Name | File | Manuscript |
Chapter 1 Introduction | morris2e_ch1_1.html | 560195ff757a2e2c47000000 |
DLAP questions | morris2e_ch1_1_dlap.xml | 560195ff757a2e2c47000000 |
1.1 The Scientific Method
| morris2e_ch1_2.html | 560195ff757a2e2c47000000 |
DLAP questions | morris2e_ch1_2_dlap.xml | 560195ff757a2e2c47000000 |
Observation allows us to draw tentative explanations called hypotheses.
| morris2e_ch1_3.html | 560195ff757a2e2c47000000 |
DLAP questions | morris2e_ch1_3_dlap.xml | 560195ff757a2e2c47000000 |
A hypothesis makes predictions that can be tested by observation and experiments.
| morris2e_ch1_4.html | 560195ff757a2e2c47000000 |
DLAP questions | morris2e_ch1_4_dlap.xml | 560195ff757a2e2c47000000 |
General explanations of natural phenomena supported by many experiments and observations are called theories.
| morris2e_ch1_5.html | 560195ff757a2e2c47000000 |
DLAP questions | morris2e_ch1_5_dlap.xml | 560195ff757a2e2c47000000 |
1.2 Chemical and Physical Principles
| morris2e_ch1_6.html | 560195ff757a2e2c47000000 |
DLAP questions | morris2e_ch1_6_dlap.xml | 560195ff757a2e2c47000000 |
The living and nonliving worlds follow the same chemical rules and obey the same physical laws.
| morris2e_ch1_7.html | 560195ff757a2e2c47000000 |
DLAP questions | morris2e_ch1_7_dlap.xml | 560195ff757a2e2c47000000 |
The scientific method shows that living organisms come from other living organisms.
| morris2e_ch1_8.html | 560195ff757a2e2c47000000 |
DLAP questions | morris2e_ch1_8_dlap.xml | 560195ff757a2e2c47000000 |
1.3 The Cell
| morris2e_ch1_9.html | 560195ff757a2e2c47000000 |
DLAP questions | morris2e_ch1_9_dlap.xml | 560195ff757a2e2c47000000 |
Nucleic acids store and transmit information needed for growth, function, and reproduction.
| morris2e_ch1_10.html | 560195ff757a2e2c47000000 |
DLAP questions | morris2e_ch1_10_dlap.xml | 560195ff757a2e2c47000000 |
Membranes define cells and spaces within cells.
| morris2e_ch1_11.html | 560195ff757a2e2c47000000 |
DLAP questions | morris2e_ch1_11_dlap.xml | 560195ff757a2e2c47000000 |
Metabolism converts energy from the environment into a form that can be used by cells.
| morris2e_ch1_12.html | 560195ff757a2e2c47000000 |
DLAP questions | morris2e_ch1_12_dlap.xml | 560195ff757a2e2c47000000 |
A virus is genetic material in need of a cell.
| morris2e_ch1_13.html | 560195ff757a2e2c47000000 |
DLAP questions | morris2e_ch1_13_dlap.xml | 560195ff757a2e2c47000000 |
1.4 Evolution
| morris2e_ch1_14.html | 560195ff757a2e2c47000000 |
DLAP questions | morris2e_ch1_14_dlap.xml | 560195ff757a2e2c47000000 |
Variation in populations provides the raw material for evolution.
| morris2e_ch1_15.html | 560195ff757a2e2c47000000 |
DLAP questions | morris2e_ch1_15_dlap.xml | 560195ff757a2e2c47000000 |
Evolution predicts a nested pattern of relatedness among species, depicted as a tree.
| morris2e_ch1_16.html | 560195ff757a2e2c47000000 |
DLAP questions | morris2e_ch1_16_dlap.xml | 560195ff757a2e2c47000000 |
Evolution can be studied by means of experiments.
| morris2e_ch1_17.html | 560195ff757a2e2c47000000 |
DLAP questions | morris2e_ch1_17_dlap.xml | 560195ff757a2e2c47000000 |
1.5 Ecological Systems
| morris2e_ch1_18.html | 560195ff757a2e2c47000000 |
DLAP questions | morris2e_ch1_18_dlap.xml | 560195ff757a2e2c47000000 |
Basic features of anatomy, physiology, and behavior shape ecological systems.
| morris2e_ch1_19.html | 560195ff757a2e2c47000000 |
DLAP questions | morris2e_ch1_19_dlap.xml | 560195ff757a2e2c47000000 |
Ecological interactions play an important role in evolution.
| morris2e_ch1_20.html | 560195ff757a2e2c47000000 |
DLAP questions | morris2e_ch1_20_dlap.xml | 560195ff757a2e2c47000000 |
1.6 The Human Footprint
| morris2e_ch1_21.html | 560195ff757a2e2c47000000 |
DLAP questions | morris2e_ch1_21_dlap.xml | 560195ff757a2e2c47000000 |
Chapter 1 Summary | morris2e_ch1_22.html | 560195ff757a2e2c47000000 |
DLAP questions | morris2e_ch1_22_dlap.xml | 560195ff757a2e2c47000000 |
Chapter 2 Introduction | morris2e_ch2_1.html | 5602efa4757a2e8c52000000 |
DLAP questions | morris2e_ch2_1_dlap.xml | 5602efa4757a2e8c52000000 |
2.1 Properties of Atoms
| morris2e_ch2_2.html | 5602efa4757a2e8c52000000 |
DLAP questions | morris2e_ch2_2_dlap.xml | 5602efa4757a2e8c52000000 |
Atoms consist of protons, neutrons, and electrons.
| morris2e_ch2_3.html | 5602efa4757a2e8c52000000 |
DLAP questions | morris2e_ch2_3_dlap.xml | 5602efa4757a2e8c52000000 |
Electrons occupy regions of space called orbitals.
| morris2e_ch2_4.html | 5602efa4757a2e8c52000000 |
DLAP questions | morris2e_ch2_4_dlap.xml | 5602efa4757a2e8c52000000 |
Elements have recurring, or periodic, chemical properties.
| morris2e_ch2_5.html | 5602efa4757a2e8c52000000 |
DLAP questions | morris2e_ch2_5_dlap.xml | 5602efa4757a2e8c52000000 |
2.2 Molecules and Chemical Bonds
| morris2e_ch2_6.html | 5602efa4757a2e8c52000000 |
DLAP questions | morris2e_ch2_6_dlap.xml | 5602efa4757a2e8c52000000 |
A covalent bond results when two atoms share electrons.
| morris2e_ch2_7.html | 5602efa4757a2e8c52000000 |
DLAP questions | morris2e_ch2_7_dlap.xml | 5602efa4757a2e8c52000000 |
A polar covalent bond is characterized by unequal sharing of electrons.
| morris2e_ch2_8.html | 5602efa4757a2e8c52000000 |
DLAP questions | morris2e_ch2_8_dlap.xml | 5602efa4757a2e8c52000000 |
An ionic bond forms between oppositely charged ions.
| morris2e_ch2_9.html | 5602efa4757a2e8c52000000 |
DLAP questions | morris2e_ch2_9_dlap.xml | 5602efa4757a2e8c52000000 |
A chemical reaction involves breaking and forming chemical bonds.
| morris2e_ch2_10.html | 5602efa4757a2e8c52000000 |
DLAP questions | morris2e_ch2_10_dlap.xml | 5602efa4757a2e8c52000000 |
2.3 Water: The Medium of Life
| morris2e_ch2_11.html | 5602efa4757a2e8c52000000 |
DLAP questions | morris2e_ch2_11_dlap.xml | 5602efa4757a2e8c52000000 |
Water is a polar molecule.
| morris2e_ch2_12.html | 5602efa4757a2e8c52000000 |
DLAP questions | morris2e_ch2_12_dlap.xml | 5602efa4757a2e8c52000000 |
A hydrogen bond is an interaction between a hydrogen atom and an electronegative atom.
| morris2e_ch2_13.html | 5602efa4757a2e8c52000000 |
DLAP questions | morris2e_ch2_13_dlap.xml | 5602efa4757a2e8c52000000 |
Hydrogen bonds give water many unusual properties.
| morris2e_ch2_14.html | 5602efa4757a2e8c52000000 |
DLAP questions | morris2e_ch2_14_dlap.xml | 5602efa4757a2e8c52000000 |
pH is a measure of the concentration of protons in solution.
| morris2e_ch2_15.html | 5602efa4757a2e8c52000000 |
DLAP questions | morris2e_ch2_15_dlap.xml | 5602efa4757a2e8c52000000 |
2.4 Carbon: Lifeâs Chemical Backbone
| morris2e_ch2_16.html | 5602efa4757a2e8c52000000 |
DLAP questions | morris2e_ch2_16_dlap.xml | 5602efa4757a2e8c52000000 |
Carbon atoms form four covalent bonds.
| morris2e_ch2_17.html | 5602efa4757a2e8c52000000 |
DLAP questions | morris2e_ch2_17_dlap.xml | 5602efa4757a2e8c52000000 |
Carbon-based molecules are structurally and functionally diverse.
| morris2e_ch2_18.html | 5602efa4757a2e8c52000000 |
DLAP questions | morris2e_ch2_18_dlap.xml | 5602efa4757a2e8c52000000 |
2.5 Organic Molecules
| morris2e_ch2_19.html | 5602efa4757a2e8c52000000 |
DLAP questions | morris2e_ch2_19_dlap.xml | 5602efa4757a2e8c52000000 |
Functional groups add chemical character to carbon chains.
| morris2e_ch2_20.html | 5602efa4757a2e8c52000000 |
DLAP questions | morris2e_ch2_20_dlap.xml | 5602efa4757a2e8c52000000 |
Proteins are composed of amino acids.
| morris2e_ch2_21.html | 5602efa4757a2e8c52000000 |
DLAP questions | morris2e_ch2_21_dlap.xml | 5602efa4757a2e8c52000000 |
Nucleic acids encode genetic information in their nucleotide sequence.
| morris2e_ch2_22.html | 5602efa4757a2e8c52000000 |
DLAP questions | morris2e_ch2_22_dlap.xml | 5602efa4757a2e8c52000000 |
Complex carbohydrates are made up of simple sugars.
| morris2e_ch2_23.html | 5602efa4757a2e8c52000000 |
DLAP questions | morris2e_ch2_23_dlap.xml | 5602efa4757a2e8c52000000 |
Lipids are hydrophobic molecules.
| morris2e_ch2_24.html | 5602efa4757a2e8c52000000 |
DLAP questions | morris2e_ch2_24_dlap.xml | 5602efa4757a2e8c52000000 |
2.6 Case 1: How Did the Molecules of Life Form?
| morris2e_ch2_25.html | 5602efa4757a2e8c52000000 |
DLAP questions | morris2e_ch2_25_dlap.xml | 5602efa4757a2e8c52000000 |
The building blocks of life can be generated in the laboratory.
| morris2e_ch2_26.html | 5602efa4757a2e8c52000000 |
DLAP questions | morris2e_ch2_26_dlap.xml | 5602efa4757a2e8c52000000 |
Experiments show how lifeâs building blocks can form macromolecules.
| morris2e_ch2_27.html | 5602efa4757a2e8c52000000 |
DLAP questions | morris2e_ch2_27_dlap.xml | 5602efa4757a2e8c52000000 |
Chapter 2 Summary | morris2e_ch2_28.html | 5602efa4757a2e8c52000000 |
DLAP questions | morris2e_ch2_28_dlap.xml | 5602efa4757a2e8c52000000 |
Chapter 3 Introduction | morris2e_ch3_1.html | 560a059c757a2e3776000000 |
DLAP questions | morris2e_ch3_1_dlap.xml | 560a059c757a2e3776000000 |
3.1 Major Biological Functions of DNA
| morris2e_ch3_2.html | 560a059c757a2e3776000000 |
DLAP questions | morris2e_ch3_2_dlap.xml | 560a059c757a2e3776000000 |
DNA can transfer biological characteristics from one organism to another.
| morris2e_ch3_3.html | 560a059c757a2e3776000000 |
DLAP questions | morris2e_ch3_3_dlap.xml | 560a059c757a2e3776000000 |
DNA molecules are copied in the process of replication.
| morris2e_ch3_4.html | 560a059c757a2e3776000000 |
DLAP questions | morris2e_ch3_4_dlap.xml | 560a059c757a2e3776000000 |
Genetic information flows from DNA to RNA to protein.
| morris2e_ch3_5.html | 560a059c757a2e3776000000 |
DLAP questions | morris2e_ch3_5_dlap.xml | 560a059c757a2e3776000000 |
3.2 Chemical Composition and Structure of DNA
| morris2e_ch3_6.html | 560a059c757a2e3776000000 |
DLAP questions | morris2e_ch3_6_dlap.xml | 560a059c757a2e3776000000 |
A DNA strand consists of subunits called nucleotides.
| morris2e_ch3_7.html | 560a059c757a2e3776000000 |
DLAP questions | morris2e_ch3_7_dlap.xml | 560a059c757a2e3776000000 |
DNA is a linear polymer of nucleotides linked by phosphodiester bonds.
| morris2e_ch3_8.html | 560a059c757a2e3776000000 |
DLAP questions | morris2e_ch3_8_dlap.xml | 560a059c757a2e3776000000 |
Cellular DNA molecules take the form of a double helix.
| morris2e_ch3_9.html | 560a059c757a2e3776000000 |
DLAP questions | morris2e_ch3_9_dlap.xml | 560a059c757a2e3776000000 |
The three-dimensional structure of DNA gave important clues about its functions.
| morris2e_ch3_10.html | 560a059c757a2e3776000000 |
DLAP questions | morris2e_ch3_10_dlap.xml | 560a059c757a2e3776000000 |
Cellular DNA is coiled and packaged with proteins.
| morris2e_ch3_11.html | 560a059c757a2e3776000000 |
DLAP questions | morris2e_ch3_11_dlap.xml | 560a059c757a2e3776000000 |
3.3 Retrieval of Genetic Information Stored in DNA: Transcription
| morris2e_ch3_12.html | 560a059c757a2e3776000000 |
DLAP questions | morris2e_ch3_12_dlap.xml | 560a059c757a2e3776000000 |
Case 1: What was the first nucleic acid molecule, and how did it arise?
| morris2e_ch3_13.html | 560a059c757a2e3776000000 |
DLAP questions | morris2e_ch3_13_dlap.xml | 560a059c757a2e3776000000 |
RNA is a polymer of nucleotides in which the 5-carbon sugar is ribose.
| morris2e_ch3_14.html | 560a059c757a2e3776000000 |
DLAP questions | morris2e_ch3_14_dlap.xml | 560a059c757a2e3776000000 |
In transcription, DNA is used as a template to make complementary RNA.
| morris2e_ch3_15.html | 560a059c757a2e3776000000 |
DLAP questions | morris2e_ch3_15_dlap.xml | 560a059c757a2e3776000000 |
Transcription starts at a promoter and ends at a terminator.
| morris2e_ch3_16.html | 560a059c757a2e3776000000 |
DLAP questions | morris2e_ch3_16_dlap.xml | 560a059c757a2e3776000000 |
RNA polymerase adds successive nucleotides to the 3â² end of the transcript.
| morris2e_ch3_17.html | 560a059c757a2e3776000000 |
DLAP questions | morris2e_ch3_17_dlap.xml | 560a059c757a2e3776000000 |
The RNA polymerase complex is a molecular machine that opens, transcribes, and closes duplex DNA.
| morris2e_ch3_18.html | 560a059c757a2e3776000000 |
DLAP questions | morris2e_ch3_18_dlap.xml | 560a059c757a2e3776000000 |
3.4 Fate of the RNA Primary Transcript
| morris2e_ch3_19.html | 560a059c757a2e3776000000 |
DLAP questions | morris2e_ch3_19_dlap.xml | 560a059c757a2e3776000000 |
Messenger RNA carries information for the synthesis of a specific protein.
| morris2e_ch3_20.html | 560a059c757a2e3776000000 |
DLAP questions | morris2e_ch3_20_dlap.xml | 560a059c757a2e3776000000 |
Primary transcripts in eukaryotes undergo several types of chemical modification.
| morris2e_ch3_21.html | 560a059c757a2e3776000000 |
DLAP questions | morris2e_ch3_21_dlap.xml | 560a059c757a2e3776000000 |
Some RNA transcripts are processed differently from protein-coding transcripts and have functions of their own.
| morris2e_ch3_22.html | 560a059c757a2e3776000000 |
DLAP questions | morris2e_ch3_22_dlap.xml | 560a059c757a2e3776000000 |
Chapter 3 Summary | morris2e_ch3_23.html | 560a059c757a2e3776000000 |
DLAP questions | morris2e_ch3_23_dlap.xml | 560a059c757a2e3776000000 |
Chapter 4 Introduction | morris2e_ch4_1.html | 560ae12b757a2ee058000000 |
DLAP questions | morris2e_ch4_1_dlap.xml | 560ae12b757a2ee058000000 |
4.1 Molecular Structure of Proteins
| morris2e_ch4_2.html | 560ae12b757a2ee058000000 |
DLAP questions | morris2e_ch4_2_dlap.xml | 560ae12b757a2ee058000000 |
Amino acids differ in their side chains.
| morris2e_ch4_3.html | 560ae12b757a2ee058000000 |
DLAP questions | morris2e_ch4_3_dlap.xml | 560ae12b757a2ee058000000 |
Successive amino acids in proteins are connected by peptide bonds.
| morris2e_ch4_4.html | 560ae12b757a2ee058000000 |
DLAP questions | morris2e_ch4_4_dlap.xml | 560ae12b757a2ee058000000 |
The sequence of amino acids dictates protein folding, which determines function.
| morris2e_ch4_5.html | 560ae12b757a2ee058000000 |
DLAP questions | morris2e_ch4_5_dlap.xml | 560ae12b757a2ee058000000 |
Secondary structures result from hydrogen bonding in the polypeptide backbone.
| morris2e_ch4_6.html | 560ae12b757a2ee058000000 |
DLAP questions | morris2e_ch4_6_dlap.xml | 560ae12b757a2ee058000000 |
Tertiary structures result from interactions between amino acid side chains.
| morris2e_ch4_7.html | 560ae12b757a2ee058000000 |
DLAP questions | morris2e_ch4_7_dlap.xml | 560ae12b757a2ee058000000 |
Polypeptide subunits can come together to form quaternary structures.
| morris2e_ch4_8.html | 560ae12b757a2ee058000000 |
DLAP questions | morris2e_ch4_8_dlap.xml | 560ae12b757a2ee058000000 |
Chaperones help some proteins fold properly.
