ch1_5_dlap.xml | 53483524757a2e594f000000 |
1-5 Astronomers use angles to denote the positions and apparent sizes of objects in the sky
| universe10e_ch1_6.html | 53483524757a2e594f000000 |
DLAP questions | universe10e_ch1_6_dlap.xml | 53483524757a2e594f000000 |
1-6 Powers-of-ten notation is a useful shorthand system for writing numbers
| universe10e_ch1_7.html | 53483524757a2e594f000000 |
DLAP questions | universe10e_ch1_7_dlap.xml | 53483524757a2e594f000000 |
1-7 Astronomical distances are often measured in astronomical units, light-years, or parsecs
| universe10e_ch1_8.html | 53483524757a2e594f000000 |
DLAP questions | universe10e_ch1_8_dlap.xml | 53483524757a2e594f000000 |
1-8 Astronomy is an adventure of the human mind
| universe10e_ch1_9.html | 53483524757a2e594f000000 |
DLAP questions | universe10e_ch1_9_dlap.xml | 53483524757a2e594f000000 |
Key Words | universe10e_ch1_10.html | 53483524757a2e594f000000 |
DLAP questions | universe10e_ch1_10_dlap.xml | 53483524757a2e594f000000 |
Key Ideas | universe10e_ch1_11.html | 53483524757a2e594f000000 |
DLAP questions | universe10e_ch1_11_dlap.xml | 53483524757a2e594f000000 |
Questions | universe10e_ch1_12.html | 53483524757a2e594f000000 |
DLAP questions | universe10e_ch1_12_dlap.xml | 53483524757a2e594f000000 |
Activities | universe10e_ch1_13.html | 53483524757a2e594f000000 |
DLAP questions | universe10e_ch1_13_dlap.xml | 53483524757a2e594f000000 |
Answers | universe10e_ch1_14.html | 53483524757a2e594f000000 |
DLAP questions | universe10e_ch1_14_dlap.xml | 53483524757a2e594f000000 |
Why Astronomy? | universe10e_ch1_15.html | 53483524757a2e594f000000 |
DLAP questions | universe10e_ch1_15_dlap.xml | 53483524757a2e594f000000 |
[Unknown Title] | universe10e_ch2_1.html | 53483564757a2e554f000001 |
DLAP questions | universe10e_ch2_1_dlap.xml | 53483564757a2e554f000001 |
2-1 Naked-eye astronomy had an important place in civilizations of the past
| universe10e_ch2_2.html | 53483564757a2e554f000001 |
DLAP questions | universe10e_ch2_2_dlap.xml | 53483564757a2e554f000001 |
2-2 Eighty-eight constellations cover the entire sky
| universe10e_ch2_3.html | 53483564757a2e554f000001 |
DLAP questions | universe10e_ch2_3_dlap.xml | 53483564757a2e554f000001 |
2-3 The appearance of the sky changes during the course of the night and from one night to the next
| universe10e_ch2_4.html | 53483564757a2e554f000001 |
DLAP questions | universe10e_ch2_4_dlap.xml | 53483564757a2e554f000001 |
2-4 It is convenient to imagine that the stars are located on a celestial sphere
| universe10e_ch2_5.html | 53483564757a2e554f000001 |
DLAP questions | universe10e_ch2_5_dlap.xml | 53483564757a2e554f000001 |
2-5 The seasons are caused by the tilt of Earth’s axis of rotation
| universe10e_ch2_6.html | 53483564757a2e554f000001 |
DLAP questions | universe10e_ch2_6_dlap.xml | 53483564757a2e554f000001 |
2-6 The Moon helps to cause precession, a slow, conical motion of Earth’s axis of rotation
| universe10e_ch2_7.html | 53483564757a2e554f000001 |
DLAP questions | universe10e_ch2_7_dlap.xml | 53483564757a2e554f000001 |
2-7 Positional astronomy plays an important role in keeping track of time
| universe10e_ch2_8.html | 53483564757a2e554f000001 |
DLAP questions | universe10e_ch2_8_dlap.xml | 53483564757a2e554f000001 |
2-8 Astronomical observations led to the development of the modern calendar
| universe10e_ch2_9.html | 53483564757a2e554f000001 |
DLAP questions | universe10e_ch2_9_dlap.xml | 53483564757a2e554f000001 |
Key Words | universe10e_ch2_10.html | 53483564757a2e554f000001 |
DLAP questions | universe10e_ch2_10_dlap.xml | 53483564757a2e554f000001 |
Key Ideas | universe10e_ch2_11.html | 53483564757a2e554f000001 |
DLAP questions | universe10e_ch2_11_dlap.xml | 53483564757a2e554f000001 |
Questions | universe10e_ch2_12.html | 53483564757a2e554f000001 |
DLAP questions | universe10e_ch2_12_dlap.xml | 53483564757a2e554f000001 |
Activities | universe10e_ch2_13.html | 53483564757a2e554f000001 |
DLAP questions | universe10e_ch2_13_dlap.xml | 53483564757a2e554f000001 |
Answers | universe10e_ch2_14.html | 53483564757a2e554f000001 |
DLAP questions | universe10e_ch2_14_dlap.xml | 53483564757a2e554f000001 |
Why Astrology Is Not Science | universe10e_ch2_15.html | 53483564757a2e554f000001 |
DLAP questions | universe10e_ch2_15_dlap.xml | 53483564757a2e554f000001 |
[Unknown Title] | universe10e_ch3_1.html | 52a53790757a2e5d55000000 |
DLAP questions | universe10e_ch3_1_dlap.xml | 52a53790757a2e5d55000000 |
3-1 The phases of the Moon are caused by its orbital motion
| universe10e_ch3_2.html | 52a53790757a2e5d55000000 |
DLAP questions | universe10e_ch3_2_dlap.xml | 52a53790757a2e5d55000000 |
3-2 The Moon always keeps the same face toward Earth
| universe10e_ch3_3.html | 52a53790757a2e5d55000000 |
DLAP questions | universe10e_ch3_3_dlap.xml | 52a53790757a2e5d55000000 |
3-3 Eclipses occur only when the Sun and Moon are both on the line of nodes
| universe10e_ch3_4.html | 52a53790757a2e5d55000000 |
DLAP questions | universe10e_ch3_4_dlap.xml | 52a53790757a2e5d55000000 |
3-4 The character of a lunar eclipse depends on the alignment of the Sun, Earth, and Moon
| universe10e_ch3_5.html | 52a53790757a2e5d55000000 |
DLAP questions | universe10e_ch3_5_dlap.xml | 52a53790757a2e5d55000000 |
3-5 Solar eclipses also depend on the alignment of the Sun, Earth, and Moon
| universe10e_ch3_6.html | 52a53790757a2e5d55000000 |
DLAP questions | universe10e_ch3_6_dlap.xml | 52a53790757a2e5d55000000 |
3-6 Ancient astronomers measured the size of Earth and attempted to determine distances to the Sun and Moon
| universe10e_ch3_7.html | 52a53790757a2e5d55000000 |
DLAP questions | universe10e_ch3_7_dlap.xml | 52a53790757a2e5d55000000 |
Key Words | universe10e_ch3_8.html | 52a53790757a2e5d55000000 |
DLAP questions | universe10e_ch3_8_dlap.xml | 52a53790757a2e5d55000000 |
Key Ideas | universe10e_ch3_9.html | 52a53790757a2e5d55000000 |
DLAP questions | universe10e_ch3_9_dlap.xml | 52a53790757a2e5d55000000 |
Questions | universe10e_ch3_10.html | 52a53790757a2e5d55000000 |
DLAP questions | universe10e_ch3_10_dlap.xml | 52a53790757a2e5d55000000 |
Activities | universe10e_ch3_11.html | 52a53790757a2e5d55000000 |
DLAP questions | universe10e_ch3_11_dlap.xml | 52a53790757a2e5d55000000 |
Answers | universe10e_ch3_12.html | 52a53790757a2e5d55000000 |
DLAP questions | universe10e_ch3_12_dlap.xml | 52a53790757a2e5d55000000 |
Archaeoastronomy and Ethnoastronomy | universe10e_ch3_13.html | 52a53790757a2e5d55000000 |
DLAP questions | universe10e_ch3_13_dlap.xml | 52a53790757a2e5d55000000 |
[Unknown Title] | universe10e_ch4_1.html | 5348361d757a2e0252000000 |
DLAP questions | universe10e_ch4_1_dlap.xml | 5348361d757a2e0252000000 |
4-1 Ancient astronomers invented geocentric models to explain planetary motions
| universe10e_ch4_2.html | 5348361d757a2e0252000000 |
DLAP questions | universe10e_ch4_2_dlap.xml | 5348361d757a2e0252000000 |
4-2 Nicolaus Copernicus devised the first comprehensive heliocentric model
| universe10e_ch4_3.html | 5348361d757a2e0252000000 |
DLAP questions | universe10e_ch4_3_dlap.xml | 5348361d757a2e0252000000 |
4-3 Tycho Brahe’s astronomical observations disproved ancient ideas about the heavens
| universe10e_ch4_4.html | 5348361d757a2e0252000000 |
DLAP questions | universe10e_ch4_4_dlap.xml | 5348361d757a2e0252000000 |
4-4 Johannes Kepler proposed elliptical paths for the planets about the Sun
| universe10e_ch4_5.html | 5348361d757a2e0252000000 |
DLAP questions | universe10e_ch4_5_dlap.xml | 5348361d757a2e0252000000 |
4-5 Galileo’s discoveries with a telescope strongly supported a heliocentric model
| universe10e_ch4_6.html | 5348361d757a2e0252000000 |
DLAP questions | universe10e_ch4_6_dlap.xml | 5348361d757a2e0252000000 |
4-6 Newton formulated laws of motion and gravity that describe fundamental properties of physical reality
| universe10e_ch4_7.html | 5348361d757a2e0252000000 |
DLAP questions | universe10e_ch4_7_dlap.xml | 5348361d757a2e0252000000 |
4-7 Describing orbits with energy and gravity
| universe10e_ch4_8.html | 5348361d757a2e0252000000 |
DLAP questions | universe10e_ch4_8_dlap.xml | 5348361d757a2e0252000000 |
4-8 Gravitational forces between Earth and the Moon produce tides
| universe10e_ch4_9.html | 5348361d757a2e0252000000 |
DLAP questions | universe10e_ch4_9_dlap.xml | 5348361d757a2e0252000000 |
Key Words | universe10e_ch4_10.html | 5348361d757a2e0252000000 |
DLAP questions | universe10e_ch4_10_dlap.xml | 5348361d757a2e0252000000 |
Key Ideas | universe10e_ch4_11.html | 5348361d757a2e0252000000 |
DLAP questions | universe10e_ch4_11_dlap.xml | 5348361d757a2e0252000000 |
Questions | universe10e_ch4_12.html | 5348361d757a2e0252000000 |
DLAP questions | universe10e_ch4_12_dlap.xml | 5348361d757a2e0252000000 |
Activities | universe10e_ch4_13.html | 5348361d757a2e0252000000 |
DLAP questions | universe10e_ch4_13_dlap.xml | 5348361d757a2e0252000000 |
Answers | universe10e_ch4_14.html | 5348361d757a2e0252000000 |
DLAP questions | universe10e_ch4_14_dlap.xml | 5348361d757a2e0252000000 |
[Unknown Title] | universe10e_ch5_1.html | 53486e8b757a2edf64000000 |
DLAP questions | universe10e_ch5_1_dlap.xml | 53486e8b757a2edf64000000 |
5-1 Light travels through empty space at a speed of 300,000 km/s
| universe10e_ch5_2.html | 53486e8b757a2edf64000000 |
DLAP questions | universe10e_ch5_2_dlap.xml | 53486e8b757a2edf64000000 |
5-2 Light is electromagnetic radiation and is characterized by its wavelength
| universe10e_ch5_3.html | 53486e8b757a2edf64000000 |
DLAP questions | universe10e_ch5_3_dlap.xml | 53486e8b757a2edf64000000 |
5-3 An opaque object emits electromagnetic radiation according to its temperature
| universe10e_ch5_4.html | 53486e8b757a2edf64000000 |
DLAP questions | universe10e_ch5_4_dlap.xml | 53486e8b757a2edf64000000 |
5-4 Wien’s law and the Stefan-Boltzmann law are useful tools for analyzing glowing objects like stars
| universe10e_ch5_5.html | 53486e8b757a2edf64000000 |
DLAP questions | universe10e_ch5_5_dlap.xml | 53486e8b757a2edf64000000 |
5-5 Light has properties of both waves and particles
| universe10e_ch5_6.html | 53486e8b757a2edf64000000 |
DLAP questions | universe10e_ch5_6_dlap.xml | 53486e8b757a2edf64000000 |
5-6 Each chemical element produces its own unique set of spectral lines
| universe10e_ch5_7.html | 53486e8b757a2edf64000000 |
DLAP questions | universe10e_ch5_7_dlap.xml | 53486e8b757a2edf64000000 |
5-7 An atom consists of a small, dense nucleus surrounded by electrons
| universe10e_ch5_8.html | 53486e8b757a2edf64000000 |
DLAP questions | universe10e_ch5_8_dlap.xml | 53486e8b757a2edf64000000 |
5-8 Spectral lines are produced when an electron jumps from one energy level to another within an atom
| universe10e_ch5_9.html | 53486e8b757a2edf64000000 |
DLAP questions | universe10e_ch5_9_dlap.xml | 53486e8b757a2edf64000000 |
5-9 The wavelength of a spectral line is affected by the relative motion between the source and the observer
| universe10e_ch5_10.html | 53486e8b757a2edf64000000 |
DLAP questions | universe10e_ch5_10_dlap.xml | 53486e8b757a2edf64000000 |
Key Words | universe10e_ch5_11.html | 53486e8b757a2edf64000000 |
DLAP questions | universe10e_ch5_11_dlap.xml | 53486e8b757a2edf64000000 |
Key Ideas | universe10e_ch5_12.html | 53486e8b757a2edf64000000 |
DLAP questions | universe10e_ch5_12_dlap.xml | 53486e8b757a2edf64000000 |
Questions | universe10e_ch5_13.html | 53486e8b757a2edf64000000 |
DLAP questions | universe10e_ch5_13_dlap.xml | 53486e8b757a2edf64000000 |
Activities | universe10e_ch5_14.html | 53486e8b757a2edf64000000 |
DLAP questions | universe10e_ch5_14_dlap.xml | 53486e8b757a2edf64000000 |
Answers | universe10e_ch5_15.html | 53486e8b757a2edf64000000 |
DLAP questions | universe10e_ch5_15_dlap.xml | 53486e8b757a2edf64000000 |
[Unknown Title] | universe10e_ch6_1.html | 53486f26757a2ef364000000 |
DLAP questions | universe10e_ch6_1_dlap.xml | 53486f26757a2ef364000000 |
6-1 A refracting telescope uses a lens to concentrate incoming light at a focus
| universe10e_ch6_2.html | 53486f26757a2ef364000000 |
DLAP questions | universe10e_ch6_2_dlap.xml | 53486f26757a2ef364000000 |
6-2 A reflecting telescope uses a mirror to concentrate incoming light at a focus
| universe10e_ch6_3.html | 53486f26757a2ef364000000 |
DLAP questions | universe10e_ch6_3_dlap.xml | 53486f26757a2ef364000000 |
6-3 Telescope images are degraded by the blurring effects of the atmosphere and by light pollution
| universe10e_ch6_4.html | 53486f26757a2ef364000000 |
DLAP questions | universe10e_ch6_4_dlap.xml | 53486f26757a2ef364000000 |
6-4 A charge-coupled device is commonly used to record the image at a telescope’s focus
| universe10e_ch6_5.html | 53486f26757a2ef364000000 |
DLAP questions | universe10e_ch6_5_dlap.xml | 53486f26757a2ef364000000 |
6-5 Spectrographs record the spectra of astronomical objects
| universe10e_ch6_6.html | 53486f26757a2ef364000000 |
DLAP questions | universe10e_ch6_6_dlap.xml | 53486f26757a2ef364000000 |
6-6 A radio telescope uses a large concave dish to reflect radio waves to a focus
| universe10e_ch6_7.html | 53486f26757a2ef364000000 |
DLAP questions | universe10e_ch6_7_dlap.xml | 53486f26757a2ef364000000 |
6-7 Telescopes in orbit around Earth detect radiation that does not penetrate the atmosphere
| universe10e_ch6_8.html | 53486f26757a2ef364000000 |
DLAP questions | universe10e_ch6_8_dlap.xml | 53486f26757a2ef364000000 |
Key Words | universe10e_ch6_9.html | 53486f26757a2ef364000000 |
DLAP questions | universe10e_ch6_9_dlap.xml | 53486f26757a2ef364000000 |
Key Ideas | universe10e_ch6_10.html | 53486f26757a2ef364000000 |
DLAP questions | universe10e_ch6_10_dlap.xml | 53486f26757a2ef364000000 |
Questions | universe10e_ch6_11.html | 53486f26757a2ef364000000 |
DLAP questions | universe10e_ch6_11_dlap.xml | 53486f26757a2ef364000000 |
Activities | universe10e_ch6_12.html | 53486f26757a2ef364000000 |
DLAP questions | universe10e_ch6_12_dlap.xml | 53486f26757a2ef364000000 |
Answers | universe10e_ch6_13.html | 53486f26757a2ef364000000 |
DLAP questions | universe10e_ch6_13_dlap.xml | 53486f26757a2ef364000000 |
[Unknown Title] | universe10e_ch7_1.html | 53486fcb757a2ef864000000 |
DLAP questions | universe10e_ch7_1_dlap.xml | 53486fcb757a2ef864000000 |
7-1 The solar system has two broad categories of planets: Earthlike and Jupiterlike
| universe10e_ch7_2.html | 53486fcb757a2ef864000000 |
DLAP questions | universe10e_ch7_2_dlap.xml | 53486fcb757a2ef864000000 |
7-2 Seven large satellites are almost as big as the terrestrial planets
| universe10e_ch7_3.html | 53486fcb757a2ef864000000 |
DLAP questions | universe10e_ch7_3_dlap.xml | 53486fcb757a2ef864000000 |
7-3 Spectroscopy reveals the chemical composition of the planets
| universe10e_ch7_4.html | 53486fcb757a2ef864000000 |
DLAP questions | universe10e_ch7_4_dlap.xml | 53486fcb757a2ef864000000 |
7-4 The Jovian planets are made of lighter elements than the terrestrial planets
| universe10e_ch7_5.html | 53486fcb757a2ef864000000 |
DLAP questions | universe10e_ch7_5_dlap.xml | 53486fcb757a2ef864000000 |
7-5 Small chunks of rock and ice also orbit the Sun
| universe10e_ch7_6.html | 53486fcb757a2ef864000000 |
DLAP questions | universe10e_ch7_6_dlap.xml | 53486fcb757a2ef864000000 |
7-6 Craters on planets and satellites are the result of impacts from interplanetary debris
| universe10e_ch7_7.html | 53486fcb757a2ef864000000 |
DLAP questions | universe10e_ch7_7_dlap.xml | 53486fcb757a2ef864000000 |
7-7 A planet with a magnetic field indicates a fluid interior in motion
| universe10e_ch7_8.html | 53486fcb757a2ef864000000 |
DLAP questions | universe10e_ch7_8_dlap.xml | 53486fcb757a2ef864000000 |
7-8 The diversity of the solar system is a result of its origin and evolution
| universe10e_ch7_9.html | 53486fcb757a2ef864000000 |
DLAP questions | universe10e_ch7_9_dlap.xml | 53486fcb757a2ef864000000 |
Key Words | universe10e_ch7_10.html | 53486fcb757a2ef864000000 |
DLAP questions | universe10e_ch7_10_dlap.xml | 53486fcb757a2ef864000000 |
Key Ideas | universe10e_ch7_11.html | 53486fcb757a2ef864000000 |
DLAP questions | universe10e_ch7_11_dlap.xml | 53486fcb757a2ef864000000 |
Questions | universe10e_ch7_12.html | 53486fcb757a2ef864000000 |
DLAP questions | universe10e_ch7_12_dlap.xml | 53486fcb757a2ef864000000 |
Activities | universe10e_ch7_13.html | 53486fcb757a2ef864000000 |
DLAP questions | universe10e_ch7_13_dlap.xml | 53486fcb757a2ef864000000 |
Answers | universe10e_ch7_14.html | 53486fcb757a2ef864000000 |
DLAP questions | universe10e_ch7_14_dlap.xml | 53486fcb757a2ef864000000 |
[Unknown Title] | universe10e_ch8_1.html | 53487050757a2ec764000000 |
DLAP questions | universe10e_ch8_1_dlap.xml | 53487050757a2ec764000000 |
8-1 Any model of solar system origins must explain the present-day Sun and planets
| universe10e_ch8_2.html | 53487050757a2ec764000000 |
DLAP questions | universe10e_ch8_2_dlap.xml | 53487050757a2ec764000000 |
8-2 The cosmic abundances of the chemical elements are the result of how stars evolve
| universe10e_ch8_3.html | 53487050757a2ec764000000 |
DLAP questions | universe10e_ch8_3_dlap.xml | 53487050757a2ec764000000 |
8-3 The abundances of radioactive elements reveal the solar system’s age
| universe10e_ch8_4.html | 53487050757a2ec764000000 |
DLAP questions | universe10e_ch8_4_dlap.xml | 53487050757a2ec764000000 |