| morris2e_ch4_9.html | 560ae12b757a2ee058000000 |
DLAP questions | morris2e_ch4_9_dlap.xml | 560ae12b757a2ee058000000 |
4.2 Translation: How Proteins Are Synthesized
| morris2e_ch4_10.html | 560ae12b757a2ee058000000 |
DLAP questions | morris2e_ch4_10_dlap.xml | 560ae12b757a2ee058000000 |
Translation uses many molecules found in all cells.
| morris2e_ch4_11.html | 560ae12b757a2ee058000000 |
DLAP questions | morris2e_ch4_11_dlap.xml | 560ae12b757a2ee058000000 |
The genetic code shows the correspondence between codons and amino acids.
| morris2e_ch4_12.html | 560ae12b757a2ee058000000 |
DLAP questions | morris2e_ch4_12_dlap.xml | 560ae12b757a2ee058000000 |
Translation consists of initiation, elongation, and termination.
| morris2e_ch4_13.html | 560ae12b757a2ee058000000 |
DLAP questions | morris2e_ch4_13_dlap.xml | 560ae12b757a2ee058000000 |
Case 1: How did the genetic code originate?
| morris2e_ch4_14.html | 560ae12b757a2ee058000000 |
DLAP questions | morris2e_ch4_14_dlap.xml | 560ae12b757a2ee058000000 |
4.3 Protein Evolution and the Origin of New Proteins
| morris2e_ch4_15.html | 560ae12b757a2ee058000000 |
DLAP questions | morris2e_ch4_15_dlap.xml | 560ae12b757a2ee058000000 |
Most proteins are composed of modular folding domains.
| morris2e_ch4_16.html | 560ae12b757a2ee058000000 |
DLAP questions | morris2e_ch4_16_dlap.xml | 560ae12b757a2ee058000000 |
Amino acid sequences evolve through mutation and selection.
| morris2e_ch4_17.html | 560ae12b757a2ee058000000 |
DLAP questions | morris2e_ch4_17_dlap.xml | 560ae12b757a2ee058000000 |
Chapter 4 Summary | morris2e_ch4_18.html | 560ae12b757a2ee058000000 |
DLAP questions | morris2e_ch4_18_dlap.xml | 560ae12b757a2ee058000000 |
Chapter 5 Introduction | morris2e_ch5_1.html | 560c2cf2757a2e125d000000 |
DLAP questions | morris2e_ch5_1_dlap.xml | 560c2cf2757a2e125d000000 |
5.1 Structure of Cell Membranes
| morris2e_ch5_2.html | 560c2cf2757a2e125d000000 |
DLAP questions | morris2e_ch5_2_dlap.xml | 560c2cf2757a2e125d000000 |
Cell membranes are composed of two layers of lipids.
| morris2e_ch5_3.html | 560c2cf2757a2e125d000000 |
DLAP questions | morris2e_ch5_3_dlap.xml | 560c2cf2757a2e125d000000 |
Case 1: How did the first cell membranes form?
| morris2e_ch5_4.html | 560c2cf2757a2e125d000000 |
DLAP questions | morris2e_ch5_4_dlap.xml | 560c2cf2757a2e125d000000 |
Cell membranes are dynamic.
| morris2e_ch5_5.html | 560c2cf2757a2e125d000000 |
DLAP questions | morris2e_ch5_5_dlap.xml | 560c2cf2757a2e125d000000 |
Proteins associate with cell membranes in different ways.
| morris2e_ch5_6.html | 560c2cf2757a2e125d000000 |
DLAP questions | morris2e_ch5_6_dlap.xml | 560c2cf2757a2e125d000000 |
5.2 The Plasma Membrane and Cell Wall
| morris2e_ch5_7.html | 560c2cf2757a2e125d000000 |
DLAP questions | morris2e_ch5_7_dlap.xml | 560c2cf2757a2e125d000000 |
The plasma membrane maintains homeostasis.
| morris2e_ch5_8.html | 560c2cf2757a2e125d000000 |
DLAP questions | morris2e_ch5_8_dlap.xml | 560c2cf2757a2e125d000000 |
Passive transport involves diffusion.
| morris2e_ch5_9.html | 560c2cf2757a2e125d000000 |
DLAP questions | morris2e_ch5_9_dlap.xml | 560c2cf2757a2e125d000000 |
Primary active transport uses the energy of ATP.
| morris2e_ch5_10.html | 560c2cf2757a2e125d000000 |
DLAP questions | morris2e_ch5_10_dlap.xml | 560c2cf2757a2e125d000000 |
Secondary active transport is driven by an electrochemical gradient.
| morris2e_ch5_11.html | 560c2cf2757a2e125d000000 |
DLAP questions | morris2e_ch5_11_dlap.xml | 560c2cf2757a2e125d000000 |
Many cells maintain size and composition using active transport.
| morris2e_ch5_12.html | 560c2cf2757a2e125d000000 |
DLAP questions | morris2e_ch5_12_dlap.xml | 560c2cf2757a2e125d000000 |
The cell wall provides another means of maintaining cell shape.
| morris2e_ch5_13.html | 560c2cf2757a2e125d000000 |
DLAP questions | morris2e_ch5_13_dlap.xml | 560c2cf2757a2e125d000000 |
5.3 The Internal Organization of Cells
| morris2e_ch5_14.html | 560c2cf2757a2e125d000000 |
DLAP questions | morris2e_ch5_14_dlap.xml | 560c2cf2757a2e125d000000 |
Eukaryotes and prokaryotes differ in internal organization.
| morris2e_ch5_15.html | 560c2cf2757a2e125d000000 |
DLAP questions | morris2e_ch5_15_dlap.xml | 560c2cf2757a2e125d000000 |
Prokaryotic cells lack a nucleus and extensive internal compartmentalization.
| morris2e_ch5_16.html | 560c2cf2757a2e125d000000 |
DLAP questions | morris2e_ch5_16_dlap.xml | 560c2cf2757a2e125d000000 |
Eukaryotic cells have a nucleus and specialized internal structures.
| morris2e_ch5_17.html | 560c2cf2757a2e125d000000 |
DLAP questions | morris2e_ch5_17_dlap.xml | 560c2cf2757a2e125d000000 |
5.4 The Endomembrane System
| morris2e_ch5_18.html | 560c2cf2757a2e125d000000 |
DLAP questions | morris2e_ch5_18_dlap.xml | 560c2cf2757a2e125d000000 |
The endomembrane system compartmentalizes the cell.
| morris2e_ch5_19.html | 560c2cf2757a2e125d000000 |
DLAP questions | morris2e_ch5_19_dlap.xml | 560c2cf2757a2e125d000000 |
The nucleus houses the genome and is the site of RNA synthesis.
| morris2e_ch5_20.html | 560c2cf2757a2e125d000000 |
DLAP questions | morris2e_ch5_20_dlap.xml | 560c2cf2757a2e125d000000 |
The endoplasmic reticulum is involved in protein and lipid synthesis.
| morris2e_ch5_21.html | 560c2cf2757a2e125d000000 |
DLAP questions | morris2e_ch5_21_dlap.xml | 560c2cf2757a2e125d000000 |
The Golgi apparatus modifies and sorts proteins and lipids.
| morris2e_ch5_22.html | 560c2cf2757a2e125d000000 |
DLAP questions | morris2e_ch5_22_dlap.xml | 560c2cf2757a2e125d000000 |
Lysosomes degrade macromolecules.
| morris2e_ch5_23.html | 560c2cf2757a2e125d000000 |
DLAP questions | morris2e_ch5_23_dlap.xml | 560c2cf2757a2e125d000000 |
Protein sorting directs proteins to their proper location in or out of the cell.
| morris2e_ch5_24.html | 560c2cf2757a2e125d000000 |
DLAP questions | morris2e_ch5_24_dlap.xml | 560c2cf2757a2e125d000000 |
5.5 Mitochondria and Chloroplasts
| morris2e_ch5_25.html | 560c2cf2757a2e125d000000 |
DLAP questions | morris2e_ch5_25_dlap.xml | 560c2cf2757a2e125d000000 |
Mitochondria provide the eukaryotic cell with most of its usable energy.
| morris2e_ch5_26.html | 560c2cf2757a2e125d000000 |
DLAP questions | morris2e_ch5_26_dlap.xml | 560c2cf2757a2e125d000000 |
Chloroplasts capture energy from sunlight.
| morris2e_ch5_27.html | 560c2cf2757a2e125d000000 |
DLAP questions | morris2e_ch5_27_dlap.xml | 560c2cf2757a2e125d000000 |
Chapter 5 Summary | morris2e_ch5_28.html | 560c2cf2757a2e125d000000 |
DLAP questions | morris2e_ch5_28_dlap.xml | 560c2cf2757a2e125d000000 |
Chapter 6 Introduction | morris2e_ch6_1.html | 560c981a757a2ea708000000 |
DLAP questions | morris2e_ch6_1_dlap.xml | 560c981a757a2ea708000000 |
6.1 An Overview of Metabolism
| morris2e_ch6_2.html | 560c981a757a2ea708000000 |
DLAP questions | morris2e_ch6_2_dlap.xml | 560c981a757a2ea708000000 |
Organisms can be classified according to their energy and carbon sources.
| morris2e_ch6_3.html | 560c981a757a2ea708000000 |
DLAP questions | morris2e_ch6_3_dlap.xml | 560c981a757a2ea708000000 |
Metabolism is the set of chemical reactions that sustain life.
| morris2e_ch6_4.html | 560c981a757a2ea708000000 |
DLAP questions | morris2e_ch6_4_dlap.xml | 560c981a757a2ea708000000 |
6.2 Kinetic and Potential Energy
| morris2e_ch6_5.html | 560c981a757a2ea708000000 |
DLAP questions | morris2e_ch6_5_dlap.xml | 560c981a757a2ea708000000 |
Kinetic energy and potential energy are two forms of energy.
| morris2e_ch6_6.html | 560c981a757a2ea708000000 |
DLAP questions | morris2e_ch6_6_dlap.xml | 560c981a757a2ea708000000 |
Chemical energy is a form of potential energy.
| morris2e_ch6_7.html | 560c981a757a2ea708000000 |
DLAP questions | morris2e_ch6_7_dlap.xml | 560c981a757a2ea708000000 |
ATP is a readily accessible form of cellular energy.
| morris2e_ch6_8.html | 560c981a757a2ea708000000 |
DLAP questions | morris2e_ch6_8_dlap.xml | 560c981a757a2ea708000000 |
6.3 The Laws of Thermodynamics
| morris2e_ch6_9.html | 560c981a757a2ea708000000 |
DLAP questions | morris2e_ch6_9_dlap.xml | 560c981a757a2ea708000000 |
The first law of thermodynamics: Energy is conserved.
| morris2e_ch6_10.html | 560c981a757a2ea708000000 |
DLAP questions | morris2e_ch6_10_dlap.xml | 560c981a757a2ea708000000 |
The second law of thermodynamics: Energy transformations always result in an increase in disorder in the universe.
| morris2e_ch6_11.html | 560c981a757a2ea708000000 |
DLAP questions | morris2e_ch6_11_dlap.xml | 560c981a757a2ea708000000 |
6.4 Chemical Reactions
| morris2e_ch6_12.html | 560c981a757a2ea708000000 |
DLAP questions | morris2e_ch6_12_dlap.xml | 560c981a757a2ea708000000 |
A chemical reaction occurs when molecules interact.
| morris2e_ch6_13.html | 560c981a757a2ea708000000 |
DLAP questions | morris2e_ch6_13_dlap.xml | 560c981a757a2ea708000000 |
The laws of thermodynamics determine whether a chemical reaction requires or releases energy available to do work.
| morris2e_ch6_14.html | 560c981a757a2ea708000000 |
DLAP questions | morris2e_ch6_14_dlap.xml | 560c981a757a2ea708000000 |
The hydrolysis of ATP is an exergonic reaction.
| morris2e_ch6_15.html | 560c981a757a2ea708000000 |
DLAP questions | morris2e_ch6_15_dlap.xml | 560c981a757a2ea708000000 |
Non-spontaneous reactions are often coupled to spontaneous reactions.
| morris2e_ch6_16.html | 560c981a757a2ea708000000 |
DLAP questions | morris2e_ch6_16_dlap.xml | 560c981a757a2ea708000000 |
6.5 Enzymes and the Rate of Chemical Reactions
| morris2e_ch6_17.html | 560c981a757a2ea708000000 |
DLAP questions | morris2e_ch6_17_dlap.xml | 560c981a757a2ea708000000 |
Enzymes reduce the activation energy of a chemical reaction.
| morris2e_ch6_18.html | 560c981a757a2ea708000000 |
DLAP questions | morris2e_ch6_18_dlap.xml | 560c981a757a2ea708000000 |
Enzymes form a complex with reactants and products.
| morris2e_ch6_19.html | 560c981a757a2ea708000000 |
DLAP questions | morris2e_ch6_19_dlap.xml | 560c981a757a2ea708000000 |
Enzymes are highly specific.
| morris2e_ch6_20.html | 560c981a757a2ea708000000 |
DLAP questions | morris2e_ch6_20_dlap.xml | 560c981a757a2ea708000000 |
Enzyme activity can be influenced by inhibitors and activators.
| morris2e_ch6_21.html | 560c981a757a2ea708000000 |
DLAP questions | morris2e_ch6_21_dlap.xml | 560c981a757a2ea708000000 |
Allosteric enzymes regulate key metabolic pathways.
| morris2e_ch6_22.html | 560c981a757a2ea708000000 |
DLAP questions | morris2e_ch6_22_dlap.xml | 560c981a757a2ea708000000 |
Case 1: What naturally occurring elements might have spurred the first reactions that led to life?
| morris2e_ch6_23.html | 560c981a757a2ea708000000 |
DLAP questions | morris2e_ch6_23_dlap.xml | 560c981a757a2ea708000000 |
Chapter 6 Summary | morris2e_ch6_24.html | 560c981a757a2ea708000000 |
DLAP questions | morris2e_ch6_24_dlap.xml | 560c981a757a2ea708000000 |
Chapter 7 Introduction | morris2e_ch7_1.html | 560cc3ca757a2e8412000000 |
DLAP questions | morris2e_ch7_1_dlap.xml | 560cc3ca757a2e8412000000 |
7.1 An Overview of Cellular Respiration
| morris2e_ch7_2.html | 560cc3ca757a2e8412000000 |
DLAP questions | morris2e_ch7_2_dlap.xml | 560cc3ca757a2e8412000000 |
Cellular respiration uses chemical energy stored in molecules such as carbohydrates and lipids to produce ATP.
| morris2e_ch7_3.html | 560cc3ca757a2e8412000000 |
DLAP questions | morris2e_ch7_3_dlap.xml | 560cc3ca757a2e8412000000 |
ATP is generated by substrate-level phosphorylation and oxidative phosphorylation.
| morris2e_ch7_4.html | 560cc3ca757a2e8412000000 |
DLAP questions | morris2e_ch7_4_dlap.xml | 560cc3ca757a2e8412000000 |
Redox reactions play a central role in cellular respiration.
| morris2e_ch7_5.html | 560cc3ca757a2e8412000000 |
DLAP questions | morris2e_ch7_5_dlap.xml | 560cc3ca757a2e8412000000 |
Cellular respiration occurs in four stages.
| morris2e_ch7_6.html | 560cc3ca757a2e8412000000 |
DLAP questions | morris2e_ch7_6_dlap.xml | 560cc3ca757a2e8412000000 |
7.2 Glycolysis: The Splitting of Sugar
| morris2e_ch7_7.html | 560cc3ca757a2e8412000000 |
DLAP questions | morris2e_ch7_7_dlap.xml | 560cc3ca757a2e8412000000 |
Glycolysis is the partial breakdown of glucose.
| morris2e_ch7_8.html | 560cc3ca757a2e8412000000 |
DLAP questions | morris2e_ch7_8_dlap.xml | 560cc3ca757a2e8412000000 |
7.3 Pyruvate Oxidation
| morris2e_ch7_9.html | 560cc3ca757a2e8412000000 |
DLAP questions | morris2e_ch7_9_dlap.xml | 560cc3ca757a2e8412000000 |
The oxidation of pyruvate connects glycolysis to the citric acid cycle.
| morris2e_ch7_10.html | 560cc3ca757a2e8412000000 |
DLAP questions | morris2e_ch7_10_dlap.xml | 560cc3ca757a2e8412000000 |
7.4 The Citric Acid Cycle
| morris2e_ch7_11.html | 560cc3ca757a2e8412000000 |
DLAP questions | morris2e_ch7_11_dlap.xml | 560cc3ca757a2e8412000000 |
The citric acid cycle produces ATP and reduced electron carriers.
| morris2e_ch7_12.html | 560cc3ca757a2e8412000000 |
DLAP questions | morris2e_ch7_12_dlap.xml | 560cc3ca757a2e8412000000 |
Case 1: What were the earliest energy-harnessing reactions?
| morris2e_ch7_13.html | 560cc3ca757a2e8412000000 |
DLAP questions | morris2e_ch7_13_dlap.xml | 560cc3ca757a2e8412000000 |
7.5 The Electron Transport Chain and Oxidative Phosphorylation
| morris2e_ch7_14.html | 560cc3ca757a2e8412000000 |
DLAP questions | morris2e_ch7_14_dlap.xml | 560cc3ca757a2e8412000000 |
The electron transport chain transfers electrons and pumps protons.
| morris2e_ch7_15.html | 560cc3ca757a2e8412000000 |
DLAP questions | morris2e_ch7_15_dlap.xml | 560cc3ca757a2e8412000000 |
The proton gradient is a source of potential energy.
| morris2e_ch7_16.html | 560cc3ca757a2e8412000000 |
DLAP questions | morris2e_ch7_16_dlap.xml | 560cc3ca757a2e8412000000 |
ATP synthase converts the energy of the proton gradient into the energy of ATP.
| morris2e_ch7_17.html | 560cc3ca757a2e8412000000 |
DLAP questions | morris2e_ch7_17_dlap.xml | 560cc3ca757a2e8412000000 |
7.6 Anaerobic Metabolism and the Evolution of Cellular Respiration
| morris2e_ch7_18.html | 560cc3ca757a2e8412000000 |
DLAP questions | morris2e_ch7_18_dlap.xml | 560cc3ca757a2e8412000000 |
Fermentation extracts energy from glucose in the absence of oxygen.
| morris2e_ch7_19.html | 560cc3ca757a2e8412000000 |
DLAP questions | morris2e_ch7_19_dlap.xml | 560cc3ca757a2e8412000000 |
Case 1: How did early cells meet their energy requirements?