8-4 The Sun and planets formed from a solar nebula
| universe10e_ch8_5.html | 53487050757a2ec764000000 |
DLAP questions | universe10e_ch8_5_dlap.xml | 53487050757a2ec764000000 |
8-5 The terrestrial planets formed by the accretion of planetesimals
| universe10e_ch8_6.html | 53487050757a2ec764000000 |
DLAP questions | universe10e_ch8_6_dlap.xml | 53487050757a2ec764000000 |
8-6 Gases in the outer solar nebula formed the Jovian planets, and planetary migration reshaped the solar system
| universe10e_ch8_7.html | 53487050757a2ec764000000 |
DLAP questions | universe10e_ch8_7_dlap.xml | 53487050757a2ec764000000 |
8-7 A variety of observational techniques reveal planets around other stars
| universe10e_ch8_8.html | 53487050757a2ec764000000 |
DLAP questions | universe10e_ch8_8_dlap.xml | 53487050757a2ec764000000 |
Key Words | universe10e_ch8_9.html | 53487050757a2ec764000000 |
DLAP questions | universe10e_ch8_9_dlap.xml | 53487050757a2ec764000000 |
Key Ideas | universe10e_ch8_10.html | 53487050757a2ec764000000 |
DLAP questions | universe10e_ch8_10_dlap.xml | 53487050757a2ec764000000 |
Questions | universe10e_ch8_11.html | 53487050757a2ec764000000 |
DLAP questions | universe10e_ch8_11_dlap.xml | 53487050757a2ec764000000 |
Activities | universe10e_ch8_12.html | 53487050757a2ec764000000 |
DLAP questions | universe10e_ch8_12_dlap.xml | 53487050757a2ec764000000 |
Answers | universe10e_ch8_13.html | 53487050757a2ec764000000 |
DLAP questions | universe10e_ch8_13_dlap.xml | 53487050757a2ec764000000 |
[Unknown Title] | universe10e_ch9_1.html | 53487547757a2e6867000000 |
DLAP questions | universe10e_ch9_1_dlap.xml | 53487547757a2e6867000000 |
9-1 Earth’s atmosphere, oceans, and surface are extraordinarily active
| universe10e_ch9_2.html | 53487547757a2e6867000000 |
DLAP questions | universe10e_ch9_2_dlap.xml | 53487547757a2e6867000000 |
9-2 Studies of earthquakes reveal Earth’s layered interior structure
| universe10e_ch9_3.html | 53487547757a2e6867000000 |
DLAP questions | universe10e_ch9_3_dlap.xml | 53487547757a2e6867000000 |
9-3 Plate movement produces earthquakes, mountain ranges, and volcanoes that shape Earth’s surface
| universe10e_ch9_4.html | 53487547757a2e6867000000 |
DLAP questions | universe10e_ch9_4_dlap.xml | 53487547757a2e6867000000 |
9-4 Earth’s magnetic field produces a magnetosphere and reverses direction
| universe10e_ch9_5.html | 53487547757a2e6867000000 |
DLAP questions | universe10e_ch9_5_dlap.xml | 53487547757a2e6867000000 |
9-5 Earth’s atmosphere has changed substantially over our planet’s history
| universe10e_ch9_6.html | 53487547757a2e6867000000 |
DLAP questions | universe10e_ch9_6_dlap.xml | 53487547757a2e6867000000 |
9-6 Like Earth’s interior, our atmosphere has a layered structure
| universe10e_ch9_7.html | 53487547757a2e6867000000 |
DLAP questions | universe10e_ch9_7_dlap.xml | 53487547757a2e6867000000 |
9-7 A burgeoning human population is profoundly altering Earth’s biosphere
| universe10e_ch9_8.html | 53487547757a2e6867000000 |
DLAP questions | universe10e_ch9_8_dlap.xml | 53487547757a2e6867000000 |
Key Words | universe10e_ch9_9.html | 53487547757a2e6867000000 |
DLAP questions | universe10e_ch9_9_dlap.xml | 53487547757a2e6867000000 |
Key Ideas | universe10e_ch9_10.html | 53487547757a2e6867000000 |
DLAP questions | universe10e_ch9_10_dlap.xml | 53487547757a2e6867000000 |
Questions | universe10e_ch9_11.html | 53487547757a2e6867000000 |
DLAP questions | universe10e_ch9_11_dlap.xml | 53487547757a2e6867000000 |
Activities | universe10e_ch9_12.html | 53487547757a2e6867000000 |
DLAP questions | universe10e_ch9_12_dlap.xml | 53487547757a2e6867000000 |
Answers | universe10e_ch9_13.html | 53487547757a2e6867000000 |
DLAP questions | universe10e_ch9_13_dlap.xml | 53487547757a2e6867000000 |
[Unknown Title] | universe10e_ch10_1.html | 5348770a757a2e066a000000 |
DLAP questions | universe10e_ch10_1_dlap.xml | 5348770a757a2e066a000000 |
10-1 The Moon’s airless, dry surface is covered with plains and craters
| universe10e_ch10_2.html | 5348770a757a2e066a000000 |
DLAP questions | universe10e_ch10_2_dlap.xml | 5348770a757a2e066a000000 |
10-2 Human exploration of the Moon in the 1960s and 1970s has been continued by robotic spacecraft
| universe10e_ch10_3.html | 5348770a757a2e066a000000 |
DLAP questions | universe10e_ch10_3_dlap.xml | 5348770a757a2e066a000000 |
10-3 The Moon has no global magnetic field but has a small molten core
| universe10e_ch10_4.html | 5348770a757a2e066a000000 |
DLAP questions | universe10e_ch10_4_dlap.xml | 5348770a757a2e066a000000 |
10-4 Lunar rocks reveal a geologic history quite unlike that of Earth
| universe10e_ch10_5.html | 5348770a757a2e066a000000 |
DLAP questions | universe10e_ch10_5_dlap.xml | 5348770a757a2e066a000000 |
10-5 The Moon probably formed from debris cast into space when a huge protoplanet struck the young Earth
| universe10e_ch10_6.html | 5348770a757a2e066a000000 |
DLAP questions | universe10e_ch10_6_dlap.xml | 5348770a757a2e066a000000 |
Key Words | universe10e_ch10_7.html | 5348770a757a2e066a000000 |
DLAP questions | universe10e_ch10_7_dlap.xml | 5348770a757a2e066a000000 |
Key Ideas | universe10e_ch10_8.html | 5348770a757a2e066a000000 |
DLAP questions | universe10e_ch10_8_dlap.xml | 5348770a757a2e066a000000 |
Questions | universe10e_ch10_9.html | 5348770a757a2e066a000000 |
DLAP questions | universe10e_ch10_9_dlap.xml | 5348770a757a2e066a000000 |
Activities | universe10e_ch10_10.html | 5348770a757a2e066a000000 |
DLAP questions | universe10e_ch10_10_dlap.xml | 5348770a757a2e066a000000 |
Answers | universe10e_ch10_11.html | 5348770a757a2e066a000000 |
DLAP questions | universe10e_ch10_11_dlap.xml | 5348770a757a2e066a000000 |
[Unknown Title] | universe10e_ch11_1.html | 534878e9757a2e0c6a000000 |
DLAP questions | universe10e_ch11_1_dlap.xml | 534878e9757a2e0c6a000000 |
11-1 Mercury, Venus, and Mars can all be seen with the naked eye
| universe10e_ch11_2.html | 534878e9757a2e0c6a000000 |
DLAP questions | universe10e_ch11_2_dlap.xml | 534878e9757a2e0c6a000000 |
11-2 While Mars rotates much like Earth, Mercury’s rotation is coupled to its orbital motion and Venus’s rotation is slow and retrograde
| universe10e_ch11_3.html | 534878e9757a2e0c6a000000 |
DLAP questions | universe10e_ch11_3_dlap.xml | 534878e9757a2e0c6a000000 |
11-3 Mercury is cratered like the Moon but has a surprising magnetic field
| universe10e_ch11_4.html | 534878e9757a2e0c6a000000 |
DLAP questions | universe10e_ch11_4_dlap.xml | 534878e9757a2e0c6a000000 |
11-4 The first missions to Venus and Mars demolished decades of speculations about those planets
| universe10e_ch11_5.html | 534878e9757a2e0c6a000000 |
DLAP questions | universe10e_ch11_5_dlap.xml | 534878e9757a2e0c6a000000 |
11-5 Both Venus and Mars have volcanoes—and Mars has signs of ancient plate tectonics
| universe10e_ch11_6.html | 534878e9757a2e0c6a000000 |
DLAP questions | universe10e_ch11_6_dlap.xml | 534878e9757a2e0c6a000000 |
11-6 The dense atmosphere of Venus and the thin Martian atmosphere are dramatically different but have similar chemical compositions
| universe10e_ch11_7.html | 534878e9757a2e0c6a000000 |
DLAP questions | universe10e_ch11_7_dlap.xml | 534878e9757a2e0c6a000000 |
11-7 The atmospheres of Venus and Mars were very different billions of years ago
| universe10e_ch11_8.html | 534878e9757a2e0c6a000000 |
DLAP questions | universe10e_ch11_8_dlap.xml | 534878e9757a2e0c6a000000 |
11-8 Rovers have found evidence of ancient Martian water
| universe10e_ch11_9.html | 534878e9757a2e0c6a000000 |
DLAP questions | universe10e_ch11_9_dlap.xml | 534878e9757a2e0c6a000000 |
11-9 The two Martian moons resemble asteroids
| universe10e_ch11_10.html | 534878e9757a2e0c6a000000 |
DLAP questions | universe10e_ch11_10_dlap.xml | 534878e9757a2e0c6a000000 |
Key Words | universe10e_ch11_11.html | 534878e9757a2e0c6a000000 |
DLAP questions | universe10e_ch11_11_dlap.xml | 534878e9757a2e0c6a000000 |
Key Ideas | universe10e_ch11_12.html | 534878e9757a2e0c6a000000 |
DLAP questions | universe10e_ch11_12_dlap.xml | 534878e9757a2e0c6a000000 |
Questions | universe10e_ch11_13.html | 534878e9757a2e0c6a000000 |
DLAP questions | universe10e_ch11_13_dlap.xml | 534878e9757a2e0c6a000000 |
Activities | universe10e_ch11_14.html | 534878e9757a2e0c6a000000 |
DLAP questions | universe10e_ch11_14_dlap.xml | 534878e9757a2e0c6a000000 |
Answers | universe10e_ch11_15.html | 534878e9757a2e0c6a000000 |
DLAP questions | universe10e_ch11_15_dlap.xml | 534878e9757a2e0c6a000000 |
Reading the Red Planet | universe10e_ch11_16.html | 534878e9757a2e0c6a000000 |
DLAP questions | universe10e_ch11_16_dlap.xml | 534878e9757a2e0c6a000000 |
[Unknown Title] | universe10e_ch12_1.html | 53487b45757a2ec764000001 |
DLAP questions | universe10e_ch12_1_dlap.xml | 53487b45757a2ec764000001 |
12-1 Jupiter and Saturn are the most massive planets in the solar system
| universe10e_ch12_2.html | 53487b45757a2ec764000001 |
DLAP questions | universe10e_ch12_2_dlap.xml | 53487b45757a2ec764000001 |
12-2 Unlike the terrestrial planets, Jupiter and Saturn exhibit differential rotation
| universe10e_ch12_3.html | 53487b45757a2ec764000001 |
DLAP questions | universe10e_ch12_3_dlap.xml | 53487b45757a2ec764000001 |
12-3 Spacecraft images show remarkable activity in the clouds of Jupiter and Saturn
| universe10e_ch12_4.html | 53487b45757a2ec764000001 |
DLAP questions | universe10e_ch12_4_dlap.xml | 53487b45757a2ec764000001 |
12-4 The internal heat of Jupiter and Saturn has a major effect on the planets’ atmospheres
| universe10e_ch12_5.html | 53487b45757a2ec764000001 |
DLAP questions | universe10e_ch12_5_dlap.xml | 53487b45757a2ec764000001 |
12-5 The Galileo space probe explored Jupiter’s deep atmosphere
| universe10e_ch12_6.html | 53487b45757a2ec764000001 |
DLAP questions | universe10e_ch12_6_dlap.xml | 53487b45757a2ec764000001 |
12-6 The oblateness of Jupiter and Saturn reveals their rocky cores
| universe10e_ch12_7.html | 53487b45757a2ec764000001 |
DLAP questions | universe10e_ch12_7_dlap.xml | 53487b45757a2ec764000001 |
12-7 Metallic hydrogen inside Jupiter and Saturn endows the planets with strong magnetic fields
| universe10e_ch12_8.html | 53487b45757a2ec764000001 |
DLAP questions | universe10e_ch12_8_dlap.xml | 53487b45757a2ec764000001 |
12-8 Earth-based observations reveal three broad rings encircling Saturn
| universe10e_ch12_9.html | 53487b45757a2ec764000001 |
DLAP questions | universe10e_ch12_9_dlap.xml | 53487b45757a2ec764000001 |
12-9 Saturn’s rings are composed of numerous icy fragments, while Jupiter’s rings are made of small rocky particles
| universe10e_ch12_10.html | 53487b45757a2ec764000001 |
DLAP questions | universe10e_ch12_10_dlap.xml | 53487b45757a2ec764000001 |
12-10 Saturn’s rings consist of thousands of narrow, closely spaced ringlets
| universe10e_ch12_11.html | 53487b45757a2ec764000001 |
DLAP questions | universe10e_ch12_11_dlap.xml | 53487b45757a2ec764000001 |
12-11 Saturn’s inner satellites affect the appearance and structure of its rings
| universe10e_ch12_12.html | 53487b45757a2ec764000001 |
DLAP questions | universe10e_ch12_12_dlap.xml | 53487b45757a2ec764000001 |
Key Words | universe10e_ch12_13.html | 53487b45757a2ec764000001 |
DLAP questions | universe10e_ch12_13_dlap.xml | 53487b45757a2ec764000001 |
Key Ideas | universe10e_ch12_14.html | 53487b45757a2ec764000001 |
DLAP questions | universe10e_ch12_14_dlap.xml | 53487b45757a2ec764000001 |
Questions | universe10e_ch12_15.html | 53487b45757a2ec764000001 |
DLAP questions | universe10e_ch12_15_dlap.xml | 53487b45757a2ec764000001 |
Activities | universe10e_ch12_16.html | 53487b45757a2ec764000001 |
DLAP questions | universe10e_ch12_16_dlap.xml | 53487b45757a2ec764000001 |
Answers | universe10e_ch12_17.html | 53487b45757a2ec764000001 |
DLAP questions | universe10e_ch12_17_dlap.xml | 53487b45757a2ec764000001 |
[Unknown Title] | universe10e_ch13_1.html | 53487ccb757a2e996c000000 |
DLAP questions | universe10e_ch13_1_dlap.xml | 53487ccb757a2e996c000000 |
13-1 Jupiter’s Galilean satellites are easily seen with Earth-based telescopes
| universe10e_ch13_2.html | 53487ccb757a2e996c000000 |
DLAP questions | universe10e_ch13_2_dlap.xml | 53487ccb757a2e996c000000 |
13-2 Data from spacecraft reveal the unique properties of the Galilean satellites
| universe10e_ch13_3.html | 53487ccb757a2e996c000000 |
DLAP questions | universe10e_ch13_3_dlap.xml | 53487ccb757a2e996c000000 |
13-3 The Galilean satellites formed like a solar system in miniature
| universe10e_ch13_4.html | 53487ccb757a2e996c000000 |
DLAP questions | universe10e_ch13_4_dlap.xml | 53487ccb757a2e996c000000 |
13-4 Io is covered with colorful sulfur compounds ejected from active volcanoes
| universe10e_ch13_5.html | 53487ccb757a2e996c000000 |
DLAP questions | universe10e_ch13_5_dlap.xml | 53487ccb757a2e996c000000 |
13-5 Jupiter’s magnetic field makes electric currents flow through Io
| universe10e_ch13_6.html | 53487ccb757a2e996c000000 |
DLAP questions | universe10e_ch13_6_dlap.xml | 53487ccb757a2e996c000000 |
13-6 Europa is covered with a smooth layer of ice that may cover a worldwide ocean
| universe10e_ch13_7.html | 53487ccb757a2e996c000000 |
DLAP questions | universe10e_ch13_7_dlap.xml | 53487ccb757a2e996c000000 |
13-7 Liquid water may also lie beneath the cratered surfaces of Ganymede and Callisto
| universe10e_ch13_8.html | 53487ccb757a2e996c000000 |
DLAP questions | universe10e_ch13_8_dlap.xml | 53487ccb757a2e996c000000 |
13-8 Titan has a thick atmosphere and hydrocarbon lakes
| universe10e_ch13_9.html | 53487ccb757a2e996c000000 |
DLAP questions | universe10e_ch13_9_dlap.xml | 53487ccb757a2e996c000000 |
13-9 Jupiter has dozens of small satellites that have different origins
| universe10e_ch13_10.html | 53487ccb757a2e996c000000 |
DLAP questions | universe10e_ch13_10_dlap.xml | 53487ccb757a2e996c000000 |
13-10 The icy surfaces of Saturn’s six moderate-sized moons provide clues to their histories
| universe10e_ch13_11.html | 53487ccb757a2e996c000000 |
DLAP questions | universe10e_ch13_11_dlap.xml | 53487ccb757a2e996c000000 |
Key Words | universe10e_ch13_12.html | 53487ccb757a2e996c000000 |
DLAP questions | universe10e_ch13_12_dlap.xml | 53487ccb757a2e996c000000 |
Key Ideas | universe10e_ch13_13.html | 53487ccb757a2e996c000000 |
DLAP questions | universe10e_ch13_13_dlap.xml | 53487ccb757a2e996c000000 |
Questions | universe10e_ch13_14.html | 53487ccb757a2e996c000000 |
DLAP questions | universe10e_ch13_14_dlap.xml | 53487ccb757a2e996c000000 |
Activities | universe10e_ch13_15.html | 53487ccb757a2e996c000000 |
DLAP questions | universe10e_ch13_15_dlap.xml | 53487ccb757a2e996c000000 |
Answers | universe10e_ch13_16.html | 53487ccb757a2e996c000000 |
DLAP questions | universe10e_ch13_16_dlap.xml | 53487ccb757a2e996c000000 |
[Unknown Title] | universe10e_ch14_1.html | 53487e7c757a2e906c000000 |
DLAP questions | universe10e_ch14_1_dlap.xml | 53487e7c757a2e906c000000 |
14-1 Uranus was discovered by chance, but Neptune’s existence was predicted by applying Newtonian mechanics
| universe10e_ch14_2.html | 53487e7c757a2e906c000000 |
DLAP questions | universe10e_ch14_2_dlap.xml | 53487e7c757a2e906c000000 |
14-2 Uranus is nearly featureless and has an unusually tilted axis of rotation
| universe10e_ch14_3.html | 53487e7c757a2e906c000000 |
DLAP questions | universe10e_ch14_3_dlap.xml | 53487e7c757a2e906c000000 |
14-3 Neptune is a cold, bluish world with Jupiterlike atmospheric features
| universe10e_ch14_4.html | 53487e7c757a2e906c000000 |
DLAP questions | universe10e_ch14_4_dlap.xml | 53487e7c757a2e906c000000 |
14-4 Uranus and Neptune contain a higher proportion of heavy elements than Jupiter and Saturn
| universe10e_ch14_5.html | 53487e7c757a2e906c000000 |
DLAP questions | universe10e_ch14_5_dlap.xml | 53487e7c757a2e906c000000 |
14-5 The magnetic fields of both Uranus and Neptune are oriented at unusual angles
| universe10e_ch14_6.html | 53487e7c757a2e906c000000 |
DLAP questions | universe10e_ch14_6_dlap.xml | 53487e7c757a2e906c000000 |
14-6 Uranus and Neptune each has a system of thin, dark rings
| universe10e_ch14_7.html | 53487e7c757a2e906c000000 |
DLAP questions | universe10e_ch14_7_dlap.xml | 53487e7c757a2e906c000000 |
14-7 Uranus’s larger and smaller satellites
| universe10e_ch14_8.html | 53487e7c757a2e906c000000 |
DLAP questions | universe10e_ch14_8_dlap.xml | 53487e7c757a2e906c000000 |
14-8 Neptune’s satellite Triton is an icy world with a young surface and a tenuous atmosphere
| universe10e_ch14_9.html | 53487e7c757a2e906c000000 |
DLAP questions | universe10e_ch14_9_dlap.xml | 53487e7c757a2e906c000000 |
14-9 Pluto is smaller than any planet
| universe10e_ch14_10.html | 53487e7c757a2e906c000000 |
DLAP questions | universe10e_ch14_10_dlap.xml | 53487e7c757a2e906c000000 |
14-10 Trans-Neptunian Objects and Pluto’s Reclassification
| universe10e_ch14_11.html | 53487e7c757a2e906c000000 |
DLAP questions | universe10e_ch14_11_dlap.xml | 53487e7c757a2e906c000000 |
Key Words | universe10e_ch14_12.html | 53487e7c757a2e906c000000 |
DLAP questions | universe10e_ch14_12_dlap.xml | 53487e7c757a2e906c000000 |
Key Ideas | universe10e_ch14_13.html | 53487e7c757a2e906c000000 |
DLAP questions | universe10e_ch14_13_dlap.xml | 53487e7c757a2e906c000000 |
Questions | universe10e_ch14_14.html | 53487e7c757a2e906c000000 |
DLAP questions | universe10e_ch14_14_dlap.xml | 53487e7c757a2e906c000000 |