| morris2e_ch7_20.html | 560cc3ca757a2e8412000000 |
DLAP questions | morris2e_ch7_20_dlap.xml | 560cc3ca757a2e8412000000 |
7.7 Metabolic Integration
| morris2e_ch7_21.html | 560cc3ca757a2e8412000000 |
DLAP questions | morris2e_ch7_21_dlap.xml | 560cc3ca757a2e8412000000 |
Excess glucose is stored as glycogen in animals and starch in plants.
| morris2e_ch7_22.html | 560cc3ca757a2e8412000000 |
DLAP questions | morris2e_ch7_22_dlap.xml | 560cc3ca757a2e8412000000 |
Sugars other than glucose contribute to glycolysis.
| morris2e_ch7_23.html | 560cc3ca757a2e8412000000 |
DLAP questions | morris2e_ch7_23_dlap.xml | 560cc3ca757a2e8412000000 |
Fatty acids and proteins are useful sources of energy.
| morris2e_ch7_24.html | 560cc3ca757a2e8412000000 |
DLAP questions | morris2e_ch7_24_dlap.xml | 560cc3ca757a2e8412000000 |
The intracellular level of ATP is a key regulator of cellular respiration.
| morris2e_ch7_25.html | 560cc3ca757a2e8412000000 |
DLAP questions | morris2e_ch7_25_dlap.xml | 560cc3ca757a2e8412000000 |
Exercise requires several types of fuel molecules and the coordination of metabolic pathways.
| morris2e_ch7_26.html | 560cc3ca757a2e8412000000 |
DLAP questions | morris2e_ch7_26_dlap.xml | 560cc3ca757a2e8412000000 |
Chapter 7 Summary | morris2e_ch7_27.html | 560cc3ca757a2e8412000000 |
DLAP questions | morris2e_ch7_27_dlap.xml | 560cc3ca757a2e8412000000 |
Chapter 8 Introduction | morris2e_ch8_1.html | 55c1070b757a2ef415000001 |
DLAP questions | morris2e_ch8_1_dlap.xml | 55c1070b757a2ef415000001 |
8.1 Photosynthesis: An Overview
| morris2e_ch8_2.html | 55c1070b757a2ef415000001 |
DLAP questions | morris2e_ch8_2_dlap.xml | 55c1070b757a2ef415000001 |
Photosynthesis is widely distributed.
| morris2e_ch8_3.html | 55c1070b757a2ef415000001 |
DLAP questions | morris2e_ch8_3_dlap.xml | 55c1070b757a2ef415000001 |
Photosynthesis is a redox reaction.
| morris2e_ch8_4.html | 55c1070b757a2ef415000001 |
DLAP questions | morris2e_ch8_4_dlap.xml | 55c1070b757a2ef415000001 |
The photosynthetic electron transport chain takes place on specialized membranes.
| morris2e_ch8_5.html | 55c1070b757a2ef415000001 |
DLAP questions | morris2e_ch8_5_dlap.xml | 55c1070b757a2ef415000001 |
8.2 The Calvin Cycle
| morris2e_ch8_6.html | 55c1070b757a2ef415000001 |
DLAP questions | morris2e_ch8_6_dlap.xml | 55c1070b757a2ef415000001 |
The incorporation of CO2 is catalyzed by the enzyme rubisco.
| morris2e_ch8_7.html | 55c1070b757a2ef415000001 |
DLAP questions | morris2e_ch8_7_dlap.xml | 55c1070b757a2ef415000001 |
NADPH is the reducing agent of the Calvin cycle.
| morris2e_ch8_8.html | 55c1070b757a2ef415000001 |
DLAP questions | morris2e_ch8_8_dlap.xml | 55c1070b757a2ef415000001 |
The regeneration of RuBP requires ATP.
| morris2e_ch8_9.html | 55c1070b757a2ef415000001 |
DLAP questions | morris2e_ch8_9_dlap.xml | 55c1070b757a2ef415000001 |
The steps of the Calvin cycle were determined using radioactive CO2.
| morris2e_ch8_10.html | 55c1070b757a2ef415000001 |
DLAP questions | morris2e_ch8_10_dlap.xml | 55c1070b757a2ef415000001 |
Carbohydrates are stored in the form of starch.
| morris2e_ch8_11.html | 55c1070b757a2ef415000001 |
DLAP questions | morris2e_ch8_11_dlap.xml | 55c1070b757a2ef415000001 |
8.3 Capturing Sunlight Into Chemical Forms
| morris2e_ch8_12.html | 55c1070b757a2ef415000001 |
DLAP questions | morris2e_ch8_12_dlap.xml | 55c1070b757a2ef415000001 |
Chlorophyll is the major entry point for light energy in photosynthesis.
| morris2e_ch8_13.html | 55c1070b757a2ef415000001 |
DLAP questions | morris2e_ch8_13_dlap.xml | 55c1070b757a2ef415000001 |
Photosystems use light energy to drive the photosynthetic electron transport chain.
| morris2e_ch8_14.html | 55c1070b757a2ef415000001 |
DLAP questions | morris2e_ch8_14_dlap.xml | 55c1070b757a2ef415000001 |
The photosynthetic electron transport chain connects two photosystems.
| morris2e_ch8_15.html | 55c1070b757a2ef415000001 |
DLAP questions | morris2e_ch8_15_dlap.xml | 55c1070b757a2ef415000001 |
The accumulation of protons in the thylakoid lumen drives the synthesis of ATP.
| morris2e_ch8_16.html | 55c1070b757a2ef415000001 |
DLAP questions | morris2e_ch8_16_dlap.xml | 55c1070b757a2ef415000001 |
Cyclic electron transport increases the production of ATP.
| morris2e_ch8_17.html | 55c1070b757a2ef415000001 |
DLAP questions | morris2e_ch8_17_dlap.xml | 55c1070b757a2ef415000001 |
8.4 Challenges to Photosynthetic Efficiency
| morris2e_ch8_18.html | 55c1070b757a2ef415000001 |
DLAP questions | morris2e_ch8_18_dlap.xml | 55c1070b757a2ef415000001 |
Excess light energy can cause damage.
| morris2e_ch8_19.html | 55c1070b757a2ef415000001 |
DLAP questions | morris2e_ch8_19_dlap.xml | 55c1070b757a2ef415000001 |
Photorespiration leads to a net loss of energy and carbon.
| morris2e_ch8_20.html | 55c1070b757a2ef415000001 |
DLAP questions | morris2e_ch8_20_dlap.xml | 55c1070b757a2ef415000001 |
Photosynthesis captures just a small percentage of incoming solar energy.
| morris2e_ch8_21.html | 55c1070b757a2ef415000001 |
DLAP questions | morris2e_ch8_21_dlap.xml | 55c1070b757a2ef415000001 |
8.5 The Evolution of Photosynthesis
| morris2e_ch8_22.html | 55c1070b757a2ef415000001 |
DLAP questions | morris2e_ch8_22_dlap.xml | 55c1070b757a2ef415000001 |
Case 1: How did early cells use sunlight to meet their energy requirements?
| morris2e_ch8_23.html | 55c1070b757a2ef415000001 |
DLAP questions | morris2e_ch8_23_dlap.xml | 55c1070b757a2ef415000001 |
The ability to use water as an electron donor in photosynthesis evolved in cyanobacteria.
| morris2e_ch8_24.html | 55c1070b757a2ef415000001 |
DLAP questions | morris2e_ch8_24_dlap.xml | 55c1070b757a2ef415000001 |
Eukaryotic organisms are believed to have gained photosynthesis by endosymbiosis.
| morris2e_ch8_25.html | 55c1070b757a2ef415000001 |
DLAP questions | morris2e_ch8_25_dlap.xml | 55c1070b757a2ef415000001 |
Chapter 8 Summary | morris2e_ch8_26.html | 55c1070b757a2ef415000001 |
DLAP questions | morris2e_ch8_26_dlap.xml | 55c1070b757a2ef415000001 |
Chapter 9 Introduction | morris2e_ch9_1.html | 560d81cd757a2eaa69000000 |
DLAP questions | morris2e_ch9_1_dlap.xml | 560d81cd757a2eaa69000000 |
9.1 Principles of Cell Communication
| morris2e_ch9_2.html | 560d81cd757a2eaa69000000 |
DLAP questions | morris2e_ch9_2_dlap.xml | 560d81cd757a2eaa69000000 |
Cells communicate using chemical signals that bind to specific receptors.
| morris2e_ch9_3.html | 560d81cd757a2eaa69000000 |
DLAP questions | morris2e_ch9_3_dlap.xml | 560d81cd757a2eaa69000000 |
Signaling involves receptor activation, signal transduction, response, and termination.
| morris2e_ch9_4.html | 560d81cd757a2eaa69000000 |
DLAP questions | morris2e_ch9_4_dlap.xml | 560d81cd757a2eaa69000000 |
9.2 Cell Signaling Over Long and Short Distances
| morris2e_ch9_5.html | 560d81cd757a2eaa69000000 |
DLAP questions | morris2e_ch9_5_dlap.xml | 560d81cd757a2eaa69000000 |
Endocrine signaling acts over long distances.
| morris2e_ch9_6.html | 560d81cd757a2eaa69000000 |
DLAP questions | morris2e_ch9_6_dlap.xml | 560d81cd757a2eaa69000000 |
Signaling can occur over short distances.
| morris2e_ch9_7.html | 560d81cd757a2eaa69000000 |
DLAP questions | morris2e_ch9_7_dlap.xml | 560d81cd757a2eaa69000000 |
Signaling can occur by direct cellâcell contact.
| morris2e_ch9_8.html | 560d81cd757a2eaa69000000 |
DLAP questions | morris2e_ch9_8_dlap.xml | 560d81cd757a2eaa69000000 |
9.3 Cell-Surface and Intracellular Receptors
| morris2e_ch9_9.html | 560d81cd757a2eaa69000000 |
DLAP questions | morris2e_ch9_9_dlap.xml | 560d81cd757a2eaa69000000 |
Receptors for polar signaling molecules are on the cell surface.
| morris2e_ch9_10.html | 560d81cd757a2eaa69000000 |
DLAP questions | morris2e_ch9_10_dlap.xml | 560d81cd757a2eaa69000000 |
Receptors for nonpolar signaling molecules are in the interior of the cell.
| morris2e_ch9_11.html | 560d81cd757a2eaa69000000 |
DLAP questions | morris2e_ch9_11_dlap.xml | 560d81cd757a2eaa69000000 |
Cell-surface receptors act like molecular switches.
| morris2e_ch9_12.html | 560d81cd757a2eaa69000000 |
DLAP questions | morris2e_ch9_12_dlap.xml | 560d81cd757a2eaa69000000 |
9.4 G Protein-Coupled Receptors and Short-Term Responses
| morris2e_ch9_13.html | 560d81cd757a2eaa69000000 |
DLAP questions | morris2e_ch9_13_dlap.xml | 560d81cd757a2eaa69000000 |
The first step in cell signaling is receptor activation.
| morris2e_ch9_14.html | 560d81cd757a2eaa69000000 |
DLAP questions | morris2e_ch9_14_dlap.xml | 560d81cd757a2eaa69000000 |
Signals are often amplified in the cytosol.
| morris2e_ch9_15.html | 560d81cd757a2eaa69000000 |
DLAP questions | morris2e_ch9_15_dlap.xml | 560d81cd757a2eaa69000000 |
Signals lead to a cellular response.
| morris2e_ch9_16.html | 560d81cd757a2eaa69000000 |
DLAP questions | morris2e_ch9_16_dlap.xml | 560d81cd757a2eaa69000000 |
Signaling pathways are eventually terminated.
| morris2e_ch9_17.html | 560d81cd757a2eaa69000000 |
DLAP questions | morris2e_ch9_17_dlap.xml | 560d81cd757a2eaa69000000 |
9.5 Receptor Kinases and Long-Term Responses
| morris2e_ch9_18.html | 560d81cd757a2eaa69000000 |
DLAP questions | morris2e_ch9_18_dlap.xml | 560d81cd757a2eaa69000000 |
Receptor kinases phosphorylate each other, activate intracellular signaling pathways, lead to a response, and are terminated.
| morris2e_ch9_19.html | 560d81cd757a2eaa69000000 |
DLAP questions | morris2e_ch9_19_dlap.xml | 560d81cd757a2eaa69000000 |
Case 2: How do cell signaling errors lead to cancer?
| morris2e_ch9_20.html | 560d81cd757a2eaa69000000 |
DLAP questions | morris2e_ch9_20_dlap.xml | 560d81cd757a2eaa69000000 |
Signaling pathways are integrated to produce a response in a cell.
| morris2e_ch9_21.html | 560d81cd757a2eaa69000000 |
DLAP questions | morris2e_ch9_21_dlap.xml | 560d81cd757a2eaa69000000 |
Chapter 9 Summary | morris2e_ch9_22.html | 560d81cd757a2eaa69000000 |
DLAP questions | morris2e_ch9_22_dlap.xml | 560d81cd757a2eaa69000000 |
Chapter 10 Introduction | morris2e_ch10_1.html | 560d8e93757a2e7c70000000 |
DLAP questions | morris2e_ch10_1_dlap.xml | 560d8e93757a2e7c70000000 |
10.1 Tissues and Organs
| morris2e_ch10_2.html | 560d8e93757a2e7c70000000 |
DLAP questions | morris2e_ch10_2_dlap.xml | 560d8e93757a2e7c70000000 |
Tissues and organs are communities of cells.
| morris2e_ch10_3.html | 560d8e93757a2e7c70000000 |
DLAP questions | morris2e_ch10_3_dlap.xml | 560d8e93757a2e7c70000000 |
The structure of skin relates to its function.
| morris2e_ch10_4.html | 560d8e93757a2e7c70000000 |
DLAP questions | morris2e_ch10_4_dlap.xml | 560d8e93757a2e7c70000000 |
10.2 The Cytoskeleton
| morris2e_ch10_5.html | 560d8e93757a2e7c70000000 |
DLAP questions | morris2e_ch10_5_dlap.xml | 560d8e93757a2e7c70000000 |
Microtubules and microfilaments are polymers of protein subunits.
| morris2e_ch10_6.html | 560d8e93757a2e7c70000000 |
DLAP questions | morris2e_ch10_6_dlap.xml | 560d8e93757a2e7c70000000 |
Microtubules and microfilaments are dynamic structures.
| morris2e_ch10_7.html | 560d8e93757a2e7c70000000 |
DLAP questions | morris2e_ch10_7_dlap.xml | 560d8e93757a2e7c70000000 |
Motor proteins associate with microtubules and microfilaments to cause movement.
| morris2e_ch10_8.html | 560d8e93757a2e7c70000000 |
DLAP questions | morris2e_ch10_8_dlap.xml | 560d8e93757a2e7c70000000 |
Intermediate filaments are polymers of proteins that vary according to cell type.
| morris2e_ch10_9.html | 560d8e93757a2e7c70000000 |
DLAP questions | morris2e_ch10_9_dlap.xml | 560d8e93757a2e7c70000000 |
The cytoskeleton is an ancient feature of cells.
| morris2e_ch10_10.html | 560d8e93757a2e7c70000000 |
DLAP questions | morris2e_ch10_10_dlap.xml | 560d8e93757a2e7c70000000 |
10.3 Cell Junctions
| morris2e_ch10_11.html | 560d8e93757a2e7c70000000 |
DLAP questions | morris2e_ch10_11_dlap.xml | 560d8e93757a2e7c70000000 |
Cell adhesion molecules allow cells to attach to other cells and to the extracellular matrix.
| morris2e_ch10_12.html | 560d8e93757a2e7c70000000 |
DLAP questions | morris2e_ch10_12_dlap.xml | 560d8e93757a2e7c70000000 |
Anchoring junctions connect adjacent cells and are reinforced by the cytoskeleton.
| morris2e_ch10_13.html | 560d8e93757a2e7c70000000 |
DLAP questions | morris2e_ch10_13_dlap.xml | 560d8e93757a2e7c70000000 |
Tight junctions prevent the movement of substances through the space between cells.
| morris2e_ch10_14.html | 560d8e93757a2e7c70000000 |
DLAP questions | morris2e_ch10_14_dlap.xml | 560d8e93757a2e7c70000000 |
Communicating junctions allow the passage of molecules between cells.
| morris2e_ch10_15.html | 560d8e93757a2e7c70000000 |
DLAP questions | morris2e_ch10_15_dlap.xml | 560d8e93757a2e7c70000000 |
10.4 The Extracellular Matrix
| morris2e_ch10_16.html | 560d8e93757a2e7c70000000 |
DLAP questions | morris2e_ch10_16_dlap.xml | 560d8e93757a2e7c70000000 |
The extracellular matrix of plants is the cell wall.
| morris2e_ch10_17.html | 560d8e93757a2e7c70000000 |
DLAP questions | morris2e_ch10_17_dlap.xml | 560d8e93757a2e7c70000000 |
The extracellular matrix is abundant in connective tissues of animals.
| morris2e_ch10_18.html | 560d8e93757a2e7c70000000 |
DLAP questions | morris2e_ch10_18_dlap.xml | 560d8e93757a2e7c70000000 |
Case 2: How do cancer cells spread throughout the body?
| morris2e_ch10_19.html | 560d8e93757a2e7c70000000 |
DLAP questions | morris2e_ch10_19_dlap.xml | 560d8e93757a2e7c70000000 |
Extracellular matrix proteins influence cell shape and gene expression.
| morris2e_ch10_20.html | 560d8e93757a2e7c70000000 |
DLAP questions | morris2e_ch10_20_dlap.xml | 560d8e93757a2e7c70000000 |
Chapter 10 Summary | morris2e_ch10_21.html | 560d8e93757a2e7c70000000 |
DLAP questions | morris2e_ch10_21_dlap.xml | 560d8e93757a2e7c70000000 |
Chapter 11 Introduction | morris2e_ch11_1.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_1_dlap.xml | 560f1e98757a2e2008000000 |
11.1 Cell Division
| morris2e_ch11_2.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_2_dlap.xml | 560f1e98757a2e2008000000 |
Prokaryotic cells reproduce by binary fission.
| morris2e_ch11_3.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_3_dlap.xml | 560f1e98757a2e2008000000 |
Eukaryotic cells reproduce by mitotic cell division.
| morris2e_ch11_4.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_4_dlap.xml | 560f1e98757a2e2008000000 |
The cell cycle describes the life cycle of a eukaryotic cell.
| morris2e_ch11_5.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_5_dlap.xml | 560f1e98757a2e2008000000 |
11.2 Mitotic Cell Division
| morris2e_ch11_6.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_6_dlap.xml | 560f1e98757a2e2008000000 |
The DNA of eukaryotic cells is organized as chromosomes.
| morris2e_ch11_7.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_7_dlap.xml | 560f1e98757a2e2008000000 |
Prophase: Chromosomes condense and become visible.
| morris2e_ch11_8.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_8_dlap.xml | 560f1e98757a2e2008000000 |
Prometaphase: Chromosomes attach to the mitotic spindle.
| morris2e_ch11_9.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_9_dlap.xml | 560f1e98757a2e2008000000 |
Metaphase: Chromosomes align as a result of dynamic changes in the mitotic spindle.
| morris2e_ch11_10.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_10_dlap.xml | 560f1e98757a2e2008000000 |
Anaphase: Sister chromatids fully separate.
| morris2e_ch11_11.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_11_dlap.xml | 560f1e98757a2e2008000000 |
Telophase: Nuclear envelopes re-form around newly segregated chromosomes.
| morris2e_ch11_12.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_12_dlap.xml | 560f1e98757a2e2008000000 |
The parent cell divides into two daughter cells by cytokinesis.
| morris2e_ch11_13.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_13_dlap.xml | 560f1e98757a2e2008000000 |
11.3 Meiotic Cell Division
| morris2e_ch11_14.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_14_dlap.xml | 560f1e98757a2e2008000000 |
Pairing of homologous chromosomes is unique to meiosis.
| morris2e_ch11_15.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_15_dlap.xml | 560f1e98757a2e2008000000 |
Crossing over between DNA molecules results in exchange of genetic material.
| morris2e_ch11_16.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_16_dlap.xml | 560f1e98757a2e2008000000 |
The first meiotic division brings about the reduction in chromosome number.
| morris2e_ch11_17.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_17_dlap.xml | 560f1e98757a2e2008000000 |
The second meiotic division resembles mitosis.
| morris2e_ch11_18.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_18_dlap.xml | 560f1e98757a2e2008000000 |
Division of the cytoplasm often differs between the sexes.
| morris2e_ch11_19.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_19_dlap.xml | 560f1e98757a2e2008000000 |
Meiosis is the basis of sexual reproduction.
| morris2e_ch11_20.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_20_dlap.xml | 560f1e98757a2e2008000000 |
11.4 Regulation of the Cell Cycle
| morris2e_ch11_21.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_21_dlap.xml | 560f1e98757a2e2008000000 |
Protein phosphorylation controls passage through the cell cycle.
| morris2e_ch11_22.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_22_dlap.xml | 560f1e98757a2e2008000000 |
Different cyclinâCDK complexes regulate each stage of the cell cycle.
| morris2e_ch11_23.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_23_dlap.xml | 560f1e98757a2e2008000000 |
Cell cycle progression requires successful passage through multiple checkpoints.
| morris2e_ch11_24.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_24_dlap.xml | 560f1e98757a2e2008000000 |
11.5 Case 2: What Genes Are Involded in Cancer?
| morris2e_ch11_25.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_25_dlap.xml | 560f1e98757a2e2008000000 |
Oncogenes promote cancer.
| morris2e_ch11_26.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_26_dlap.xml | 560f1e98757a2e2008000000 |
Proto-oncogenes are genes that when mutated may cause cancer.
| morris2e_ch11_27.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_27_dlap.xml | 560f1e98757a2e2008000000 |
Tumor suppressors block specific steps in the development of cancer.
| morris2e_ch11_28.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_28_dlap.xml | 560f1e98757a2e2008000000 |
Most cancers require the accumulation of multiple mutations.
| morris2e_ch11_29.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_29_dlap.xml | 560f1e98757a2e2008000000 |
Chapter 11 Summary | morris2e_ch11_30.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_30_dlap.xml | 560f1e98757a2e2008000000 |
Chapter 12 Introduction | morris2e_ch12_1.html | 56129377757a2ed432000000 |
DLAP questions | morris2e_ch12_1_dlap.xml | 56129377757a2ed432000000 |
12.1 DNA Replication
| morris2e_ch12_2.html | 56129377757a2ed432000000 |
DLAP questions | morris2e_ch12_2_dlap.xml | 56129377757a2ed432000000 |
During DNA replication, the parental strands separate and new partners are made.
| morris2e_ch12_3.html | 56129377757a2ed432000000 |
DLAP questions | morris2e_ch12_3_dlap.xml | 56129377757a2ed432000000 |
New DNA strands grow by the addition of nucleotides to the 3â² end.
| morris2e_ch12_4.html | 56129377757a2ed432000000 |
DLAP questions | morris2e_ch12_4_dlap.xml | 56129377757a2ed432000000 |
In replicating DNA, one daughter strand is synthesized continuously and the other in a series of short pieces.
| morris2e_ch12_5.html | 56129377757a2ed432000000 |
DLAP questions | morris2e_ch12_5_dlap.xml | 56129377757a2ed432000000 |
A small stretch of RNA is needed to begin synthesis of a new DNA strand.
| morris2e_ch12_6.html | 56129377757a2ed432000000 |
DLAP questions | morris2e_ch12_6_dlap.xml | 56129377757a2ed432000000 |
Synthesis of the leading and lagging strands is coordinated.
| morris2e_ch12_7.html | 56129377757a2ed432000000 |
DLAP questions | morris2e_ch12_7_dlap.xml | 56129377757a2ed432000000 |
DNA polymerase is self-correcting because of its proofreading function.
| morris2e_ch12_8.html | 56129377757a2ed432000000 |
DLAP questions | morris2e_ch12_8_dlap.xml | 56129377757a2ed432000000 |
12.2 Replication of Chromosomes
| morris2e_ch12_9.html | 56129377757a2ed432000000 |
DLAP questions | morris2e_ch12_9_dlap.xml | 56129377757a2ed432000000 |
Replication of DNA in chromosomes starts at many places almost simultaneously.
| morris2e_ch12_10.html | 56129377757a2ed432000000 |
DLAP questions | morris2e_ch12_10_dlap.xml | 56129377757a2ed432000000 |
Telomerase restores tips of linear chromosomes shortened during DNA replication.
| morris2e_ch12_11.html | 56129377757a2ed432000000 |
DLAP questions | morris2e_ch12_11_dlap.xml | 56129377757a2ed432000000 |
12.3 Isolation, Identification, and Sequencing of DNA Fragments
| morris2e_ch12_12.html | 56129377757a2ed432000000 |
DLAP questions | morris2e_ch12_12_dlap.xml | 56129377757a2ed432000000 |
The polymerase chain reaction selectively amplifies regions of DNA.
| morris2e_ch12_13.html | 56129377757a2ed432000000 |
DLAP questions | morris2e_ch12_13_dlap.xml | 56129377757a2ed432000000 |
Electrophoresis separates DNA fragments by size.
| morris2e_ch12_14.html | 56129377757a2ed432000000 |
DLAP questions | morris2e_ch12_14_dlap.xml | 56129377757a2ed432000000 |
Restriction enzymes cleave DNA at particular short sequences.
| morris2e_ch12_15.html | 56129377757a2ed432000000 |
DLAP questions | morris2e_ch12_15_dlap.xml | 56129377757a2ed432000000 |
DNA strands can be separated and brought back together again.
| morris2e_ch12_16.html | 56129377757a2ed432000000 |
DLAP questions | morris2e_ch12_16_dlap.xml | 56129377757a2ed432000000 |
DNA sequencing makes use of the principles of DNA replication.
| morris2e_ch12_17.html | 56129377757a2ed432000000 |
DLAP questions | morris2e_ch12_17_dlap.xml | 56129377757a2ed432000000 |
Case 3: What new technologies are being developed to sequence your personal genome?
| morris2e_ch12_18.html | 56129377757a2ed432000000 |
DLAP questions | morris2e_ch12_18_dlap.xml | 56129377757a2ed432000000 |
12.4 Genetic Engineering
| morris2e_ch12_19.html | 56129377757a2ed432000000 |
DLAP questions | morris2e_ch12_19_dlap.xml | 56129377757a2ed432000000 |
Recombinant DNA combines DNA molecules from two or more sources.
| morris2e_ch12_20.html | 56129377757a2ed432000000 |
DLAP questions | morris2e_ch12_20_dlap.xml | 56129377757a2ed432000000 |
Recombinant DNA is the basis of genetically modified organisms.
| morris2e_ch12_21.html | 56129377757a2ed432000000 |
DLAP questions | morris2e_ch12_21_dlap.xml | 56129377757a2ed432000000 |
DNA editing can be used to alter gene sequences almost at will.
| morris2e_ch12_22.html | 56129377757a2ed432000000 |
DLAP questions | morris2e_ch12_22_dlap.xml | 56129377757a2ed432000000 |
Chapter 12 Summary | morris2e_ch12_23.html | 56129377757a2ed432000000 |
DLAP questions | morris2e_ch12_23_dlap.xml | 56129377757a2ed432000000 |
Chapter 13 Introduction | morris2e_ch13_1.html | 5612a66a757a2e9c58000000 |
DLAP questions | morris2e_ch13_1_dlap.xml | 5612a66a757a2e9c58000000 |
13.1 Genome Sequencing
| morris2e_ch13_2.html | 5612a66a757a2e9c58000000 |
DLAP questions | morris2e_ch13_2_dlap.xml | 5612a66a757a2e9c58000000 |
Complete genome sequences are assembled from smaller pieces.
| morris2e_ch13_3.html | 5612a66a757a2e9c58000000 |
DLAP questions | morris2e_ch13_3_dlap.xml | 5612a66a757a2e9c58000000 |
Sequences that are repeated complicate sequence assembly.
| morris2e_ch13_4.html | 5612a66a757a2e9c58000000 |
DLAP questions | morris2e_ch13_4_dlap.xml | 5612a66a757a2e9c58000000 |
Case 3: Why sequence your personal genome?
| morris2e_ch13_5.html | 5612a66a757a2e9c58000000 |
DLAP questions | morris2e_ch13_5_dlap.xml | 5612a66a757a2e9c58000000 |
13.2 Genome Annotation
| morris2e_ch13_6.html | 5612a66a757a2e9c58000000 |
DLAP questions | morris2e_ch13_6_dlap.xml | 5612a66a757a2e9c58000000 |
Genome annotation identifies various types of sequence.
| morris2e_ch13_7.html | 5612a66a757a2e9c58000000 |
DLAP questions | morris2e_ch13_7_dlap.xml | 5612a66a757a2e9c58000000 |
Genome annotation includes searching for sequence motifs.
| morris2e_ch13_8.html | 5612a66a757a2e9c58000000 |
DLAP questions | morris2e_ch13_8_dlap.xml | 5612a66a757a2e9c58000000 |
Comparison of genomic DNA with messenger RNA reveals the intronâexon structure of genes.
| morris2e_ch13_9.html | 5612a66a757a2e9c58000000 |
DLAP questions | morris2e_ch13_9_dlap.xml | 5612a66a757a2e9c58000000 |
An annotated genome summarizes knowledge, guides research, and reveals evolutionary relationships among organisms.
| morris2e_ch13_10.html | 5612a66a757a2e9c58000000 |
DLAP questions | morris2e_ch13_10_dlap.xml | 5612a66a757a2e9c58000000 |
The HIV genome illustrates the utility of genome annotation and comparison.
| morris2e_ch13_11.html | 5612a66a757a2e9c58000000 |
DLAP questions | morris2e_ch13_11_dlap.xml | 5612a66a757a2e9c58000000 |
13.3 Gene Number, Genome Size, and Organismal Complexity
| morris2e_ch13_12.html | 5612a66a757a2e9c58000000 |
DLAP questions | morris2e_ch13_12_dlap.xml | 5612a66a757a2e9c58000000 |
Gene number is not a good predictor of biological complexity.
| morris2e_ch13_13.html | 5612a66a757a2e9c58000000 |
DLAP questions | morris2e_ch13_13_dlap.xml | 5612a66a757a2e9c58000000 |
Viruses, bacteria, and archaeons have small, compact genomes.
| morris2e_ch13_14.html | 5612a66a757a2e9c58000000 |
DLAP questions | morris2e_ch13_14_dlap.xml | 5612a66a757a2e9c58000000 |
Among eukaryotes, there is no relationship between genome size and organismal complexity.
| morris2e_ch13_15.html | 5612a66a757a2e9c58000000 |
DLAP questions | morris2e_ch13_15_dlap.xml | 5612a66a757a2e9c58000000 |
About half of the human genome consists of transposable elements and other types of repetitive DNA.
| morris2e_ch13_16.html | 5612a66a757a2e9c58000000 |
DLAP questions | morris2e_ch13_16_dlap.xml | 5612a66a757a2e9c58000000 |
13.4 Organization of Genomes
| morris2e_ch13_17.html | 5612a66a757a2e9c58000000 |
DLAP questions | morris2e_ch13_17_dlap.xml | 5612a66a757a2e9c58000000 |
Bacterial cells package their DNA as a nucleoid composed of many loops.
| morris2e_ch13_18.html | 5612a66a757a2e9c58000000 |
DLAP questions | morris2e_ch13_18_dlap.xml | 5612a66a757a2e9c58000000 |
Eukaryotic cells package their DNA as one molecule per chromosome.
| morris2e_ch13_19.html | 5612a66a757a2e9c58000000 |
DLAP questions | morris2e_ch13_19_dlap.xml | 5612a66a757a2e9c58000000 |
The human genome consists of 22 pairs of chromosomes and two sex chromosomes.
| morris2e_ch13_20.html | 5612a66a757a2e9c58000000 |
DLAP questions | morris2e_ch13_20_dlap.xml | 5612a66a757a2e9c58000000 |
Organelle DNA forms nucleoids that differ from those in bacteria.
| morris2e_ch13_21.html | 5612a66a757a2e9c58000000 |
DLAP questions | morris2e_ch13_21_dlap.xml | 5612a66a757a2e9c58000000 |
13.5 Viruses and Viral Genomes
| morris2e_ch13_22.html | 5612a66a757a2e9c58000000 |
DLAP questions | morris2e_ch13_22_dlap.xml | 5612a66a757a2e9c58000000 |
Viruses can be classified by their genomes.
| morris2e_ch13_23.html | 5612a66a757a2e9c58000000 |
DLAP questions | morris2e_ch13_23_dlap.xml | 5612a66a757a2e9c58000000 |
The host range of a virus is determined by viral and host surface proteins.
| morris2e_ch13_24.html | 5612a66a757a2e9c58000000 |
DLAP questions | morris2e_ch13_24_dlap.xml | 5612a66a757a2e9c58000000 |
Viruses have diverse sizes and shapes.
| morris2e_ch13_25.html | 5612a66a757a2e9c58000000 |
DLAP questions | morris2e_ch13_25_dlap.xml | 5612a66a757a2e9c58000000 |
Viruses are capable of self-assembly.
| morris2e_ch13_26.html | 5612a66a757a2e9c58000000 |
DLAP questions | morris2e_ch13_26_dlap.xml | 5612a66a757a2e9c58000000 |
Chapter 13 Summary | morris2e_ch13_27.html | 5612a66a757a2e9c58000000 |
DLAP questions | morris2e_ch13_27_dlap.xml | 5612a66a757a2e9c58000000 |
Chapter 14 Introduction | morris2e_ch14_1.html | 5612b666757a2ef45d000000 |
DLAP questions | morris2e_ch14_1_dlap.xml | 5612b666757a2ef45d000000 |
14.1 The Rate and Nature of Mutations
| morris2e_ch14_2.html | 5612b666757a2ef45d000000 |
DLAP questions | morris2e_ch14_2_dlap.xml | 5612b666757a2ef45d000000 |
For individual nucleotides, mutation is a rare event.
| morris2e_ch14_3.html | 5612b666757a2ef45d000000 |
DLAP questions | morris2e_ch14_3_dlap.xml | 5612b666757a2ef45d000000 |
Across the genome as a whole, mutation is common.
| morris2e_ch14_4.html | 5612b666757a2ef45d000000 |
DLAP questions | morris2e_ch14_4_dlap.xml | 5612b666757a2ef45d000000 |
Only germ-line mutations are transmitted to progeny.
| morris2e_ch14_5.html | 5612b666757a2ef45d000000 |
DLAP questions | morris2e_ch14_5_dlap.xml | 5612b666757a2ef45d000000 |
Case 3: What can your personal genome tell you about your genetic risk factors?
| morris2e_ch14_6.html | 5612b666757a2ef45d000000 |
DLAP questions | morris2e_ch14_6_dlap.xml | 5612b666757a2ef45d000000 |
Mutations are random with regard to an organismâs needs.
| morris2e_ch14_7.html | 5612b666757a2ef45d000000 |
DLAP questions | morris2e_ch14_7_dlap.xml | 5612b666757a2ef45d000000 |
14.2 Small-Scale Mutations
| morris2e_ch14_8.html | 5612b666757a2ef45d000000 |
DLAP questions | morris2e_ch14_8_dlap.xml | 5612b666757a2ef45d000000 |
Point mutations are changes in a single nucleotide.
| morris2e_ch14_9.html | 5612b666757a2ef45d000000 |
DLAP questions | morris2e_ch14_9_dlap.xml | 5612b666757a2ef45d000000 |
Small insertions and deletions involve several nucleotides.
| morris2e_ch14_10.html | 5612b666757a2ef45d000000 |
DLAP questions | morris2e_ch14_10_dlap.xml | 5612b666757a2ef45d000000 |
Some mutations are due to the insertion of a transposable element.
| morris2e_ch14_11.html | 5612b666757a2ef45d000000 |
DLAP questions | morris2e_ch14_11_dlap.xml | 5612b666757a2ef45d000000 |
14.3 Chromosomal Mutations
| morris2e_ch14_12.html | 5612b666757a2ef45d000000 |
DLAP questions | morris2e_ch14_12_dlap.xml | 5612b666757a2ef45d000000 |
Duplications and deletions result in gain or loss of DNA.
| morris2e_ch14_13.html | 5612b666757a2ef45d000000 |
DLAP questions | morris2e_ch14_13_dlap.xml | 5612b666757a2ef45d000000 |
Gene families arise from gene duplication and evolutionary divergence.
| morris2e_ch14_14.html | 5612b666757a2ef45d000000 |
DLAP questions | morris2e_ch14_14_dlap.xml | 5612b666757a2ef45d000000 |
An inversion has a chromosomal region reversed in orientation.
| morris2e_ch14_15.html | 5612b666757a2ef45d000000 |
DLAP questions | morris2e_ch14_15_dlap.xml | 5612b666757a2ef45d000000 |
A reciprocal translocation joins segments from nonhomologous chromosomes.
| morris2e_ch14_16.html | 5612b666757a2ef45d000000 |
DLAP questions | morris2e_ch14_16_dlap.xml | 5612b666757a2ef45d000000 |
14.4 DNA Damage and Repair
| morris2e_ch14_17.html | 5612b666757a2ef45d000000 |
DLAP questions | morris2e_ch14_17_dlap.xml | 5612b666757a2ef45d000000 |
DNA damage can affect both DNA backbone and bases.