Activities | universe10e_ch14_15.html | 53487e7c757a2e906c000000 |
DLAP questions | universe10e_ch14_15_dlap.xml | 53487e7c757a2e906c000000 |
Answers | universe10e_ch14_16.html | 53487e7c757a2e906c000000 |
DLAP questions | universe10e_ch14_16_dlap.xml | 53487e7c757a2e906c000000 |
[Unknown Title] | universe10e_ch15_1.html | 5348809f757a2e0b6d000000 |
DLAP questions | universe10e_ch15_1_dlap.xml | 5348809f757a2e0b6d000000 |
15-1 A search for a planet between Mars and Jupiter led to the discovery of asteroids
| universe10e_ch15_2.html | 5348809f757a2e0b6d000000 |
DLAP questions | universe10e_ch15_2_dlap.xml | 5348809f757a2e0b6d000000 |
15-2 Jupiter’s gravity helped shape the asteroid belt
| universe10e_ch15_3.html | 5348809f757a2e0b6d000000 |
DLAP questions | universe10e_ch15_3_dlap.xml | 5348809f757a2e0b6d000000 |
15-3 Astronomers use a variety of techniques to study asteroids
| universe10e_ch15_4.html | 5348809f757a2e0b6d000000 |
DLAP questions | universe10e_ch15_4_dlap.xml | 5348809f757a2e0b6d000000 |
15-4 Asteroids are found outside the asteroid belt—and have struck Earth
| universe10e_ch15_5.html | 5348809f757a2e0b6d000000 |
DLAP questions | universe10e_ch15_5_dlap.xml | 5348809f757a2e0b6d000000 |
15-5 Meteorites are classified as stones, stony irons, or irons, depending on their composition
| universe10e_ch15_6.html | 5348809f757a2e0b6d000000 |
DLAP questions | universe10e_ch15_6_dlap.xml | 5348809f757a2e0b6d000000 |
15-6 Some meteorites retain traces of the early solar system
| universe10e_ch15_7.html | 5348809f757a2e0b6d000000 |
DLAP questions | universe10e_ch15_7_dlap.xml | 5348809f757a2e0b6d000000 |
15-7 A comet is a chunk of ice and dust that partially vaporizes as it passes near the Sun
| universe10e_ch15_8.html | 5348809f757a2e0b6d000000 |
DLAP questions | universe10e_ch15_8_dlap.xml | 5348809f757a2e0b6d000000 |
15-8 Comets originate either from the Kuiper belt or from the Oort cloud
| universe10e_ch15_9.html | 5348809f757a2e0b6d000000 |
DLAP questions | universe10e_ch15_9_dlap.xml | 5348809f757a2e0b6d000000 |
Key Words | universe10e_ch15_10.html | 5348809f757a2e0b6d000000 |
DLAP questions | universe10e_ch15_10_dlap.xml | 5348809f757a2e0b6d000000 |
Key Ideas | universe10e_ch15_11.html | 5348809f757a2e0b6d000000 |
DLAP questions | universe10e_ch15_11_dlap.xml | 5348809f757a2e0b6d000000 |
Questions | universe10e_ch15_12.html | 5348809f757a2e0b6d000000 |
DLAP questions | universe10e_ch15_12_dlap.xml | 5348809f757a2e0b6d000000 |
Activities | universe10e_ch15_13.html | 5348809f757a2e0b6d000000 |
DLAP questions | universe10e_ch15_13_dlap.xml | 5348809f757a2e0b6d000000 |
Answers | universe10e_ch15_14.html | 5348809f757a2e0b6d000000 |
DLAP questions | universe10e_ch15_14_dlap.xml | 5348809f757a2e0b6d000000 |
Pluto and the Kuiper Belt | universe10e_ch15_15.html | 5348809f757a2e0b6d000000 |
DLAP questions | universe10e_ch15_15_dlap.xml | 5348809f757a2e0b6d000000 |
[Unknown Title] | universe10e_ch16_1.html | 534c6a52757a2ede2d000006 |
DLAP questions | universe10e_ch16_1_dlap.xml | 534c6a52757a2ede2d000006 |
16-1 The Sun’s energy is generated by thermonuclear reactions in its core
| universe10e_ch16_2.html | 534c6a52757a2ede2d000006 |
DLAP questions | universe10e_ch16_2_dlap.xml | 534c6a52757a2ede2d000006 |
16-2 A theoretical model of the Sun shows how energy gets from its center to its surface
| universe10e_ch16_3.html | 534c6a52757a2ede2d000006 |
DLAP questions | universe10e_ch16_3_dlap.xml | 534c6a52757a2ede2d000006 |
16-3 Astronomers probe the solar interior using the Sun’s own vibration
| universe10e_ch16_4.html | 534c6a52757a2ede2d000006 |
DLAP questions | universe10e_ch16_4_dlap.xml | 534c6a52757a2ede2d000006 |
16-4 Neutrinos reveal information about the Sun’s core—and have surprises of their own
| universe10e_ch16_5.html | 534c6a52757a2ede2d000006 |
DLAP questions | universe10e_ch16_5_dlap.xml | 534c6a52757a2ede2d000006 |
16-5 The photosphere is the lowest of three main layers in the Sun’s atmosphere
| universe10e_ch16_6.html | 534c6a52757a2ede2d000006 |
DLAP questions | universe10e_ch16_6_dlap.xml | 534c6a52757a2ede2d000006 |
16-6 Spikes of rising gas extend through the Sun’s chromosphere
| universe10e_ch16_7.html | 534c6a52757a2ede2d000006 |
DLAP questions | universe10e_ch16_7_dlap.xml | 534c6a52757a2ede2d000006 |
16-7 The corona ejects mass into space to form the solar wind
| universe10e_ch16_8.html | 534c6a52757a2ede2d000006 |
DLAP questions | universe10e_ch16_8_dlap.xml | 534c6a52757a2ede2d000006 |
16-8 Sunspots are low-temperature regions in the photosphere
| universe10e_ch16_9.html | 534c6a52757a2ede2d000006 |
DLAP questions | universe10e_ch16_9_dlap.xml | 534c6a52757a2ede2d000006 |
16-9 Sunspots are produced by a 22-year cycle in the Sun’s magnetic field
| universe10e_ch16_10.html | 534c6a52757a2ede2d000006 |
DLAP questions | universe10e_ch16_10_dlap.xml | 534c6a52757a2ede2d000006 |
16-10 The Sun’s magnetic field heats the corona, produces flares, and causes massive eruptions
| universe10e_ch16_11.html | 534c6a52757a2ede2d000006 |
DLAP questions | universe10e_ch16_11_dlap.xml | 534c6a52757a2ede2d000006 |
Key Words | universe10e_ch16_12.html | 534c6a52757a2ede2d000006 |
DLAP questions | universe10e_ch16_12_dlap.xml | 534c6a52757a2ede2d000006 |
Key Ideas | universe10e_ch16_13.html | 534c6a52757a2ede2d000006 |
DLAP questions | universe10e_ch16_13_dlap.xml | 534c6a52757a2ede2d000006 |
Questions | universe10e_ch16_14.html | 534c6a52757a2ede2d000006 |
DLAP questions | universe10e_ch16_14_dlap.xml | 534c6a52757a2ede2d000006 |
Activities | universe10e_ch16_15.html | 534c6a52757a2ede2d000006 |
DLAP questions | universe10e_ch16_15_dlap.xml | 534c6a52757a2ede2d000006 |
Answers | universe10e_ch16_16.html | 534c6a52757a2ede2d000006 |
DLAP questions | universe10e_ch16_16_dlap.xml | 534c6a52757a2ede2d000006 |
[Unknown Title] | universe10e_ch17_1.html | 534c6a91757a2ed532000002 |
DLAP questions | universe10e_ch17_1_dlap.xml | 534c6a91757a2ed532000002 |
17-1 Careful measurements of the parallaxes of stars reveal their distances
| universe10e_ch17_2.html | 534c6a91757a2ed532000002 |
DLAP questions | universe10e_ch17_2_dlap.xml | 534c6a91757a2ed532000002 |
17-2 If a star’s distance is known, its luminosity can be determined from its apparent brightness
| universe10e_ch17_3.html | 534c6a91757a2ed532000002 |
DLAP questions | universe10e_ch17_3_dlap.xml | 534c6a91757a2ed532000002 |
17-3 Astronomers often use the magnitude scale to denote brightness
| universe10e_ch17_4.html | 534c6a91757a2ed532000002 |
DLAP questions | universe10e_ch17_4_dlap.xml | 534c6a91757a2ed532000002 |
17-4 A star’s color depends on its surface temperature
| universe10e_ch17_5.html | 534c6a91757a2ed532000002 |
DLAP questions | universe10e_ch17_5_dlap.xml | 534c6a91757a2ed532000002 |
17-5 The spectra of stars reveal their chemical compositions as well as their surface temperatures
| universe10e_ch17_6.html | 534c6a91757a2ed532000002 |
DLAP questions | universe10e_ch17_6_dlap.xml | 534c6a91757a2ed532000002 |
17-6 Stars come in a wide variety of sizes and temperatures
| universe10e_ch17_7.html | 534c6a91757a2ed532000002 |
DLAP questions | universe10e_ch17_7_dlap.xml | 534c6a91757a2ed532000002 |
17-7 Hertzsprung-Russell (H-R) diagrams reveal different kinds of stars
| universe10e_ch17_8.html | 534c6a91757a2ed532000002 |
DLAP questions | universe10e_ch17_8_dlap.xml | 534c6a91757a2ed532000002 |
17-8 Details of a star’s spectrum reveal whether it is a giant, a white dwarf, or a main-sequence star
| universe10e_ch17_9.html | 534c6a91757a2ed532000002 |
DLAP questions | universe10e_ch17_9_dlap.xml | 534c6a91757a2ed532000002 |
17-9 Observing binary star systems reveals the masses of stars
| universe10e_ch17_10.html | 534c6a91757a2ed532000002 |
DLAP questions | universe10e_ch17_10_dlap.xml | 534c6a91757a2ed532000002 |
17-10 Spectroscopy makes it possible to study binary systems in which the two stars are close together
| universe10e_ch17_11.html | 534c6a91757a2ed532000002 |
DLAP questions | universe10e_ch17_11_dlap.xml | 534c6a91757a2ed532000002 |
17-11 Light curves of eclipsing binaries provide detailed information about the two stars
| universe10e_ch17_12.html | 534c6a91757a2ed532000002 |
DLAP questions | universe10e_ch17_12_dlap.xml | 534c6a91757a2ed532000002 |
Key Words | universe10e_ch17_13.html | 534c6a91757a2ed532000002 |
DLAP questions | universe10e_ch17_13_dlap.xml | 534c6a91757a2ed532000002 |
Key Ideas | universe10e_ch17_14.html | 534c6a91757a2ed532000002 |
DLAP questions | universe10e_ch17_14_dlap.xml | 534c6a91757a2ed532000002 |
Questions | universe10e_ch17_15.html | 534c6a91757a2ed532000002 |