| morris2e_ch14_18.html | 5612b666757a2ef45d000000 |
DLAP questions | morris2e_ch14_18_dlap.xml | 5612b666757a2ef45d000000 |
Most DNA damage is corrected by specialized repair enzymes.
| morris2e_ch14_19.html | 5612b666757a2ef45d000000 |
DLAP questions | morris2e_ch14_19_dlap.xml | 5612b666757a2ef45d000000 |
Chapter 14 Summary | morris2e_ch14_20.html | 5612b666757a2ef45d000000 |
DLAP questions | morris2e_ch14_20_dlap.xml | 5612b666757a2ef45d000000 |
Chapter 15 Introduction | morris2e_ch15_1.html | 5612c44e757a2ece66000000 |
DLAP questions | morris2e_ch15_1_dlap.xml | 5612c44e757a2ece66000000 |
15.1 Genotype and Phenotype
| morris2e_ch15_2.html | 5612c44e757a2ece66000000 |
DLAP questions | morris2e_ch15_2_dlap.xml | 5612c44e757a2ece66000000 |
Genotype is the genetic makeup of a cell or organism; phenotype is its observed characteristics.
| morris2e_ch15_3.html | 5612c44e757a2ece66000000 |
DLAP questions | morris2e_ch15_3_dlap.xml | 5612c44e757a2ece66000000 |
The effect of a genotype often depends on several factors.
| morris2e_ch15_4.html | 5612c44e757a2ece66000000 |
DLAP questions | morris2e_ch15_4_dlap.xml | 5612c44e757a2ece66000000 |
Some genetic differences are major risk factors for disease.
| morris2e_ch15_5.html | 5612c44e757a2ece66000000 |
DLAP questions | morris2e_ch15_5_dlap.xml | 5612c44e757a2ece66000000 |
Not all genetic differences are harmful.
| morris2e_ch15_6.html | 5612c44e757a2ece66000000 |
DLAP questions | morris2e_ch15_6_dlap.xml | 5612c44e757a2ece66000000 |
A few genetic differences are beneficial.
| morris2e_ch15_7.html | 5612c44e757a2ece66000000 |
DLAP questions | morris2e_ch15_7_dlap.xml | 5612c44e757a2ece66000000 |
15.2 Genetic Variation and Individual Uniqueness
| morris2e_ch15_8.html | 5612c44e757a2ece66000000 |
DLAP questions | morris2e_ch15_8_dlap.xml | 5612c44e757a2ece66000000 |
Areas of the genome with variable numbers of tandem repeats are useful in DNA typing.
| morris2e_ch15_9.html | 5612c44e757a2ece66000000 |
DLAP questions | morris2e_ch15_9_dlap.xml | 5612c44e757a2ece66000000 |
Some polymorphisms add or remove restriction sites in the DNA.
| morris2e_ch15_10.html | 5612c44e757a2ece66000000 |
DLAP questions | morris2e_ch15_10_dlap.xml | 5612c44e757a2ece66000000 |
15.3 Genomewide Studies of Genetic Variation
| morris2e_ch15_11.html | 5612c44e757a2ece66000000 |
DLAP questions | morris2e_ch15_11_dlap.xml | 5612c44e757a2ece66000000 |
Single-nucleotide polymorphisms (SNPs) are single-base changes in the genome.
| morris2e_ch15_12.html | 5612c44e757a2ece66000000 |
DLAP questions | morris2e_ch15_12_dlap.xml | 5612c44e757a2ece66000000 |
Case 3: How can genetic risk factors be detected?
| morris2e_ch15_13.html | 5612c44e757a2ece66000000 |
DLAP questions | morris2e_ch15_13_dlap.xml | 5612c44e757a2ece66000000 |
Copy-number variation constitutes a significant proportion of genetic variation.
| morris2e_ch15_14.html | 5612c44e757a2ece66000000 |
DLAP questions | morris2e_ch15_14_dlap.xml | 5612c44e757a2ece66000000 |
15.4 Genetic Variation in Chromosomes
| morris2e_ch15_15.html | 5612c44e757a2ece66000000 |
DLAP questions | morris2e_ch15_15_dlap.xml | 5612c44e757a2ece66000000 |
Nondisjunction in meiosis results in extra or missing chromosomes.
| morris2e_ch15_16.html | 5612c44e757a2ece66000000 |
DLAP questions | morris2e_ch15_16_dlap.xml | 5612c44e757a2ece66000000 |
Some human disorders result from nondisjunction.
| morris2e_ch15_17.html | 5612c44e757a2ece66000000 |
DLAP questions | morris2e_ch15_17_dlap.xml | 5612c44e757a2ece66000000 |
Extra or missing sex chromosomes have fewer effects than extra autosomes.
| morris2e_ch15_18.html | 5612c44e757a2ece66000000 |
DLAP questions | morris2e_ch15_18_dlap.xml | 5612c44e757a2ece66000000 |
Nondisjunction is a major cause of spontaneous abortion.
| morris2e_ch15_19.html | 5612c44e757a2ece66000000 |
DLAP questions | morris2e_ch15_19_dlap.xml | 5612c44e757a2ece66000000 |
Chapter 15 Summary | morris2e_ch15_20.html | 5612c44e757a2ece66000000 |
DLAP questions | morris2e_ch15_20_dlap.xml | 5612c44e757a2ece66000000 |
Chapter 16 Introduction | morris2e_ch16_1.html | 5612ce73757a2ee069000000 |
DLAP questions | morris2e_ch16_1_dlap.xml | 5612ce73757a2ee069000000 |
16.1 Early Theories of Inheritance
| morris2e_ch16_2.html | 5612ce73757a2ee069000000 |
DLAP questions | morris2e_ch16_2_dlap.xml | 5612ce73757a2ee069000000 |
Early theories of heredity predicted the transmission of acquired characteristics.
| morris2e_ch16_3.html | 5612ce73757a2ee069000000 |
DLAP questions | morris2e_ch16_3_dlap.xml | 5612ce73757a2ee069000000 |
Belief in blending inheritance discouraged studies of hereditary transmission.
| morris2e_ch16_4.html | 5612ce73757a2ee069000000 |
DLAP questions | morris2e_ch16_4_dlap.xml | 5612ce73757a2ee069000000 |
16.2 The Foundations of Modern Transmission Genetics
| morris2e_ch16_5.html | 5612ce73757a2ee069000000 |
DLAP questions | morris2e_ch16_5_dlap.xml | 5612ce73757a2ee069000000 |
Mendelâs experimental organism was the garden pea.
| morris2e_ch16_6.html | 5612ce73757a2ee069000000 |
DLAP questions | morris2e_ch16_6_dlap.xml | 5612ce73757a2ee069000000 |
In crosses, one of the traits was dominant in the offspring.
| morris2e_ch16_7.html | 5612ce73757a2ee069000000 |
DLAP questions | morris2e_ch16_7_dlap.xml | 5612ce73757a2ee069000000 |
16.3 Segregation: Mendelâs Key Discovery
| morris2e_ch16_8.html | 5612ce73757a2ee069000000 |
DLAP questions | morris2e_ch16_8_dlap.xml | 5612ce73757a2ee069000000 |
Genes come in pairs that segregate in the formation of reproductive cells.
| morris2e_ch16_9.html | 5612ce73757a2ee069000000 |
DLAP questions | morris2e_ch16_9_dlap.xml | 5612ce73757a2ee069000000 |
The principle of segregation was tested by predicting the outcome of crosses.
| morris2e_ch16_10.html | 5612ce73757a2ee069000000 |
DLAP questions | morris2e_ch16_10_dlap.xml | 5612ce73757a2ee069000000 |
A testcross is a mating to an individual with the homozygous recessive genotype.
| morris2e_ch16_11.html | 5612ce73757a2ee069000000 |
DLAP questions | morris2e_ch16_11_dlap.xml | 5612ce73757a2ee069000000 |
Segregation of alleles reflects the separation of chromosomes in meiosis.
| morris2e_ch16_12.html | 5612ce73757a2ee069000000 |
DLAP questions | morris2e_ch16_12_dlap.xml | 5612ce73757a2ee069000000 |
Dominance is not universally observed.
| morris2e_ch16_13.html | 5612ce73757a2ee069000000 |
DLAP questions | morris2e_ch16_13_dlap.xml | 5612ce73757a2ee069000000 |
The principles of transmission genetics are statistical and are stated in terms of probabilities.
| morris2e_ch16_14.html | 5612ce73757a2ee069000000 |
DLAP questions | morris2e_ch16_14_dlap.xml | 5612ce73757a2ee069000000 |
Mendelian segregation preserves genetic variation.
| morris2e_ch16_15.html | 5612ce73757a2ee069000000 |
DLAP questions | morris2e_ch16_15_dlap.xml | 5612ce73757a2ee069000000 |
16.4 Independent Assortment
| morris2e_ch16_16.html | 5612ce73757a2ee069000000 |
DLAP questions | morris2e_ch16_16_dlap.xml | 5612ce73757a2ee069000000 |
Independent assortment is observed when genes segregate independently of one another.
| morris2e_ch16_17.html | 5612ce73757a2ee069000000 |
DLAP questions | morris2e_ch16_17_dlap.xml | 5612ce73757a2ee069000000 |
Independent assortment reflects the random alignment of chromosomes in meiosis.
| morris2e_ch16_18.html | 5612ce73757a2ee069000000 |
DLAP questions | morris2e_ch16_18_dlap.xml | 5612ce73757a2ee069000000 |
Phenotypic ratios can be modified by interactions between genes.
| morris2e_ch16_19.html | 5612ce73757a2ee069000000 |
DLAP questions | morris2e_ch16_19_dlap.xml | 5612ce73757a2ee069000000 |
16.5 Patterns of Inheritance Observed in Family Histories
| morris2e_ch16_20.html | 5612ce73757a2ee069000000 |
DLAP questions | morris2e_ch16_20_dlap.xml | 5612ce73757a2ee069000000 |
Dominant traits appear in every generation.
| morris2e_ch16_21.html | 5612ce73757a2ee069000000 |
DLAP questions | morris2e_ch16_21_dlap.xml | 5612ce73757a2ee069000000 |
Recessive traits skip generations.
| morris2e_ch16_22.html | 5612ce73757a2ee069000000 |
DLAP questions | morris2e_ch16_22_dlap.xml | 5612ce73757a2ee069000000 |
Many genes have multiple alleles.
| morris2e_ch16_23.html | 5612ce73757a2ee069000000 |
DLAP questions | morris2e_ch16_23_dlap.xml | 5612ce73757a2ee069000000 |
Incomplete penetrance and variable expression can obscure inheritance patterns.
| morris2e_ch16_24.html | 5612ce73757a2ee069000000 |
DLAP questions | morris2e_ch16_24_dlap.xml | 5612ce73757a2ee069000000 |
Case 3: How do genetic tests identify disease risk factors?
| morris2e_ch16_25.html | 5612ce73757a2ee069000000 |
DLAP questions | morris2e_ch16_25_dlap.xml | 5612ce73757a2ee069000000 |
Chapter 16 Summary | morris2e_ch16_26.html | 5612ce73757a2ee069000000 |
DLAP questions | morris2e_ch16_26_dlap.xml | 5612ce73757a2ee069000000 |
Chapter 17 Introduction | morris2e_ch17_1.html | 5612e303757a2ed772000000 |
DLAP questions | morris2e_ch17_1_dlap.xml | 5612e303757a2ed772000000 |
17.1 The X and Y Sex Chromosomes
| morris2e_ch17_2.html | 5612e303757a2ed772000000 |
DLAP questions | morris2e_ch17_2_dlap.xml | 5612e303757a2ed772000000 |
In many animals, sex is genetically determined and associated with chromosomal differences.
| morris2e_ch17_3.html | 5612e303757a2ed772000000 |
DLAP questions | morris2e_ch17_3_dlap.xml | 5612e303757a2ed772000000 |
Segregation of the sex chromosomes predicts a 1:1 ratio of females to males.
| morris2e_ch17_4.html | 5612e303757a2ed772000000 |
DLAP questions | morris2e_ch17_4_dlap.xml | 5612e303757a2ed772000000 |
17.2 Inheritance of Genes in the X Chromosome
| morris2e_ch17_5.html | 5612e303757a2ed772000000 |
DLAP questions | morris2e_ch17_5_dlap.xml | 5612e303757a2ed772000000 |
X-linked inheritance was discovered through studies of male fruit flies with white eyes.
| morris2e_ch17_6.html | 5612e303757a2ed772000000 |
DLAP questions | morris2e_ch17_6_dlap.xml | 5612e303757a2ed772000000 |
Genes in the X chromosome exhibit a âcrisscrossâ inheritance pattern.
| morris2e_ch17_7.html | 5612e303757a2ed772000000 |
DLAP questions | morris2e_ch17_7_dlap.xml | 5612e303757a2ed772000000 |
X-linkage provided the first experimental evidence that genes are in chromosomes.
| morris2e_ch17_8.html | 5612e303757a2ed772000000 |
DLAP questions | morris2e_ch17_8_dlap.xml | 5612e303757a2ed772000000 |
Genes in the X chromosome show characteristic patterns in human pedigrees.
| morris2e_ch17_9.html | 5612e303757a2ed772000000 |
DLAP questions | morris2e_ch17_9_dlap.xml | 5612e303757a2ed772000000 |
17.3 Genetic Linkage and Recombination
| morris2e_ch17_10.html | 5612e303757a2ed772000000 |
DLAP questions | morris2e_ch17_10_dlap.xml | 5612e303757a2ed772000000 |
Nearby genes in the same chromosome show linkage.
| morris2e_ch17_11.html | 5612e303757a2ed772000000 |
DLAP questions | morris2e_ch17_11_dlap.xml | 5612e303757a2ed772000000 |
The frequency of recombination is a measure of the genetic distance between linked genes.
| morris2e_ch17_12.html | 5612e303757a2ed772000000 |
DLAP questions | morris2e_ch17_12_dlap.xml | 5612e303757a2ed772000000 |
Genetic mapping assigns a location to each gene along a chromosome.
| morris2e_ch17_13.html | 5612e303757a2ed772000000 |
DLAP questions | morris2e_ch17_13_dlap.xml | 5612e303757a2ed772000000 |
Genetic risk factors for disease can be localized by genetic mapping.
| morris2e_ch17_14.html | 5612e303757a2ed772000000 |
DLAP questions | morris2e_ch17_14_dlap.xml | 5612e303757a2ed772000000 |
17.4 Inheritance of Genes in the Y Chromosome
| morris2e_ch17_15.html | 5612e303757a2ed772000000 |
DLAP questions | morris2e_ch17_15_dlap.xml | 5612e303757a2ed772000000 |
Y-linked genes are transmitted from father to son to grandson.
| morris2e_ch17_16.html | 5612e303757a2ed772000000 |
DLAP questions | morris2e_ch17_16_dlap.xml | 5612e303757a2ed772000000 |
Case 3: How can the Y chromosome be used to trace ancestry?
| morris2e_ch17_17.html | 5612e303757a2ed772000000 |
DLAP questions | morris2e_ch17_17_dlap.xml | 5612e303757a2ed772000000 |
17.5 Inheritance of Mitochondrial and Chloroplast DNA
| morris2e_ch17_18.html | 5612e303757a2ed772000000 |
DLAP questions | morris2e_ch17_18_dlap.xml | 5612e303757a2ed772000000 |
Mitochondrial and chloroplast genomes often show uniparental inheritance.
| morris2e_ch17_19.html | 5612e303757a2ed772000000 |
DLAP questions | morris2e_ch17_19_dlap.xml | 5612e303757a2ed772000000 |
Maternal inheritance is characteristic of mitochondrial diseases.
| morris2e_ch17_20.html | 5612e303757a2ed772000000 |
DLAP questions | morris2e_ch17_20_dlap.xml | 5612e303757a2ed772000000 |
Case 3: How can mitochondrial DNA be used to trace ancestry?
| morris2e_ch17_21.html | 5612e303757a2ed772000000 |
DLAP questions | morris2e_ch17_21_dlap.xml | 5612e303757a2ed772000000 |
Chapter 17 Summary | morris2e_ch17_22.html | 5612e303757a2ed772000000 |
DLAP questions | morris2e_ch17_22_dlap.xml | 5612e303757a2ed772000000 |
Chapter 18 Introduction | morris2e_ch18_1.html | 5616b2cc757a2e1c72000000 |
DLAP questions | morris2e_ch18_1_dlap.xml | 5616b2cc757a2e1c72000000 |
18.1 Heredity and Environment
| morris2e_ch18_2.html | 5616b2cc757a2e1c72000000 |
DLAP questions | morris2e_ch18_2_dlap.xml | 5616b2cc757a2e1c72000000 |
Complex traits are affected by the environment.
| morris2e_ch18_3.html | 5616b2cc757a2e1c72000000 |
DLAP questions | morris2e_ch18_3_dlap.xml | 5616b2cc757a2e1c72000000 |
Complex traits are affected by multiple genes.
| morris2e_ch18_4.html | 5616b2cc757a2e1c72000000 |
DLAP questions | morris2e_ch18_4_dlap.xml | 5616b2cc757a2e1c72000000 |
The relative importance of genes and environment can be determined by differences among individuals.
| morris2e_ch18_5.html | 5616b2cc757a2e1c72000000 |
DLAP questions | morris2e_ch18_5_dlap.xml | 5616b2cc757a2e1c72000000 |
Genetic and environmental effects can interact in unpredictable ways.
| morris2e_ch18_6.html | 5616b2cc757a2e1c72000000 |
DLAP questions | morris2e_ch18_6_dlap.xml | 5616b2cc757a2e1c72000000 |
18.2 Resemblance Among Relatives
| morris2e_ch18_7.html | 5616b2cc757a2e1c72000000 |
DLAP questions | morris2e_ch18_7_dlap.xml | 5616b2cc757a2e1c72000000 |
For complex traits, offspring resemble parents but show regression toward the mean.
| morris2e_ch18_8.html | 5616b2cc757a2e1c72000000 |
DLAP questions | morris2e_ch18_8_dlap.xml | 5616b2cc757a2e1c72000000 |
Heritability is the proportion of the total variation due to genetic differences among individuals.
| morris2e_ch18_9.html | 5616b2cc757a2e1c72000000 |
DLAP questions | morris2e_ch18_9_dlap.xml | 5616b2cc757a2e1c72000000 |
18.3 Twin Studies
| morris2e_ch18_10.html | 5616b2cc757a2e1c72000000 |
DLAP questions | morris2e_ch18_10_dlap.xml | 5616b2cc757a2e1c72000000 |
Twin studies help separate the effects of genes and environment in differences among individuals.
| morris2e_ch18_11.html | 5616b2cc757a2e1c72000000 |
DLAP questions | morris2e_ch18_11_dlap.xml | 5616b2cc757a2e1c72000000 |
18.4 Complex Traits in Health and Disease
| morris2e_ch18_12.html | 5616b2cc757a2e1c72000000 |
DLAP questions | morris2e_ch18_12_dlap.xml | 5616b2cc757a2e1c72000000 |
Most common diseases and birth defects are affected by many genes that each have relatively small effects.
| morris2e_ch18_13.html | 5616b2cc757a2e1c72000000 |
DLAP questions | morris2e_ch18_13_dlap.xml | 5616b2cc757a2e1c72000000 |
Human height is affected by hundreds of genes.
| morris2e_ch18_14.html | 5616b2cc757a2e1c72000000 |
DLAP questions | morris2e_ch18_14_dlap.xml | 5616b2cc757a2e1c72000000 |
Case 3: Can personalized medicine lead to effective treatments of common diseases?
| morris2e_ch18_15.html | 5616b2cc757a2e1c72000000 |
DLAP questions | morris2e_ch18_15_dlap.xml | 5616b2cc757a2e1c72000000 |
Chapter 18 Summary | morris2e_ch18_16.html | 5616b2cc757a2e1c72000000 |
DLAP questions | morris2e_ch18_16_dlap.xml | 5616b2cc757a2e1c72000000 |
Chapter 19 Introduction | morris2e_ch19_1.html | 5616c13a757a2e0278000000 |
DLAP questions | morris2e_ch19_1_dlap.xml | 5616c13a757a2e0278000000 |
19.1 Chromatin to Messenger RNA in Eukaryotes
| morris2e_ch19_2.html | 5616c13a757a2e0278000000 |
DLAP questions | morris2e_ch19_2_dlap.xml | 5616c13a757a2e0278000000 |
Gene expression can be influenced by chemical modification of DNA or histones.
| morris2e_ch19_3.html | 5616c13a757a2e0278000000 |
DLAP questions | morris2e_ch19_3_dlap.xml | 5616c13a757a2e0278000000 |
Gene expression can be regulated at the level of an entire chromosome.
| morris2e_ch19_4.html | 5616c13a757a2e0278000000 |
DLAP questions | morris2e_ch19_4_dlap.xml | 5616c13a757a2e0278000000 |
Transcription is a key control point in gene expression.
| morris2e_ch19_5.html | 5616c13a757a2e0278000000 |
DLAP questions | morris2e_ch19_5_dlap.xml | 5616c13a757a2e0278000000 |
RNA processing is also important in gene regulation.
| morris2e_ch19_6.html | 5616c13a757a2e0278000000 |
DLAP questions | morris2e_ch19_6_dlap.xml | 5616c13a757a2e0278000000 |
19.2 Messenger RNA to Phenotype in Eukaryotes
| morris2e_ch19_7.html | 5616c13a757a2e0278000000 |
DLAP questions | morris2e_ch19_7_dlap.xml | 5616c13a757a2e0278000000 |
Small regulatory RNAs inhibit translation or promote mRNA degradation.
| morris2e_ch19_8.html | 5616c13a757a2e0278000000 |
DLAP questions | morris2e_ch19_8_dlap.xml | 5616c13a757a2e0278000000 |
Translational regulation controls the rate, timing, and location of protein synthesis.
| morris2e_ch19_9.html | 5616c13a757a2e0278000000 |
DLAP questions | morris2e_ch19_9_dlap.xml | 5616c13a757a2e0278000000 |
Protein structure and chemical modification modulate protein effects on phenotype.
| morris2e_ch19_10.html | 5616c13a757a2e0278000000 |
DLAP questions | morris2e_ch19_10_dlap.xml | 5616c13a757a2e0278000000 |
Case 3: How do lifestyle choices affect expression of your personal genome?
| morris2e_ch19_11.html | 5616c13a757a2e0278000000 |
DLAP questions | morris2e_ch19_11_dlap.xml | 5616c13a757a2e0278000000 |
19.3 Transcriptional Regulation in Prokaryotes
| morris2e_ch19_12.html | 5616c13a757a2e0278000000 |
DLAP questions | morris2e_ch19_12_dlap.xml | 5616c13a757a2e0278000000 |
Transcriptional regulation can be positive or negative.
| morris2e_ch19_13.html | 5616c13a757a2e0278000000 |
DLAP questions | morris2e_ch19_13_dlap.xml | 5616c13a757a2e0278000000 |
Lactose utilization in E. coli is the pioneering example of transcriptional regulation.
| morris2e_ch19_14.html | 5616c13a757a2e0278000000 |
DLAP questions | morris2e_ch19_14_dlap.xml | 5616c13a757a2e0278000000 |
The repressor protein binds with the operator and prevents transcription, but not in the presence of lactose.
| morris2e_ch19_15.html | 5616c13a757a2e0278000000 |
DLAP questions | morris2e_ch19_15_dlap.xml | 5616c13a757a2e0278000000 |
The function of the lactose operon was revealed by genetic studies.
| morris2e_ch19_16.html | 5616c13a757a2e0278000000 |
DLAP questions | morris2e_ch19_16_dlap.xml | 5616c13a757a2e0278000000 |
The lactose operon is also positively regulated by CRPâcAMP.
| morris2e_ch19_17.html | 5616c13a757a2e0278000000 |
DLAP questions | morris2e_ch19_17_dlap.xml | 5616c13a757a2e0278000000 |
Transcriptional regulation determines the outcome of infection by a bacterial virus.
| morris2e_ch19_18.html | 5616c13a757a2e0278000000 |
DLAP questions | morris2e_ch19_18_dlap.xml | 5616c13a757a2e0278000000 |
Chapter 19 Summary | morris2e_ch19_19.html | 5616c13a757a2e0278000000 |
DLAP questions | morris2e_ch19_19_dlap.xml | 5616c13a757a2e0278000000 |
Chapter 20 Introduction | morris2e_ch20_1.html | 5616d3b0757a2ea601000000 |
DLAP questions | morris2e_ch20_1_dlap.xml | 5616d3b0757a2ea601000000 |
20.1 Genetic Programs of Development
| morris2e_ch20_2.html | 5616d3b0757a2ea601000000 |
DLAP questions | morris2e_ch20_2_dlap.xml | 5616d3b0757a2ea601000000 |
The fertilized egg is a totipotent cell.
| morris2e_ch20_3.html | 5616d3b0757a2ea601000000 |
DLAP questions | morris2e_ch20_3_dlap.xml | 5616d3b0757a2ea601000000 |
Cellular differentiation increasingly restricts alternative fates.
| morris2e_ch20_4.html | 5616d3b0757a2ea601000000 |
DLAP questions | morris2e_ch20_4_dlap.xml | 5616d3b0757a2ea601000000 |
Case 3: Can cells with your personal genome be reprogrammed for new therapies?
| morris2e_ch20_5.html | 5616d3b0757a2ea601000000 |
DLAP questions | morris2e_ch20_5_dlap.xml | 5616d3b0757a2ea601000000 |
20.2 Hierarchical Control of Development
| morris2e_ch20_6.html | 5616d3b0757a2ea601000000 |
DLAP questions | morris2e_ch20_6_dlap.xml | 5616d3b0757a2ea601000000 |
Drosophila development proceeds through egg, larval, and adult stages.
| morris2e_ch20_7.html | 5616d3b0757a2ea601000000 |
DLAP questions | morris2e_ch20_7_dlap.xml | 5616d3b0757a2ea601000000 |
The egg is a highly polarized cell.
| morris2e_ch20_8.html | 5616d3b0757a2ea601000000 |
DLAP questions | morris2e_ch20_8_dlap.xml | 5616d3b0757a2ea601000000 |
Development proceeds by progressive regionalization and specification.
| morris2e_ch20_9.html | 5616d3b0757a2ea601000000 |
DLAP questions | morris2e_ch20_9_dlap.xml | 5616d3b0757a2ea601000000 |
Homeotic genes determine where different body parts develop in the organism.
| morris2e_ch20_10.html | 5616d3b0757a2ea601000000 |
DLAP questions | morris2e_ch20_10_dlap.xml | 5616d3b0757a2ea601000000 |
20.3 Evolutionary Conservation of Key Transcription Factors in Development
| morris2e_ch20_11.html | 5616d3b0757a2ea601000000 |
DLAP questions | morris2e_ch20_11_dlap.xml | 5616d3b0757a2ea601000000 |
Animals have evolved a wide variety of eyes.
| morris2e_ch20_12.html | 5616d3b0757a2ea601000000 |
DLAP questions | morris2e_ch20_12_dlap.xml | 5616d3b0757a2ea601000000 |
Pax6 is a master regulator of eye development.
| morris2e_ch20_13.html | 5616d3b0757a2ea601000000 |
DLAP questions | morris2e_ch20_13_dlap.xml | 5616d3b0757a2ea601000000 |
20.4 Combinatorial Control in Development
| morris2e_ch20_14.html | 5616d3b0757a2ea601000000 |
DLAP questions | morris2e_ch20_14_dlap.xml | 5616d3b0757a2ea601000000 |
Floral differentiation is a model for plant development.
| morris2e_ch20_15.html | 5616d3b0757a2ea601000000 |
DLAP questions | morris2e_ch20_15_dlap.xml | 5616d3b0757a2ea601000000 |
The identity of the floral organs is determined by combinatorial control.
| morris2e_ch20_16.html | 5616d3b0757a2ea601000000 |
DLAP questions | morris2e_ch20_16_dlap.xml | 5616d3b0757a2ea601000000 |
20.5 Cell Signaling in Development
| morris2e_ch20_17.html | 5616d3b0757a2ea601000000 |
DLAP questions | morris2e_ch20_17_dlap.xml | 5616d3b0757a2ea601000000 |
A signaling molecule can cause multiple responses in the cell.
| morris2e_ch20_18.html | 5616d3b0757a2ea601000000 |
DLAP questions | morris2e_ch20_18_dlap.xml | 5616d3b0757a2ea601000000 |
Developmental signals are amplified and expanded.
| morris2e_ch20_19.html | 5616d3b0757a2ea601000000 |
DLAP questions | morris2e_ch20_19_dlap.xml | 5616d3b0757a2ea601000000 |
Chapter 20 Summary | morris2e_ch20_20.html | 5616d3b0757a2ea601000000 |
DLAP questions | morris2e_ch20_20_dlap.xml | 5616d3b0757a2ea601000000 |
Chapter 21 Introduction | morris2e_ch21_1.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_1_dlap.xml | 5617cd84757a2eab63000000 |
21.1 Genetic Variation
| morris2e_ch21_2.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_2_dlap.xml | 5617cd84757a2eab63000000 |
Population genetics is the study of patterns of genetic variation.
| morris2e_ch21_3.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_3_dlap.xml | 5617cd84757a2eab63000000 |
Mutation and recombination are the two sources of genetic variation.
| morris2e_ch21_4.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_4_dlap.xml | 5617cd84757a2eab63000000 |
21.2 Measuring Genetic Variation
| morris2e_ch21_5.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_5_dlap.xml | 5617cd84757a2eab63000000 |
To understand patterns of genetic variation, we require information about allele frequencies.
| morris2e_ch21_6.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_6_dlap.xml | 5617cd84757a2eab63000000 |
Early population geneticists relied on observable traits and gel electrophoresis to measure variation.
| morris2e_ch21_7.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_7_dlap.xml | 5617cd84757a2eab63000000 |
DNA sequencing is the gold standard for measuring genetic variation.
| morris2e_ch21_8.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_8_dlap.xml | 5617cd84757a2eab63000000 |
21.3 Evolution and the HardyâWeinberg Equilibrium
| morris2e_ch21_9.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_9_dlap.xml | 5617cd84757a2eab63000000 |
Evolution is a change in allele or genotype frequency over time.
| morris2e_ch21_10.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_10_dlap.xml | 5617cd84757a2eab63000000 |
The HardyâWeinberg equilibrium describes situations in which allele and genotype frequencies do not change.
| morris2e_ch21_11.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_11_dlap.xml | 5617cd84757a2eab63000000 |
The HardyâWeinberg equilibrium relates allele frequencies and genotype frequencies.
| morris2e_ch21_12.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_12_dlap.xml | 5617cd84757a2eab63000000 |
The HardyâWeinberg equilibrium is the starting point for population genetic analysis.
| morris2e_ch21_13.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_13_dlap.xml | 5617cd84757a2eab63000000 |
21.4 Natural Selection
| morris2e_ch21_14.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_14_dlap.xml | 5617cd84757a2eab63000000 |
Natural selection brings about adaptations.
| morris2e_ch21_15.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_15_dlap.xml | 5617cd84757a2eab63000000 |
The Modern Synthesis combines Mendelian genetics and Darwinian evolution.
| morris2e_ch21_16.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_16_dlap.xml | 5617cd84757a2eab63000000 |
Natural selection increases the frequency of advantageous mutations and decreases the frequency of deleterious mutations.
| morris2e_ch21_17.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_17_dlap.xml | 5617cd84757a2eab63000000 |
Case 4: What genetic differences have made some individuals more and some less susceptible to malaria?
| morris2e_ch21_18.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_18_dlap.xml | 5617cd84757a2eab63000000 |
Natural selection can be stabilizing, directional, or disruptive.
| morris2e_ch21_19.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_19_dlap.xml | 5617cd84757a2eab63000000 |
Sexual selection increases an individualâs reproductive success.
| morris2e_ch21_20.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_20_dlap.xml | 5617cd84757a2eab63000000 |
21.5 Migration, Mutation, Genetic Drift, and Non-Random Mating
| morris2e_ch21_21.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_21_dlap.xml | 5617cd84757a2eab63000000 |
Migration reduces genetic variation between populations.
| morris2e_ch21_22.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_22_dlap.xml | 5617cd84757a2eab63000000 |
Mutation increases genetic variation.
| morris2e_ch21_23.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_23_dlap.xml | 5617cd84757a2eab63000000 |
Genetic drift has a large effect in small populations.
| morris2e_ch21_24.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_24_dlap.xml | 5617cd84757a2eab63000000 |
Non-random mating alters genotype frequencies without affecting allele frequencies.
| morris2e_ch21_25.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_25_dlap.xml | 5617cd84757a2eab63000000 |
21.6 Molecular Evolution
| morris2e_ch21_26.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_26_dlap.xml | 5617cd84757a2eab63000000 |
The molecular clock relates the amount of sequence difference between species and the time since the species diverged.
| morris2e_ch21_27.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_27_dlap.xml | 5617cd84757a2eab63000000 |
The rate of the molecular clock varies.
| morris2e_ch21_28.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_28_dlap.xml | 5617cd84757a2eab63000000 |
Chapter 21 Summary | morris2e_ch21_29.html | 5617cd84757a2eab63000000 |
DLAP questions | morris2e_ch21_29_dlap.xml | 5617cd84757a2eab63000000 |
Chapter 22 Introduction | morris2e_ch22_1.html | 5602fd30757a2ecd58000000 |
DLAP questions | morris2e_ch22_1_dlap.xml | 5602fd30757a2ecd58000000 |
22.1 The Biological Species Concept
| morris2e_ch22_2.html | 5602fd30757a2ecd58000000 |
DLAP questions | morris2e_ch22_2_dlap.xml | 5602fd30757a2ecd58000000 |
Species are reproductively isolated from other species.
| morris2e_ch22_3.html | 5602fd30757a2ecd58000000 |
DLAP questions | morris2e_ch22_3_dlap.xml | 5602fd30757a2ecd58000000 |
The BSC is more useful in theory than in practice.
| morris2e_ch22_4.html | 5602fd30757a2ecd58000000 |
DLAP questions | morris2e_ch22_4_dlap.xml | 5602fd30757a2ecd58000000 |
The BSC does not apply to asexual or extinct organisms.
| morris2e_ch22_5.html | 5602fd30757a2ecd58000000 |
DLAP questions | morris2e_ch22_5_dlap.xml | 5602fd30757a2ecd58000000 |
Ring species and hybridization complicate the BSC.
| morris2e_ch22_6.html | 5602fd30757a2ecd58000000 |
DLAP questions | morris2e_ch22_6_dlap.xml | 5602fd30757a2ecd58000000 |
Ecology and evolution can extend the BSC.
| morris2e_ch22_7.html | 5602fd30757a2ecd58000000 |
DLAP questions | morris2e_ch22_7_dlap.xml | 5602fd30757a2ecd58000000 |
22.2 Reproductive Isolation
| morris2e_ch22_8.html | 5602fd30757a2ecd58000000 |
DLAP questions | morris2e_ch22_8_dlap.xml | 5602fd30757a2ecd58000000 |
Pre-zygotic isolating factors occur before egg fertilization.
| morris2e_ch22_9.html | 5602fd30757a2ecd58000000 |
DLAP questions | morris2e_ch22_9_dlap.xml | 5602fd30757a2ecd58000000 |
Post-zygotic isolating factors occur after egg fertilization.
| morris2e_ch22_10.html | 5602fd30757a2ecd58000000 |
DLAP questions | morris2e_ch22_10_dlap.xml | 5602fd30757a2ecd58000000 |
22.3 Speciation
| morris2e_ch22_11.html | 5602fd30757a2ecd58000000 |
DLAP questions | morris2e_ch22_11_dlap.xml | 5602fd30757a2ecd58000000 |
Speciation is a by-product of the genetic divergence of separated populations.
| morris2e_ch22_12.html | 5602fd30757a2ecd58000000 |
DLAP questions | morris2e_ch22_12_dlap.xml | 5602fd30757a2ecd58000000 |
Allopatric speciation is speciation that results from the geographical separation of populations.
| morris2e_ch22_13.html | 5602fd30757a2ecd58000000 |
DLAP questions | morris2e_ch22_13_dlap.xml | 5602fd30757a2ecd58000000 |
Dispersal and vicariance can isolate populations from each other.
| morris2e_ch22_14.html | 5602fd30757a2ecd58000000 |
DLAP questions | morris2e_ch22_14_dlap.xml | 5602fd30757a2ecd58000000 |
Co-speciation is speciation that occurs in response to speciation in another species.
| morris2e_ch22_15.html | 5602fd30757a2ecd58000000 |
DLAP questions | morris2e_ch22_15_dlap.xml | 5602fd30757a2ecd58000000 |
Case 4: How did malaria come to infect humans?