DLAP questions | universe10e_ch17_15_dlap.xml | 534c6a91757a2ed532000002 |
Activities | universe10e_ch17_16.html | 534c6a91757a2ed532000002 |
DLAP questions | universe10e_ch17_16_dlap.xml | 534c6a91757a2ed532000002 |
Answers | universe10e_ch17_17.html | 534c6a91757a2ed532000002 |
DLAP questions | universe10e_ch17_17_dlap.xml | 534c6a91757a2ed532000002 |
[Unknown Title] | universe10e_ch18_1.html | 534c6acd757a2ee72d000004 |
DLAP questions | universe10e_ch18_1_dlap.xml | 534c6acd757a2ee72d000004 |
18-1 Understanding how stars evolve requires observation as well as ideas from physics
| universe10e_ch18_2.html | 534c6acd757a2ee72d000004 |
DLAP questions | universe10e_ch18_2_dlap.xml | 534c6acd757a2ee72d000004 |
18-2 Interstellar gas and dust pervade the galaxy
| universe10e_ch18_3.html | 534c6acd757a2ee72d000004 |
DLAP questions | universe10e_ch18_3_dlap.xml | 534c6acd757a2ee72d000004 |
18-3 Protostars form in cold, dark nebulae
| universe10e_ch18_4.html | 534c6acd757a2ee72d000004 |
DLAP questions | universe10e_ch18_4_dlap.xml | 534c6acd757a2ee72d000004 |
18-4 Protostars evolve into main-sequence stars
| universe10e_ch18_5.html | 534c6acd757a2ee72d000004 |
DLAP questions | universe10e_ch18_5_dlap.xml | 534c6acd757a2ee72d000004 |
18-5 During the birth process, stars both gain and lose mass
| universe10e_ch18_6.html | 534c6acd757a2ee72d000004 |
DLAP questions | universe10e_ch18_6_dlap.xml | 534c6acd757a2ee72d000004 |
18-6 Young star clusters give insight into star formation and evolution
| universe10e_ch18_7.html | 534c6acd757a2ee72d000004 |
DLAP questions | universe10e_ch18_7_dlap.xml | 534c6acd757a2ee72d000004 |
18-7 Star birth can begin in giant molecular clouds
| universe10e_ch18_8.html | 534c6acd757a2ee72d000004 |
DLAP questions | universe10e_ch18_8_dlap.xml | 534c6acd757a2ee72d000004 |
18-8 Supernovae compress the interstellar medium and can trigger star birth
| universe10e_ch18_9.html | 534c6acd757a2ee72d000004 |
DLAP questions | universe10e_ch18_9_dlap.xml | 534c6acd757a2ee72d000004 |
Key Words | universe10e_ch18_10.html | 534c6acd757a2ee72d000004 |
DLAP questions | universe10e_ch18_10_dlap.xml | 534c6acd757a2ee72d000004 |
Key Ideas | universe10e_ch18_11.html | 534c6acd757a2ee72d000004 |
DLAP questions | universe10e_ch18_11_dlap.xml | 534c6acd757a2ee72d000004 |
Questions | universe10e_ch18_12.html | 534c6acd757a2ee72d000004 |
DLAP questions | universe10e_ch18_12_dlap.xml | 534c6acd757a2ee72d000004 |
Activities | universe10e_ch18_13.html | 534c6acd757a2ee72d000004 |
DLAP questions | universe10e_ch18_13_dlap.xml | 534c6acd757a2ee72d000004 |
Answers | universe10e_ch18_14.html | 534c6acd757a2ee72d000004 |
DLAP questions | universe10e_ch18_14_dlap.xml | 534c6acd757a2ee72d000004 |
[Unknown Title] | universe10e_ch19_1.html | 534c6b24757a2e4a30000001 |
DLAP questions | universe10e_ch19_1_dlap.xml | 534c6b24757a2e4a30000001 |
19-1 During a star’s main-sequence lifetime, it expands and becomes more luminous
| universe10e_ch19_2.html | 534c6b24757a2e4a30000001 |
DLAP questions | universe10e_ch19_2_dlap.xml | 534c6b24757a2e4a30000001 |
19-2 When core hydrogen fusion ceases, a main-sequence star like the Sun becomes a red giant
| universe10e_ch19_3.html | 534c6b24757a2e4a30000001 |
DLAP questions | universe10e_ch19_3_dlap.xml | 534c6b24757a2e4a30000001 |
19-3 Fusion of helium into carbon and oxygen begins at the center of a red giant
| universe10e_ch19_4.html | 534c6b24757a2e4a30000001 |
DLAP questions | universe10e_ch19_4_dlap.xml | 534c6b24757a2e4a30000001 |
19-4 H-R diagrams and observations of star clusters reveal how red giants evolve
| universe10e_ch19_5.html | 534c6b24757a2e4a30000001 |
DLAP questions | universe10e_ch19_5_dlap.xml | 534c6b24757a2e4a30000001 |
19-5 Stellar evolution has produced two distinct populations of stars
| universe10e_ch19_6.html | 534c6b24757a2e4a30000001 |
DLAP questions | universe10e_ch19_6_dlap.xml | 534c6b24757a2e4a30000001 |
19-6 Many mature stars pulsate
| universe10e_ch19_7.html | 534c6b24757a2e4a30000001 |
DLAP questions | universe10e_ch19_7_dlap.xml | 534c6b24757a2e4a30000001 |
19-7 Mass transfer can affect the evolution of stars in a close binary system
| universe10e_ch19_8.html | 534c6b24757a2e4a30000001 |
DLAP questions | universe10e_ch19_8_dlap.xml | 534c6b24757a2e4a30000001 |
Key Words | universe10e_ch19_9.html | 534c6b24757a2e4a30000001 |
DLAP questions | universe10e_ch19_9_dlap.xml | 534c6b24757a2e4a30000001 |
Key Ideas | universe10e_ch19_10.html | 534c6b24757a2e4a30000001 |
DLAP questions | universe10e_ch19_10_dlap.xml | 534c6b24757a2e4a30000001 |
Questions | universe10e_ch19_11.html | 534c6b24757a2e4a30000001 |
DLAP questions | universe10e_ch19_11_dlap.xml | 534c6b24757a2e4a30000001 |
Activities | universe10e_ch19_12.html | 534c6b24757a2e4a30000001 |
DLAP questions | universe10e_ch19_12_dlap.xml | 534c6b24757a2e4a30000001 |
Answers | universe10e_ch19_13.html | 534c6b24757a2e4a30000001 |
DLAP questions | universe10e_ch19_13_dlap.xml | 534c6b24757a2e4a30000001 |
[Unknown Title] | universe10e_ch20_1.html | 534c6b8d757a2e4930000002 |
DLAP questions | universe10e_ch20_1_dlap.xml | 534c6b8d757a2e4930000002 |
20-1 Stars of between 0.4 and 4 solar masses go through two distinct red giant stages
| universe10e_ch20_2.html | 534c6b8d757a2e4930000002 |
DLAP questions | universe10e_ch20_2_dlap.xml | 534c6b8d757a2e4930000002 |
20-2 Dredge-ups bring the products of nuclear fusion to a giant star’s surface
| universe10e_ch20_3.html | 534c6b8d757a2e4930000002 |
DLAP questions | universe10e_ch20_3_dlap.xml | 534c6b8d757a2e4930000002 |
20-3 Stars of moderately low mass die by gently ejecting their outer layers, creating planetary nebulae
| universe10e_ch20_4.html | 534c6b8d757a2e4930000002 |
DLAP questions | universe10e_ch20_4_dlap.xml | 534c6b8d757a2e4930000002 |
20-4 The burned-out core of a moderately low-mass star cools and contracts until it becomes a white dwarf
| universe10e_ch20_5.html | 534c6b8d757a2e4930000002 |
DLAP questions | universe10e_ch20_5_dlap.xml | 534c6b8d757a2e4930000002 |
20-5 High-mass stars create heavy elements in their cores
| universe10e_ch20_6.html | 534c6b8d757a2e4930000002 |
DLAP questions | universe10e_ch20_6_dlap.xml | 534c6b8d757a2e4930000002 |
20-6 High-mass stars violently blow apart in core-collapse supernova explosions
| universe10e_ch20_7.html | 534c6b8d757a2e4930000002 |
DLAP questions | universe10e_ch20_7_dlap.xml | 534c6b8d757a2e4930000002 |
20-7 In 1987 a nearby supernova gave us a close-up look at the death of a massive star
| universe10e_ch20_8.html | 534c6b8d757a2e4930000002 |
DLAP questions | universe10e_ch20_8_dlap.xml | 534c6b8d757a2e4930000002 |
20-8 Neutrinos emanate from supernovae like SN 1987A
| universe10e_ch20_9.html | 534c6b8d757a2e4930000002 |
DLAP questions | universe10e_ch20_9_dlap.xml | 534c6b8d757a2e4930000002 |
20-9 White dwarfs in close binary systems can also become supernovae
| universe10e_ch20_10.html | 534c6b8d757a2e4930000002 |
DLAP questions | universe10e_ch20_10_dlap.xml | 534c6b8d757a2e4930000002 |
20-10 A supernova remnant can be detected at many wavelengths for centuries after the explosion
| universe10e_ch20_11.html | 534c6b8d757a2e4930000002 |
DLAP questions | universe10e_ch20_11_dlap.xml | 534c6b8d757a2e4930000002 |
20-11 Neutron stars
| universe10e_ch20_12.html | 534c6b8d757a2e4930000002 |
DLAP questions | universe10e_ch20_12_dlap.xml | 534c6b8d757a2e4930000002 |
20-12 Explosive nuclear processes on white dwarfs and neutron stars produce novae and bursters
| universe10e_ch20_13.html | 534c6b8d757a2e4930000002 |
DLAP questions | universe10e_ch20_13_dlap.xml | 534c6b8d757a2e4930000002 |
Key Words | universe10e_ch20_14.html | 534c6b8d757a2e4930000002 |
DLAP questions | universe10e_ch20_14_dlap.xml | 534c6b8d757a2e4930000002 |
Key Ideas | universe10e_ch20_15.html | 534c6b8d757a2e4930000002 |
DLAP questions | universe10e_ch20_15_dlap.xml | 534c6b8d757a2e4930000002 |
Questions | universe10e_ch20_16.html | 534c6b8d757a2e4930000002 |
DLAP questions | universe10e_ch20_16_dlap.xml | 534c6b8d757a2e4930000002 |
Activities | universe10e_ch20_17.html | 534c6b8d757a2e4930000002 |
DLAP questions | universe10e_ch20_17_dlap.xml | 534c6b8d757a2e4930000002 |
Answers | universe10e_ch20_18.html | 534c6b8d757a2e4930000002 |
DLAP questions | universe10e_ch20_18_dlap.xml | 534c6b8d757a2e4930000002 |
[Unknown Title] | universe10e_ch21_1.html | 534c6bc7757a2ecc32000003 |
DLAP questions | universe10e_ch21_1_dlap.xml | 534c6bc7757a2ecc32000003 |
21-1 The special theory of relativity changes our conceptions of space and time
| universe10e_ch21_2.html | 534c6bc7757a2ecc32000003 |