| morris2e_ch22_16.html | 5602fd30757a2ecd58000000 |
DLAP questions | morris2e_ch22_16_dlap.xml | 5602fd30757a2ecd58000000 |
Sympatric populationsâthose not geographically separatedâmay undergo speciation.
| morris2e_ch22_17.html | 5602fd30757a2ecd58000000 |
DLAP questions | morris2e_ch22_17_dlap.xml | 5602fd30757a2ecd58000000 |
Speciation can occur instantaneously.
| morris2e_ch22_18.html | 5602fd30757a2ecd58000000 |
DLAP questions | morris2e_ch22_18_dlap.xml | 5602fd30757a2ecd58000000 |
22.4 Speciation and Selection
| morris2e_ch22_19.html | 5602fd30757a2ecd58000000 |
DLAP questions | morris2e_ch22_19_dlap.xml | 5602fd30757a2ecd58000000 |
Speciation can occur with or without natural selection.
| morris2e_ch22_20.html | 5602fd30757a2ecd58000000 |
DLAP questions | morris2e_ch22_20_dlap.xml | 5602fd30757a2ecd58000000 |
Natural selection can enhance reproductive isolation.
| morris2e_ch22_21.html | 5602fd30757a2ecd58000000 |
DLAP questions | morris2e_ch22_21_dlap.xml | 5602fd30757a2ecd58000000 |
Chapter 22 Summary | morris2e_ch22_22.html | 5602fd30757a2ecd58000000 |
DLAP questions | morris2e_ch22_22_dlap.xml | 5602fd30757a2ecd58000000 |
Chapter 23 Introduction | morris2e_ch23_1.html | 5618299e757a2eda03000000 |
DLAP questions | morris2e_ch23_1_dlap.xml | 5618299e757a2eda03000000 |
23.1 Reading a Phylogenetic Tree
| morris2e_ch23_2.html | 5618299e757a2eda03000000 |
DLAP questions | morris2e_ch23_2_dlap.xml | 5618299e757a2eda03000000 |
Phylogenetic trees provide hypotheses of evolutionary relationships.
| morris2e_ch23_3.html | 5618299e757a2eda03000000 |
DLAP questions | morris2e_ch23_3_dlap.xml | 5618299e757a2eda03000000 |
The search for sister groups lies at the heart of phylogenetics.
| morris2e_ch23_4.html | 5618299e757a2eda03000000 |
DLAP questions | morris2e_ch23_4_dlap.xml | 5618299e757a2eda03000000 |
A monophyletic group consists of a common ancestor and all its descendants.
| morris2e_ch23_5.html | 5618299e757a2eda03000000 |
DLAP questions | morris2e_ch23_5_dlap.xml | 5618299e757a2eda03000000 |
Taxonomic classifications are information storage and retrieval systems.
| morris2e_ch23_6.html | 5618299e757a2eda03000000 |
DLAP questions | morris2e_ch23_6_dlap.xml | 5618299e757a2eda03000000 |
23.2 Building a Phylogenetic Tree
| morris2e_ch23_7.html | 5618299e757a2eda03000000 |
DLAP questions | morris2e_ch23_7_dlap.xml | 5618299e757a2eda03000000 |
Homology is similarity by common descent.
| morris2e_ch23_8.html | 5618299e757a2eda03000000 |
DLAP questions | morris2e_ch23_8_dlap.xml | 5618299e757a2eda03000000 |
Shared derived characters enable biologists to reconstruct evolutionary history.
| morris2e_ch23_9.html | 5618299e757a2eda03000000 |
DLAP questions | morris2e_ch23_9_dlap.xml | 5618299e757a2eda03000000 |
The simplest tree is often favored among multiple possible trees.
| morris2e_ch23_10.html | 5618299e757a2eda03000000 |
DLAP questions | morris2e_ch23_10_dlap.xml | 5618299e757a2eda03000000 |
Molecular data complement comparative morphology in reconstructing phylogenetic history.
| morris2e_ch23_11.html | 5618299e757a2eda03000000 |
DLAP questions | morris2e_ch23_11_dlap.xml | 5618299e757a2eda03000000 |
Phylogenetic trees can help solve practical problems.
| morris2e_ch23_12.html | 5618299e757a2eda03000000 |
DLAP questions | morris2e_ch23_12_dlap.xml | 5618299e757a2eda03000000 |
23.3 The Fossil Record
| morris2e_ch23_13.html | 5618299e757a2eda03000000 |
DLAP questions | morris2e_ch23_13_dlap.xml | 5618299e757a2eda03000000 |
Fossils provide unique information.
| morris2e_ch23_14.html | 5618299e757a2eda03000000 |
DLAP questions | morris2e_ch23_14_dlap.xml | 5618299e757a2eda03000000 |
Fossils provide a selective record of past life.
| morris2e_ch23_15.html | 5618299e757a2eda03000000 |
DLAP questions | morris2e_ch23_15_dlap.xml | 5618299e757a2eda03000000 |
Geological data indicate the age and environmental setting of fossils.
| morris2e_ch23_16.html | 5618299e757a2eda03000000 |
DLAP questions | morris2e_ch23_16_dlap.xml | 5618299e757a2eda03000000 |
Fossils can contain unique combinations of characters.
| morris2e_ch23_17.html | 5618299e757a2eda03000000 |
DLAP questions | morris2e_ch23_17_dlap.xml | 5618299e757a2eda03000000 |
Rare mass extinctions have altered the course of evolution.
| morris2e_ch23_18.html | 5618299e757a2eda03000000 |
DLAP questions | morris2e_ch23_18_dlap.xml | 5618299e757a2eda03000000 |
23.4 Comparing Evolutionâs Two Great Patterns
| morris2e_ch23_19.html | 5618299e757a2eda03000000 |
DLAP questions | morris2e_ch23_19_dlap.xml | 5618299e757a2eda03000000 |
Phylogeny and fossils complement each other.
| morris2e_ch23_20.html | 5618299e757a2eda03000000 |
DLAP questions | morris2e_ch23_20_dlap.xml | 5618299e757a2eda03000000 |
Agreement between phylogenies and the fossil record provides strong evidence of evolution.
| morris2e_ch23_21.html | 5618299e757a2eda03000000 |
DLAP questions | morris2e_ch23_21_dlap.xml | 5618299e757a2eda03000000 |
Chapter 23 Summary | morris2e_ch23_22.html | 5618299e757a2eda03000000 |
DLAP questions | morris2e_ch23_22_dlap.xml | 5618299e757a2eda03000000 |
Chapter 24 Introduction | morris2e_ch24_1.html | 561bf9d2757a2ed25b000002 |
DLAP questions | morris2e_ch24_1_dlap.xml | 561bf9d2757a2ed25b000002 |
24.1 The Great Apes
| morris2e_ch24_2.html | 561bf9d2757a2ed25b000002 |
DLAP questions | morris2e_ch24_2_dlap.xml | 561bf9d2757a2ed25b000002 |
Comparative anatomy shows that the human lineage branches off the great apes tree.
| morris2e_ch24_3.html | 561bf9d2757a2ed25b000002 |
DLAP questions | morris2e_ch24_3_dlap.xml | 561bf9d2757a2ed25b000002 |
Molecular analysis reveals that the human lineage split from the chimpanzee lineage about 5â7 million years ago.
| morris2e_ch24_4.html | 561bf9d2757a2ed25b000002 |
DLAP questions | morris2e_ch24_4_dlap.xml | 561bf9d2757a2ed25b000002 |
The fossil record gives us direct information about our evolutionary history.
| morris2e_ch24_5.html | 561bf9d2757a2ed25b000002 |
DLAP questions | morris2e_ch24_5_dlap.xml | 561bf9d2757a2ed25b000002 |
24.2 African Origins
| morris2e_ch24_6.html | 561bf9d2757a2ed25b000002 |
DLAP questions | morris2e_ch24_6_dlap.xml | 561bf9d2757a2ed25b000002 |
Studies of mitochondrial DNA reveal that modern humans evolved in Africa relatively recently.
| morris2e_ch24_7.html | 561bf9d2757a2ed25b000002 |
DLAP questions | morris2e_ch24_7_dlap.xml | 561bf9d2757a2ed25b000002 |
Studies of the Y chromosome provide independent evidence for a recent origin of modern humans.
| morris2e_ch24_8.html | 561bf9d2757a2ed25b000002 |
DLAP questions | morris2e_ch24_8_dlap.xml | 561bf9d2757a2ed25b000002 |
Neanderthals disappear from the fossil record as modern humans appear, but have contributed to the modern human gene pool.
| morris2e_ch24_9.html | 561bf9d2757a2ed25b000002 |
DLAP questions | morris2e_ch24_9_dlap.xml | 561bf9d2757a2ed25b000002 |
24.3 Distinct Features of Our Species
| morris2e_ch24_10.html | 561bf9d2757a2ed25b000002 |
DLAP questions | morris2e_ch24_10_dlap.xml | 561bf9d2757a2ed25b000002 |
Bipedalism was a key innovation.
| morris2e_ch24_11.html | 561bf9d2757a2ed25b000002 |
DLAP questions | morris2e_ch24_11_dlap.xml | 561bf9d2757a2ed25b000002 |
Adult humans share many features with juvenile chimpanzees.
| morris2e_ch24_12.html | 561bf9d2757a2ed25b000002 |
DLAP questions | morris2e_ch24_12_dlap.xml | 561bf9d2757a2ed25b000002 |
Humans have large brains relative to body size.
| morris2e_ch24_13.html | 561bf9d2757a2ed25b000002 |
DLAP questions | morris2e_ch24_13_dlap.xml | 561bf9d2757a2ed25b000002 |
The human and chimpanzee genomes help us identify genes that make us human.
| morris2e_ch24_14.html | 561bf9d2757a2ed25b000002 |
DLAP questions | morris2e_ch24_14_dlap.xml | 561bf9d2757a2ed25b000002 |
24.4 Human Genetic Variation
| morris2e_ch24_15.html | 561bf9d2757a2ed25b000002 |
DLAP questions | morris2e_ch24_15_dlap.xml | 561bf9d2757a2ed25b000002 |
The prehistory of our species has had an impact on the distribution of genetic variation.
| morris2e_ch24_16.html | 561bf9d2757a2ed25b000002 |
DLAP questions | morris2e_ch24_16_dlap.xml | 561bf9d2757a2ed25b000002 |
The recent spread of modern humans means that there are few genetic differences between groups.
| morris2e_ch24_17.html | 561bf9d2757a2ed25b000002 |
DLAP questions | morris2e_ch24_17_dlap.xml | 561bf9d2757a2ed25b000002 |
Some human differences have likely arisen by natural selection.
| morris2e_ch24_18.html | 561bf9d2757a2ed25b000002 |
DLAP questions | morris2e_ch24_18_dlap.xml | 561bf9d2757a2ed25b000002 |
Case 4: What human genes are under selection for resistance to malaria?
| morris2e_ch24_19.html | 561bf9d2757a2ed25b000002 |
DLAP questions | morris2e_ch24_19_dlap.xml | 561bf9d2757a2ed25b000002 |
24.5 Culture, Language, and Consciousness
| morris2e_ch24_20.html | 561bf9d2757a2ed25b000002 |
DLAP questions | morris2e_ch24_20_dlap.xml | 561bf9d2757a2ed25b000002 |
Culture changes rapidly.
| morris2e_ch24_21.html | 561bf9d2757a2ed25b000002 |
DLAP questions | morris2e_ch24_21_dlap.xml | 561bf9d2757a2ed25b000002 |
Is culture uniquely human?
| morris2e_ch24_22.html | 561bf9d2757a2ed25b000002 |
DLAP questions | morris2e_ch24_22_dlap.xml | 561bf9d2757a2ed25b000002 |
Is language uniquely human?
| morris2e_ch24_23.html | 561bf9d2757a2ed25b000002 |
DLAP questions | morris2e_ch24_23_dlap.xml | 561bf9d2757a2ed25b000002 |
Is consciousness uniquely human?
| morris2e_ch24_24.html | 561bf9d2757a2ed25b000002 |
DLAP questions | morris2e_ch24_24_dlap.xml | 561bf9d2757a2ed25b000002 |
Chapter 24 Summary | morris2e_ch24_25.html | 561bf9d2757a2ed25b000002 |
DLAP questions | morris2e_ch24_25_dlap.xml | 561bf9d2757a2ed25b000002 |
Chapter 25 Introduction | morris2e_ch25_1.html | 561d330a757a2e875f000000 |
DLAP questions | morris2e_ch25_1_dlap.xml | 561d330a757a2e875f000000 |
25.1 The Short-Term Carbon Cycle
| morris2e_ch25_2.html | 561d330a757a2e875f000000 |
DLAP questions | morris2e_ch25_2_dlap.xml | 561d330a757a2e875f000000 |
Photosynthesis and respiration are key processes in short-term carbon cycling.
| morris2e_ch25_3.html | 561d330a757a2e875f000000 |
DLAP questions | morris2e_ch25_3_dlap.xml | 561d330a757a2e875f000000 |
The regular oscillation of CO2 reflects the seasonality of photosynthesis in the Northern Hemisphere.
| morris2e_ch25_4.html | 561d330a757a2e875f000000 |
DLAP questions | morris2e_ch25_4_dlap.xml | 561d330a757a2e875f000000 |
Human activities play an important role in the modern carbon cycle.
| morris2e_ch25_5.html | 561d330a757a2e875f000000 |
DLAP questions | morris2e_ch25_5_dlap.xml | 561d330a757a2e875f000000 |
Carbon isotopes show that much of the CO2 added to air over the past half century comes from burning fossil fuels.
| morris2e_ch25_6.html | 561d330a757a2e875f000000 |
DLAP questions | morris2e_ch25_6_dlap.xml | 561d330a757a2e875f000000 |
25.2 The Long-Term Carbon Cycle
| morris2e_ch25_7.html | 561d330a757a2e875f000000 |
DLAP questions | morris2e_ch25_7_dlap.xml | 561d330a757a2e875f000000 |
Reservoirs and fluxes are key in long-term carbon cycling.
| morris2e_ch25_8.html | 561d330a757a2e875f000000 |
DLAP questions | morris2e_ch25_8_dlap.xml | 561d330a757a2e875f000000 |
Physical processes add and remove CO2 from the atmosphere.
| morris2e_ch25_9.html | 561d330a757a2e875f000000 |
DLAP questions | morris2e_ch25_9_dlap.xml | 561d330a757a2e875f000000 |
Records of atmospheric composition over 400,000 years show periodic shifts in CO2 content.
| morris2e_ch25_10.html | 561d330a757a2e875f000000 |
DLAP questions | morris2e_ch25_10_dlap.xml | 561d330a757a2e875f000000 |
Variations in atmospheric CO2 over hundreds of millions of years reflect plate tectonics and evolution.
| morris2e_ch25_11.html | 561d330a757a2e875f000000 |
DLAP questions | morris2e_ch25_11_dlap.xml | 561d330a757a2e875f000000 |
25.3 The Carbon Cycle: Ecology, Biodiversity, and Evolution
| morris2e_ch25_12.html | 561d330a757a2e875f000000 |
DLAP questions | morris2e_ch25_12_dlap.xml | 561d330a757a2e875f000000 |
Food webs trace the cycling of carbon through communities and ecosystems.
| morris2e_ch25_13.html | 561d330a757a2e875f000000 |
DLAP questions | morris2e_ch25_13_dlap.xml | 561d330a757a2e875f000000 |
Biological diversity reflects the many ways that organisms participate in the carbon cycle.
| morris2e_ch25_14.html | 561d330a757a2e875f000000 |
DLAP questions | morris2e_ch25_14_dlap.xml | 561d330a757a2e875f000000 |
The carbon cycle weaves together biological evolution and environmental change through Earth history.
| morris2e_ch25_15.html | 561d330a757a2e875f000000 |
DLAP questions | morris2e_ch25_15_dlap.xml | 561d330a757a2e875f000000 |
Chapter 25 Summary | morris2e_ch25_16.html | 561d330a757a2e875f000000 |
DLAP questions | morris2e_ch25_16_dlap.xml | 561d330a757a2e875f000000 |
Chapter 26 Introduction | morris2e_ch26_1.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_1_dlap.xml | 561d5637757a2ebc6d000000 |
26.1 Two Prokaryotic Domains
| morris2e_ch26_2.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_2_dlap.xml | 561d5637757a2ebc6d000000 |
The bacterial cell is small but powerful.
| morris2e_ch26_3.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_3_dlap.xml | 561d5637757a2ebc6d000000 |
Diffusion limits cell size in bacteria.
| morris2e_ch26_4.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_4_dlap.xml | 561d5637757a2ebc6d000000 |
Horizontal gene transfer promotes genetic diversity in bacteria.
| morris2e_ch26_5.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_5_dlap.xml | 561d5637757a2ebc6d000000 |
Archaea form a second prokaryotic domain.
| morris2e_ch26_6.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_6_dlap.xml | 561d5637757a2ebc6d000000 |
26.2 An Expanded Carbon Cycle
| morris2e_ch26_7.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_7_dlap.xml | 561d5637757a2ebc6d000000 |
Many photosynthetic bacteria do not produce oxygen.
| morris2e_ch26_8.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_8_dlap.xml | 561d5637757a2ebc6d000000 |
Many bacteria respire without oxygen.
| morris2e_ch26_9.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_9_dlap.xml | 561d5637757a2ebc6d000000 |
Photoheterotrophs obtain energy from light but obtain carbon from preformed organic molecules.
| morris2e_ch26_10.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_10_dlap.xml | 561d5637757a2ebc6d000000 |
Chemoautotrophy is a uniquely prokaryotic metabolism.
| morris2e_ch26_11.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_11_dlap.xml | 561d5637757a2ebc6d000000 |
26.3 Other Biogeochemical Cycles
| morris2e_ch26_12.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_12_dlap.xml | 561d5637757a2ebc6d000000 |
Bacteria and archaeons dominate Earthâs sulfur cycle.
| morris2e_ch26_13.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_13_dlap.xml | 561d5637757a2ebc6d000000 |
The nitrogen cycle is also driven by bacteria and archaeons.
| morris2e_ch26_14.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_14_dlap.xml | 561d5637757a2ebc6d000000 |
26.4 The Diversity of Bacteria
| morris2e_ch26_15.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_15_dlap.xml | 561d5637757a2ebc6d000000 |
Bacterial phylogeny is a work in progress.
| morris2e_ch26_16.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_16_dlap.xml | 561d5637757a2ebc6d000000 |
What, if anything, is a bacterial species?
| morris2e_ch26_17.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_17_dlap.xml | 561d5637757a2ebc6d000000 |
Proteobacteria are the most diverse bacteria.