DLAP questions | universe10e_ch21_2_dlap.xml | 534c6bc7757a2ecc32000003 |
21-2 The general theory of relativity predicts black holes
| universe10e_ch21_3.html | 534c6bc7757a2ecc32000003 |
DLAP questions | universe10e_ch21_3_dlap.xml | 534c6bc7757a2ecc32000003 |
21-3 Certain binary star systems probably contain black holes
| universe10e_ch21_4.html | 534c6bc7757a2ecc32000003 |
DLAP questions | universe10e_ch21_4_dlap.xml | 534c6bc7757a2ecc32000003 |
21-4 The most intense radiation bursts in the universe may be caused by the formation of black holes
| universe10e_ch21_5.html | 534c6bc7757a2ecc32000003 |
DLAP questions | universe10e_ch21_5_dlap.xml | 534c6bc7757a2ecc32000003 |
21-5 Supermassive black holes exist at the centers of most galaxies
| universe10e_ch21_6.html | 534c6bc7757a2ecc32000003 |
DLAP questions | universe10e_ch21_6_dlap.xml | 534c6bc7757a2ecc32000003 |
21-6 A nonrotating black hole has only a “center†and a “surfaceâ€Â
| universe10e_ch21_7.html | 534c6bc7757a2ecc32000003 |
DLAP questions | universe10e_ch21_7_dlap.xml | 534c6bc7757a2ecc32000003 |
21-7 Just three numbers completely describe the structure of a black hole
| universe10e_ch21_8.html | 534c6bc7757a2ecc32000003 |
DLAP questions | universe10e_ch21_8_dlap.xml | 534c6bc7757a2ecc32000003 |
21-8 Falling into a black hole is an infinite voyage
| universe10e_ch21_9.html | 534c6bc7757a2ecc32000003 |
DLAP questions | universe10e_ch21_9_dlap.xml | 534c6bc7757a2ecc32000003 |
21-9 Hawking radiation and black hole evaporation
| universe10e_ch21_10.html | 534c6bc7757a2ecc32000003 |
DLAP questions | universe10e_ch21_10_dlap.xml | 534c6bc7757a2ecc32000003 |
Key Words | universe10e_ch21_11.html | 534c6bc7757a2ecc32000003 |
DLAP questions | universe10e_ch21_11_dlap.xml | 534c6bc7757a2ecc32000003 |
Key Ideas | universe10e_ch21_12.html | 534c6bc7757a2ecc32000003 |
DLAP questions | universe10e_ch21_12_dlap.xml | 534c6bc7757a2ecc32000003 |
Questions | universe10e_ch21_13.html | 534c6bc7757a2ecc32000003 |
DLAP questions | universe10e_ch21_13_dlap.xml | 534c6bc7757a2ecc32000003 |
Activities | universe10e_ch21_14.html | 534c6bc7757a2ecc32000003 |
DLAP questions | universe10e_ch21_14_dlap.xml | 534c6bc7757a2ecc32000003 |
Answers | universe10e_ch21_15.html | 534c6bc7757a2ecc32000003 |
DLAP questions | universe10e_ch21_15_dlap.xml | 534c6bc7757a2ecc32000003 |
[Unknown Title] | universe10e_ch22_1.html | 534c6bf8757a2e4a30000002 |
DLAP questions | universe10e_ch22_1_dlap.xml | 534c6bf8757a2e4a30000002 |
22-1 The Sun is located in the disk of our Galaxy, about 8000 parsecs from the galactic center
| universe10e_ch22_2.html | 534c6bf8757a2e4a30000002 |
DLAP questions | universe10e_ch22_2_dlap.xml | 534c6bf8757a2e4a30000002 |
22-2 Observations at nonvisible wavelengths reveal the shape of the Galaxy
| universe10e_ch22_3.html | 534c6bf8757a2e4a30000002 |
DLAP questions | universe10e_ch22_3_dlap.xml | 534c6bf8757a2e4a30000002 |
22-3 Observations of cold hydrogen clouds and star-forming regions reveal that our Galaxy has spiral arms
| universe10e_ch22_4.html | 534c6bf8757a2e4a30000002 |
DLAP questions | universe10e_ch22_4_dlap.xml | 534c6bf8757a2e4a30000002 |
22-4 The rotation of our Galaxy reveals the presence of dark matter
| universe10e_ch22_5.html | 534c6bf8757a2e4a30000002 |
DLAP questions | universe10e_ch22_5_dlap.xml | 534c6bf8757a2e4a30000002 |
22-5 Spiral arms are caused by density waves that sweep around the Galaxy
| universe10e_ch22_6.html | 534c6bf8757a2e4a30000002 |
DLAP questions | universe10e_ch22_6_dlap.xml | 534c6bf8757a2e4a30000002 |
22-6 Infrared, radio, X-ray, and gamma-ray observations are used to probe the galactic center
| universe10e_ch22_7.html | 534c6bf8757a2e4a30000002 |
DLAP questions | universe10e_ch22_7_dlap.xml | 534c6bf8757a2e4a30000002 |
Key Words | universe10e_ch22_8.html | 534c6bf8757a2e4a30000002 |
DLAP questions | universe10e_ch22_8_dlap.xml | 534c6bf8757a2e4a30000002 |
Key Ideas | universe10e_ch22_9.html | 534c6bf8757a2e4a30000002 |
DLAP questions | universe10e_ch22_9_dlap.xml | 534c6bf8757a2e4a30000002 |
Questions | universe10e_ch22_10.html | 534c6bf8757a2e4a30000002 |
DLAP questions | universe10e_ch22_10_dlap.xml | 534c6bf8757a2e4a30000002 |
Activities | universe10e_ch22_11.html | 534c6bf8757a2e4a30000002 |
DLAP questions | universe10e_ch22_11_dlap.xml | 534c6bf8757a2e4a30000002 |
Answers | universe10e_ch22_12.html | 534c6bf8757a2e4a30000002 |
DLAP questions | universe10e_ch22_12_dlap.xml | 534c6bf8757a2e4a30000002 |
[Unknown Title] | universe10e_ch23_1.html | 534c6c58757a2ed72d000004 |
DLAP questions | universe10e_ch23_1_dlap.xml | 534c6c58757a2ed72d000004 |
23-1 When galaxies were first discovered, it was not clear that they lie far beyond the Milky Way
| universe10e_ch23_2.html | 534c6c58757a2ed72d000004 |
DLAP questions | universe10e_ch23_2_dlap.xml | 534c6c58757a2ed72d000004 |
23-2 Hubble proved that the spiral nebulae are far beyond the Milky Way
| universe10e_ch23_3.html | 534c6c58757a2ed72d000004 |
DLAP questions | universe10e_ch23_3_dlap.xml | 534c6c58757a2ed72d000004 |
23-3 Galaxies are classified according to their appearance
| universe10e_ch23_4.html | 534c6c58757a2ed72d000004 |
DLAP questions | universe10e_ch23_4_dlap.xml | 534c6c58757a2ed72d000004 |
23-4 Astronomers use various techniques to determine the distances to remote galaxies
| universe10e_ch23_5.html | 534c6c58757a2ed72d000004 |
DLAP questions | universe10e_ch23_5_dlap.xml | 534c6c58757a2ed72d000004 |
23-5 The Hubble law relates the redshifts of remote galaxies to their distances from Earth
| universe10e_ch23_6.html | 534c6c58757a2ed72d000004 |
DLAP questions | universe10e_ch23_6_dlap.xml | 534c6c58757a2ed72d000004 |
23-6 Galaxies are grouped into clusters and superclusters
| universe10e_ch23_7.html | 534c6c58757a2ed72d000004 |
DLAP questions | universe10e_ch23_7_dlap.xml | 534c6c58757a2ed72d000004 |
23-7 Colliding galaxies produce starbursts, spiral arms, and other spectacular phenomena
| universe10e_ch23_8.html | 534c6c58757a2ed72d000004 |
DLAP questions | universe10e_ch23_8_dlap.xml | 534c6c58757a2ed72d000004 |
23-8 Most of the matter in the universe is mysterious dark matter
| universe10e_ch23_9.html | 534c6c58757a2ed72d000004 |
DLAP questions | universe10e_ch23_9_dlap.xml | 534c6c58757a2ed72d000004 |
23-9 Galaxies formed from the merger of smaller objects
| universe10e_ch23_10.html | 534c6c58757a2ed72d000004 |
DLAP questions | universe10e_ch23_10_dlap.xml | 534c6c58757a2ed72d000004 |
Key Words | universe10e_ch23_11.html | 534c6c58757a2ed72d000004 |
DLAP questions | universe10e_ch23_11_dlap.xml | 534c6c58757a2ed72d000004 |
Key Ideas | universe10e_ch23_12.html | 534c6c58757a2ed72d000004 |
DLAP questions | universe10e_ch23_12_dlap.xml | 534c6c58757a2ed72d000004 |
Questions | universe10e_ch23_13.html | 534c6c58757a2ed72d000004 |
DLAP questions | universe10e_ch23_13_dlap.xml | 534c6c58757a2ed72d000004 |
Activities | universe10e_ch23_14.html | 534c6c58757a2ed72d000004 |
DLAP questions | universe10e_ch23_14_dlap.xml | 534c6c58757a2ed72d000004 |
Answers | universe10e_ch23_15.html | 534c6c58757a2ed72d000004 |
DLAP questions | universe10e_ch23_15_dlap.xml | 534c6c58757a2ed72d000004 |
[Unknown Title] | universe10e_ch24_1.html | 534c6c9a757a2e4a30000003 |
DLAP questions | universe10e_ch24_1_dlap.xml | 534c6c9a757a2e4a30000003 |
24-1 Quasars are the ultraluminous centers of distant galaxies
| universe10e_ch24_2.html | 534c6c9a757a2e4a30000003 |
DLAP questions | universe10e_ch24_2_dlap.xml | 534c6c9a757a2e4a30000003 |
24-2 Supermassive black holes are the “central engines†that power active galactic nuclei
| universe10e_ch24_3.html | 534c6c9a757a2e4a30000003 |
DLAP questions | universe10e_ch24_3_dlap.xml | 534c6c9a757a2e4a30000003 |
24-3 Quasar accretion disks and jets
| universe10e_ch24_4.html | 534c6c9a757a2e4a30000003 |
DLAP questions | universe10e_ch24_4_dlap.xml | 534c6c9a757a2e4a30000003 |
24-4 The unified model explains much of the diversity of AGN
| universe10e_ch24_5.html | 534c6c9a757a2e4a30000003 |
DLAP questions | universe10e_ch24_5_dlap.xml | 534c6c9a757a2e4a30000003 |
24-5 The evolution of AGN
| universe10e_ch24_6.html | 534c6c9a757a2e4a30000003 |
DLAP questions | universe10e_ch24_6_dlap.xml | 534c6c9a757a2e4a30000003 |
Key Words | universe10e_ch24_7.html | 534c6c9a757a2e4a30000003 |
DLAP questions | universe10e_ch24_7_dlap.xml | 534c6c9a757a2e4a30000003 |
Key Ideas | universe10e_ch24_8.html | 534c6c9a757a2e4a30000003 |
DLAP questions | universe10e_ch24_8_dlap.xml | 534c6c9a757a2e4a30000003 |
Questions | universe10e_ch24_9.html | 534c6c9a757a2e4a30000003 |
DLAP questions | universe10e_ch24_9_dlap.xml | 534c6c9a757a2e4a30000003 |
Activities | universe10e_ch24_10.html | 534c6c9a757a2e4a30000003 |
DLAP questions | universe10e_ch24_10_dlap.xml | 534c6c9a757a2e4a30000003 |
Answers | universe10e_ch24_11.html | 534c6c9a757a2e4a30000003 |
DLAP questions | universe10e_ch24_11_dlap.xml | 534c6c9a757a2e4a30000003 |
[Unknown Title] | universe10e_ch25_1.html | 534c6cd1757a2ecd32000002 |
DLAP questions | universe10e_ch25_1_dlap.xml | 534c6cd1757a2ecd32000002 |
25-1 The darkness of the night sky tells us about the nature of the universe
| universe10e_ch25_2.html | 534c6cd1757a2ecd32000002 |
DLAP questions | universe10e_ch25_2_dlap.xml | 534c6cd1757a2ecd32000002 |
25-2 The universe is expanding
| universe10e_ch25_3.html | 534c6cd1757a2ecd32000002 |
DLAP questions | universe10e_ch25_3_dlap.xml | 534c6cd1757a2ecd32000002 |
25-3 The expanding universe emerged from a cataclysmic event called the Big Bang
| universe10e_ch25_4.html | 534c6cd1757a2ecd32000002 |
DLAP questions | universe10e_ch25_4_dlap.xml | 534c6cd1757a2ecd32000002 |
25-4 The microwave radiation that fills all space is evidence of a hot Big Bang
| universe10e_ch25_5.html | 534c6cd1757a2ecd32000002 |
DLAP questions | universe10e_ch25_5_dlap.xml | 534c6cd1757a2ecd32000002 |
25-5 The universe was a hot, opaque plasma during its first 380,000 years
| universe10e_ch25_6.html | 534c6cd1757a2ecd32000002 |
DLAP questions | universe10e_ch25_6_dlap.xml | 534c6cd1757a2ecd32000002 |
25-6 The shape of the universe indicates its matter and energy content
| universe10e_ch25_7.html | 534c6cd1757a2ecd32000002 |
DLAP questions | universe10e_ch25_7_dlap.xml | 534c6cd1757a2ecd32000002 |
25-7 Observations of distant supernovae reveal that we live in an accelerating universe
| universe10e_ch25_8.html | 534c6cd1757a2ecd32000002 |
DLAP questions | universe10e_ch25_8_dlap.xml | 534c6cd1757a2ecd32000002 |
25-8 Primordial sound waves help reveal the character of the universe
| universe10e_ch25_9.html | 534c6cd1757a2ecd32000002 |
DLAP questions | universe10e_ch25_9_dlap.xml | 534c6cd1757a2ecd32000002 |
Key Words | universe10e_ch25_10.html | 534c6cd1757a2ecd32000002 |
DLAP questions | universe10e_ch25_10_dlap.xml | 534c6cd1757a2ecd32000002 |
Key Ideas | universe10e_ch25_11.html | 534c6cd1757a2ecd32000002 |
DLAP questions | universe10e_ch25_11_dlap.xml | 534c6cd1757a2ecd32000002 |
Questions | universe10e_ch25_12.html | 534c6cd1757a2ecd32000002 |
DLAP questions | universe10e_ch25_12_dlap.xml | 534c6cd1757a2ecd32000002 |
Activities | universe10e_ch25_13.html | 534c6cd1757a2ecd32000002 |
DLAP questions | universe10e_ch25_13_dlap.xml | 534c6cd1757a2ecd32000002 |
Answers | universe10e_ch25_14.html | 534c6cd1757a2ecd32000002 |
DLAP questions | universe10e_ch25_14_dlap.xml | 534c6cd1757a2ecd32000002 |
Dark Forces at Work | universe10e_ch25_15.html | 534c6cd1757a2ecd32000002 |
DLAP questions | universe10e_ch25_15_dlap.xml | 534c6cd1757a2ecd32000002 |
[Unknown Title] | universe10e_ch26_1.html | 534c6d17757a2ed72d000005 |
DLAP questions | universe10e_ch26_1_dlap.xml | 534c6d17757a2ed72d000005 |
26-1 The newborn universe underwent a brief period of vigorous expansion
| universe10e_ch26_2.html | 534c6d17757a2ed72d000005 |
DLAP questions | universe10e_ch26_2_dlap.xml | 534c6d17757a2ed72d000005 |
26-2 Inflation extends the principles that govern the fundamental forces of nature
| universe10e_ch26_3.html | 534c6d17757a2ed72d000005 |
DLAP questions | universe10e_ch26_3_dlap.xml | 534c6d17757a2ed72d000005 |
26-3 During inflation, all the mass and energy in the universe burst forth from the vacuum of space
| universe10e_ch26_4.html | 534c6d17757a2ed72d000005 |
DLAP questions | universe10e_ch26_4_dlap.xml | 534c6d17757a2ed72d000005 |
26-4 As the early universe expanded and cooled, most of the matter and antimatter annihilated each other
| universe10e_ch26_5.html | 534c6d17757a2ed72d000005 |
DLAP questions | universe10e_ch26_5_dlap.xml | 534c6d17757a2ed72d000005 |
26-5 A background of neutrinos and most of the helium in the universe are relics of the primordial fireball
| universe10e_ch26_6.html | 534c6d17757a2ed72d000005 |
DLAP questions | universe10e_ch26_6_dlap.xml | 534c6d17757a2ed72d000005 |
26-6 Galaxies and the first stars formed from density fluctuations in the early universe
| universe10e_ch26_7.html | 534c6d17757a2ed72d000005 |
DLAP questions | universe10e_ch26_7_dlap.xml | 534c6d17757a2ed72d000005 |
26-7 String theory attempts to unify the fundamental forces and predicts that the universe may have 11 dimensions
| universe10e_ch26_8.html | 534c6d17757a2ed72d000005 |
DLAP questions | universe10e_ch26_8_dlap.xml | 534c6d17757a2ed72d000005 |
Key Words | universe10e_ch26_9.html | 534c6d17757a2ed72d000005 |
DLAP questions | universe10e_ch26_9_dlap.xml | 534c6d17757a2ed72d000005 |
Key Ideas | universe10e_ch26_10.html | 534c6d17757a2ed72d000005 |
DLAP questions | universe10e_ch26_10_dlap.xml | 534c6d17757a2ed72d000005 |
Questions | universe10e_ch26_11.html | 534c6d17757a2ed72d000005 |
DLAP questions | universe10e_ch26_11_dlap.xml | 534c6d17757a2ed72d000005 |
Activities | universe10e_ch26_12.html | 534c6d17757a2ed72d000005 |
DLAP questions | universe10e_ch26_12_dlap.xml | 534c6d17757a2ed72d000005 |
Answers | universe10e_ch26_13.html | 534c6d17757a2ed72d000005 |
DLAP questions | universe10e_ch26_13_dlap.xml | 534c6d17757a2ed72d000005 |
Making Sense of Modern Cosmology | universe10e_ch26_14.html | 534c6d17757a2ed72d000005 |
DLAP questions | universe10e_ch26_14_dlap.xml | 534c6d17757a2ed72d000005 |
[Unknown Title] | universe10e_ch27_1.html | 534c6d4b757a2ecd32000003 |
DLAP questions | universe10e_ch27_1_dlap.xml | 534c6d4b757a2ecd32000003 |
27-1 The chemical building blocks of life are found in space
| universe10e_ch27_2.html | 534c6d4b757a2ecd32000003 |
DLAP questions | universe10e_ch27_2_dlap.xml | 534c6d4b757a2ecd32000003 |
27-2 Water and the potential for life
| universe10e_ch27_3.html | 534c6d4b757a2ecd32000003 |
DLAP questions | universe10e_ch27_3_dlap.xml | 534c6d4b757a2ecd32000003 |
27-3 Meteorites from Mars have been scrutinized for life-forms
| universe10e_ch27_4.html | 534c6d4b757a2ecd32000003 |
DLAP questions | universe10e_ch27_4_dlap.xml | 534c6d4b757a2ecd32000003 |
27-4 The Drake equation helps scientists estimate how many civilizations may inhabit our Galaxy
| universe10e_ch27_5.html | 534c6d4b757a2ecd32000003 |
DLAP questions | universe10e_ch27_5_dlap.xml | 534c6d4b757a2ecd32000003 |
27-5 Radio searches for alien civilizations are underway
| universe10e_ch27_6.html | 534c6d4b757a2ecd32000003 |
DLAP questions | universe10e_ch27_6_dlap.xml | 534c6d4b757a2ecd32000003 |
27-6 Telescopes have begun searching for Earthlike planets
| universe10e_ch27_7.html | 534c6d4b757a2ecd32000003 |
DLAP questions | universe10e_ch27_7_dlap.xml | 534c6d4b757a2ecd32000003 |
Key Words | universe10e_ch27_8.html | 534c6d4b757a2ecd32000003 |
DLAP questions | universe10e_ch27_8_dlap.xml | 534c6d4b757a2ecd32000003 |
Key Ideas | universe10e_ch27_9.html | 534c6d4b757a2ecd32000003 |
DLAP questions | universe10e_ch27_9_dlap.xml | 534c6d4b757a2ecd32000003 |
Questions | universe10e_ch27_10.html | 534c6d4b757a2ecd32000003 |
DLAP questions | universe10e_ch27_10_dlap.xml | 534c6d4b757a2ecd32000003 |
Activities | universe10e_ch27_11.html | 534c6d4b757a2ecd32000003 |
DLAP questions | universe10e_ch27_11_dlap.xml | 534c6d4b757a2ecd32000003 |
Answers | universe10e_ch27_12.html | 534c6d4b757a2ecd32000003 |
DLAP questions | universe10e_ch27_12_dlap.xml | 534c6d4b757a2ecd32000003 |
A Biologist's View of Astrobiology | universe10e_ch27_13.html | 534c6d4b757a2ecd32000003 |
DLAP questions | universe10e_ch27_13_dlap.xml | 534c6d4b757a2ecd32000003 |
Appendices | universe10e_app1_1.html | 538b4b88757a2e660c00000d |
DLAP questions | universe10e_app1_1_dlap.xml | 538b4b88757a2e660c00000d |
[Unknown Title] | universe10e_fm1_1.html | 538b4bb1757a2eef03000022 |
DLAP questions | universe10e_fm1_1_dlap.xml | 538b4bb1757a2eef03000022 |
About the Authors | universe10e_fm1_2.html | 538b4bb1757a2eef03000022 |
DLAP questions | universe10e_fm1_2_dlap.xml | 538b4bb1757a2eef03000022 |
Preface | universe10e_fm1_3.html | 538b4bb1757a2eef03000022 |
DLAP questions | universe10e_fm1_3_dlap.xml | 538b4bb1757a2eef03000022 |
Multimedia | universe10e_fm1_4.html | 538b4bb1757a2eef03000022 |
DLAP questions | universe10e_fm1_4_dlap.xml | 538b4bb1757a2eef03000022 |
Acknowledgments | universe10e_fm1_5.html | 538b4bb1757a2eef03000022 |
DLAP questions | universe10e_fm1_5_dlap.xml | 538b4bb1757a2eef03000022 |
To the Student | universe10e_fm1_6.html | 538b4bb1757a2eef03000022 |
DLAP questions | universe10e_fm1_6_dlap.xml | 538b4bb1757a2eef03000022 |