| morris2e_ch26_18.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_18_dlap.xml | 561d5637757a2ebc6d000000 |
The gram-positive bacteria include organisms that cause and cure disease.
| morris2e_ch26_19.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_19_dlap.xml | 561d5637757a2ebc6d000000 |
Photosynthesis is widely distributed on the bacterial tree.
| morris2e_ch26_20.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_20_dlap.xml | 561d5637757a2ebc6d000000 |
26.5 The Diversity of Archaea
| morris2e_ch26_21.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_21_dlap.xml | 561d5637757a2ebc6d000000 |
The archaeal tree has anaerobic, hyperthermophilic organisms near its base.
| morris2e_ch26_22.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_22_dlap.xml | 561d5637757a2ebc6d000000 |
The Archaea include several groups of acid-loving microorganisms.
| morris2e_ch26_23.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_23_dlap.xml | 561d5637757a2ebc6d000000 |
Only Archaea produce methane as a by-product of energy metabolism.
| morris2e_ch26_24.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_24_dlap.xml | 561d5637757a2ebc6d000000 |
One group of the Euryarchaeota thrives in extremely salty environments.
| morris2e_ch26_25.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_25_dlap.xml | 561d5637757a2ebc6d000000 |
Thaumarchaeota may be the most abundant cells in the deep ocean.
| morris2e_ch26_26.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_26_dlap.xml | 561d5637757a2ebc6d000000 |
26.6 The Evolutionary History of Prokaryotes
| morris2e_ch26_27.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_27_dlap.xml | 561d5637757a2ebc6d000000 |
Life originated early in our planetâs history.
| morris2e_ch26_28.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_28_dlap.xml | 561d5637757a2ebc6d000000 |
Prokaryotes have coevolved with eukaryotes.
| morris2e_ch26_29.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_29_dlap.xml | 561d5637757a2ebc6d000000 |
Case 5: How do intestinal bacteria influence human health?
| morris2e_ch26_30.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_30_dlap.xml | 561d5637757a2ebc6d000000 |
Chapter 26 Summary | morris2e_ch26_31.html | 561d5637757a2ebc6d000000 |
DLAP questions | morris2e_ch26_31_dlap.xml | 561d5637757a2ebc6d000000 |
Chapter 27 Introduction | morris2e_ch27_1.html | 5623cf0f757a2ef065000000 |
DLAP questions | morris2e_ch27_1_dlap.xml | 5623cf0f757a2ef065000000 |
27.1 The Eukaryotic Cell: A Review
| morris2e_ch27_2.html | 5623cf0f757a2ef065000000 |
DLAP questions | morris2e_ch27_2_dlap.xml | 5623cf0f757a2ef065000000 |
Internal protein scaffolding and dynamic membranes organize the eukaryotic cell.
| morris2e_ch27_3.html | 5623cf0f757a2ef065000000 |
DLAP questions | morris2e_ch27_3_dlap.xml | 5623cf0f757a2ef065000000 |
In eukaryotic cells, energy metabolism is localized in mitochondria and chloroplasts.
| morris2e_ch27_4.html | 5623cf0f757a2ef065000000 |
DLAP questions | morris2e_ch27_4_dlap.xml | 5623cf0f757a2ef065000000 |
The organization of the eukaryotic genome also helps explain eukaryotic diversity.
| morris2e_ch27_5.html | 5623cf0f757a2ef065000000 |
DLAP questions | morris2e_ch27_5_dlap.xml | 5623cf0f757a2ef065000000 |
Sex promotes genetic diversity in eukaryotes and gives rise to distinctive life cycles.
| morris2e_ch27_6.html | 5623cf0f757a2ef065000000 |
DLAP questions | morris2e_ch27_6_dlap.xml | 5623cf0f757a2ef065000000 |
27.2 Eukaryotic Origins
| morris2e_ch27_7.html | 5623cf0f757a2ef065000000 |
DLAP questions | morris2e_ch27_7_dlap.xml | 5623cf0f757a2ef065000000 |
Case 5: What role did symbiosis play in the origin of chloroplasts?
| morris2e_ch27_8.html | 5623cf0f757a2ef065000000 |
DLAP questions | morris2e_ch27_8_dlap.xml | 5623cf0f757a2ef065000000 |
Case 5: What role did symbiosis play in the origin of mitochondria?
| morris2e_ch27_9.html | 5623cf0f757a2ef065000000 |
DLAP questions | morris2e_ch27_9_dlap.xml | 5623cf0f757a2ef065000000 |
Case 5: How did the eukaryotic cell originate?
| morris2e_ch27_10.html | 5623cf0f757a2ef065000000 |
DLAP questions | morris2e_ch27_10_dlap.xml | 5623cf0f757a2ef065000000 |
In the oceans, many single-celled eukaryotes harbor symbiotic bacteria.
| morris2e_ch27_11.html | 5623cf0f757a2ef065000000 |
DLAP questions | morris2e_ch27_11_dlap.xml | 5623cf0f757a2ef065000000 |
27.3 Eukaryotic Diversity
| morris2e_ch27_12.html | 5623cf0f757a2ef065000000 |
DLAP questions | morris2e_ch27_12_dlap.xml | 5623cf0f757a2ef065000000 |
Our own group, the opisthokonts, is the most diverse eukaryotic superkingdom.
| morris2e_ch27_13.html | 5623cf0f757a2ef065000000 |
DLAP questions | morris2e_ch27_13_dlap.xml | 5623cf0f757a2ef065000000 |
Amoebozoans include slime molds that produce multicellular structures.
| morris2e_ch27_14.html | 5623cf0f757a2ef065000000 |
DLAP questions | morris2e_ch27_14_dlap.xml | 5623cf0f757a2ef065000000 |
Archaeplastids, which include land plants, are photosynthetic organisms.
| morris2e_ch27_15.html | 5623cf0f757a2ef065000000 |
DLAP questions | morris2e_ch27_15_dlap.xml | 5623cf0f757a2ef065000000 |
Stramenopiles, alveolates, and rhizarians dominate eukaryotic diversity in the oceans.
| morris2e_ch27_16.html | 5623cf0f757a2ef065000000 |
DLAP questions | morris2e_ch27_16_dlap.xml | 5623cf0f757a2ef065000000 |
Photosynthesis spread through eukaryotes by repeated endosymbioses involving eukaryotic algae.
| morris2e_ch27_17.html | 5623cf0f757a2ef065000000 |
DLAP questions | morris2e_ch27_17_dlap.xml | 5623cf0f757a2ef065000000 |
27.4 The Fossil Record of Protists
| morris2e_ch27_18.html | 5623cf0f757a2ef065000000 |
DLAP questions | morris2e_ch27_18_dlap.xml | 5623cf0f757a2ef065000000 |
Fossils show that eukaryotes existed at least 1800 million years ago.
| morris2e_ch27_19.html | 5623cf0f757a2ef065000000 |
DLAP questions | morris2e_ch27_19_dlap.xml | 5623cf0f757a2ef065000000 |
Protists have continued to diversify during the age of animals.
| morris2e_ch27_20.html | 5623cf0f757a2ef065000000 |
DLAP questions | morris2e_ch27_20_dlap.xml | 5623cf0f757a2ef065000000 |
Chapter 27 Summary | morris2e_ch27_21.html | 5623cf0f757a2ef065000000 |
DLAP questions | morris2e_ch27_21_dlap.xml | 5623cf0f757a2ef065000000 |
Chapter 28 Introduction | morris2e_ch28_1.html | 562487ac757a2ed66d000000 |
DLAP questions | morris2e_ch28_1_dlap.xml | 562487ac757a2ed66d000000 |
28.1 The Phylogenetic Distribution of Multicellular Organisms
| morris2e_ch28_2.html | 562487ac757a2ed66d000000 |
DLAP questions | morris2e_ch28_2_dlap.xml | 562487ac757a2ed66d000000 |
Simple multicellularity is widespread among eukaryotes.
| morris2e_ch28_3.html | 562487ac757a2ed66d000000 |
DLAP questions | morris2e_ch28_3_dlap.xml | 562487ac757a2ed66d000000 |
Complex multicellularity evolved several times.
| morris2e_ch28_4.html | 562487ac757a2ed66d000000 |
DLAP questions | morris2e_ch28_4_dlap.xml | 562487ac757a2ed66d000000 |
28.2 Diffusion and Bulk Flow
| morris2e_ch28_5.html | 562487ac757a2ed66d000000 |
DLAP questions | morris2e_ch28_5_dlap.xml | 562487ac757a2ed66d000000 |
Diffusion is effective only over short distances.
| morris2e_ch28_6.html | 562487ac757a2ed66d000000 |
DLAP questions | morris2e_ch28_6_dlap.xml | 562487ac757a2ed66d000000 |
Animals achieve large size by circumventing limits imposed by diffusion.
| morris2e_ch28_7.html | 562487ac757a2ed66d000000 |
DLAP questions | morris2e_ch28_7_dlap.xml | 562487ac757a2ed66d000000 |
Complex multicellular organisms have structures specialized for bulk flow.
| morris2e_ch28_8.html | 562487ac757a2ed66d000000 |
DLAP questions | morris2e_ch28_8_dlap.xml | 562487ac757a2ed66d000000 |
28.3 How to Build a Multicellular Organism
| morris2e_ch28_9.html | 562487ac757a2ed66d000000 |
DLAP questions | morris2e_ch28_9_dlap.xml | 562487ac757a2ed66d000000 |
Complex multicellularity requires adhesion between cells.
| morris2e_ch28_10.html | 562487ac757a2ed66d000000 |
DLAP questions | morris2e_ch28_10_dlap.xml | 562487ac757a2ed66d000000 |
How did animal cell adhesion originate?
| morris2e_ch28_11.html | 562487ac757a2ed66d000000 |
DLAP questions | morris2e_ch28_11_dlap.xml | 562487ac757a2ed66d000000 |
Complex multicellularity requires communication between cells.
| morris2e_ch28_12.html | 562487ac757a2ed66d000000 |
DLAP questions | morris2e_ch28_12_dlap.xml | 562487ac757a2ed66d000000 |
Complex multicellularity requires a genetic program for coordinated growth and cell differentiation.
| morris2e_ch28_13.html | 562487ac757a2ed66d000000 |
DLAP questions | morris2e_ch28_13_dlap.xml | 562487ac757a2ed66d000000 |
28.4 Variations On a Theme: Plants Versus Animals
| morris2e_ch28_14.html | 562487ac757a2ed66d000000 |
DLAP questions | morris2e_ch28_14_dlap.xml | 562487ac757a2ed66d000000 |
Cell walls shape patterns of growth and development in plants.
| morris2e_ch28_15.html | 562487ac757a2ed66d000000 |
DLAP questions | morris2e_ch28_15_dlap.xml | 562487ac757a2ed66d000000 |
Animal cells can move relative to one another.
| morris2e_ch28_16.html | 562487ac757a2ed66d000000 |
DLAP questions | morris2e_ch28_16_dlap.xml | 562487ac757a2ed66d000000 |
28.5 The Evolution of Complex Multicellularity
| morris2e_ch28_17.html | 562487ac757a2ed66d000000 |
DLAP questions | morris2e_ch28_17_dlap.xml | 562487ac757a2ed66d000000 |
Fossil evidence of complex multicellular organisms is first observed in rocks deposited 579â555 million years ago.
| morris2e_ch28_18.html | 562487ac757a2ed66d000000 |
DLAP questions | morris2e_ch28_18_dlap.xml | 562487ac757a2ed66d000000 |
Oxygen is necessary for complex multicellular life.
| morris2e_ch28_19.html | 562487ac757a2ed66d000000 |
DLAP questions | morris2e_ch28_19_dlap.xml | 562487ac757a2ed66d000000 |
Land plants evolved from green algae that could carry out photosynthesis on land.
| morris2e_ch28_20.html | 562487ac757a2ed66d000000 |
DLAP questions | morris2e_ch28_20_dlap.xml | 562487ac757a2ed66d000000 |
Regulatory genes played an important role in the evolution of complex multicellular organisms.
| morris2e_ch28_21.html | 562487ac757a2ed66d000000 |
DLAP questions | morris2e_ch28_21_dlap.xml | 562487ac757a2ed66d000000 |
Chapter 28 Summary | morris2e_ch28_22.html | 562487ac757a2ed66d000000 |
DLAP questions | morris2e_ch28_22_dlap.xml | 562487ac757a2ed66d000000 |
Chapter 29 Introduction | morris2e_ch29_1.html | 5639b30b757a2eaa49000001 |
DLAP questions | morris2e_ch29_1_dlap.xml | 5639b30b757a2eaa49000001 |
29.1 Plant Structure and Function: an Evolutionary Perspective
| morris2e_ch29_2.html | 5639b30b757a2eaa49000001 |
DLAP questions | morris2e_ch29_2_dlap.xml | 5639b30b757a2eaa49000001 |
Land plants are a monophyletic group that includes vascular plants and bryophytes.
| morris2e_ch29_3.html | 5639b30b757a2eaa49000001 |
DLAP questions | morris2e_ch29_3_dlap.xml | 5639b30b757a2eaa49000001 |
29.2 The Leaf: Acquiring CO2 While Avoiding Desiccation
| morris2e_ch29_4.html | 5639b30b757a2eaa49000001 |
DLAP questions | morris2e_ch29_4_dlap.xml | 5639b30b757a2eaa49000001 |
CO2 uptake results in water loss.
| morris2e_ch29_5.html | 5639b30b757a2eaa49000001 |
DLAP questions | morris2e_ch29_5_dlap.xml | 5639b30b757a2eaa49000001 |
The cuticle restricts water loss from leaves but inhibits the uptake of CO2.
| morris2e_ch29_6.html | 5639b30b757a2eaa49000001 |
DLAP questions | morris2e_ch29_6_dlap.xml | 5639b30b757a2eaa49000001 |
Stomata allow leaves to regulate water loss and carbon gain.
| morris2e_ch29_7.html | 5639b30b757a2eaa49000001 |
DLAP questions | morris2e_ch29_7_dlap.xml | 5639b30b757a2eaa49000001 |
CAM plants use nocturnal CO2 storage to avoid water loss during the day.
| morris2e_ch29_8.html | 5639b30b757a2eaa49000001 |
DLAP questions | morris2e_ch29_8_dlap.xml | 5639b30b757a2eaa49000001 |
C4 plants suppress photorespiration by concentrating CO2 in bundle-sheath cells.
| morris2e_ch29_9.html | 5639b30b757a2eaa49000001 |
DLAP questions | morris2e_ch29_9_dlap.xml | 5639b30b757a2eaa49000001 |
29.3 The Stem: Transport of Water Through Xylem
| morris2e_ch29_10.html | 5639b30b757a2eaa49000001 |
DLAP questions | morris2e_ch29_10_dlap.xml | 5639b30b757a2eaa49000001 |
Xylem provides a low-resistance pathway for the movement of water.
| morris2e_ch29_11.html | 5639b30b757a2eaa49000001 |
DLAP questions | morris2e_ch29_11_dlap.xml | 5639b30b757a2eaa49000001 |
Water is pulled through xylem by an evaporative pump.
| morris2e_ch29_12.html | 5639b30b757a2eaa49000001 |
DLAP questions | morris2e_ch29_12_dlap.xml | 5639b30b757a2eaa49000001 |
Xylem transport is at risk of conduit collapse and cavitation.
| morris2e_ch29_13.html | 5639b30b757a2eaa49000001 |
DLAP questions | morris2e_ch29_13_dlap.xml | 5639b30b757a2eaa49000001 |
29.4 The Stem: Transport of Carbohydrates Through Phloem
| morris2e_ch29_14.html | 5639b30b757a2eaa49000001 |
DLAP questions | morris2e_ch29_14_dlap.xml | 5639b30b757a2eaa49000001 |
Phloem transports carbohydrates from sources to sinks.
| morris2e_ch29_15.html | 5639b30b757a2eaa49000001 |
DLAP questions | morris2e_ch29_15_dlap.xml | 5639b30b757a2eaa49000001 |
Carbohydrates are pushed through phloem by an osmotic pump.
| morris2e_ch29_16.html | 5639b30b757a2eaa49000001 |
DLAP questions | morris2e_ch29_16_dlap.xml | 5639b30b757a2eaa49000001 |
Phloem feeds both the plant and the rhizosphere.
| morris2e_ch29_17.html | 5639b30b757a2eaa49000001 |
DLAP questions | morris2e_ch29_17_dlap.xml | 5639b30b757a2eaa49000001 |
29.5 The Root: Uptake of Water and Nutrients From the Soil
| morris2e_ch29_18.html | 5639b30b757a2eaa49000001 |
DLAP questions | morris2e_ch29_18_dlap.xml | 5639b30b757a2eaa49000001 |
Plants obtain essential mineral nutrients from the soil.
| morris2e_ch29_19.html | 5639b30b757a2eaa49000001 |
DLAP questions | morris2e_ch29_19_dlap.xml | 5639b30b757a2eaa49000001 |
Nutrient uptake by roots is highly selective.
| morris2e_ch29_20.html | 5639b30b757a2eaa49000001 |
DLAP questions | morris2e_ch29_20_dlap.xml | 5639b30b757a2eaa49000001 |
Nutrient uptake requires energy.
| morris2e_ch29_21.html | 5639b30b757a2eaa49000001 |
DLAP questions | morris2e_ch29_21_dlap.xml | 5639b30b757a2eaa49000001 |
Mycorrhizae enhance nutrient uptake.
| morris2e_ch29_22.html | 5639b30b757a2eaa49000001 |
DLAP questions | morris2e_ch29_22_dlap.xml | 5639b30b757a2eaa49000001 |
Symbiotic nitrogen-fixing bacteria supply nitrogen to both plants and ecosystems.
| morris2e_ch29_23.html | 5639b30b757a2eaa49000001 |
DLAP questions | morris2e_ch29_23_dlap.xml | 5639b30b757a2eaa49000001 |
Case 6: How has nitrogen availability influenced agricultural productivity?
| morris2e_ch29_24.html | 5639b30b757a2eaa49000001 |
DLAP questions | morris2e_ch29_24_dlap.xml | 5639b30b757a2eaa49000001 |
Chapter 29 Summary | morris2e_ch29_25.html | 5639b30b757a2eaa49000001 |
DLAP questions | morris2e_ch29_25_dlap.xml | 5639b30b757a2eaa49000001 |
Chapter 30 Introduction | morris2e_ch30_1.html | 5639b5a6757a2e054f000000 |
DLAP questions | morris2e_ch30_1_dlap.xml | 5639b5a6757a2e054f000000 |
30.1 Alternation of Generations
| morris2e_ch30_2.html | 5639b5a6757a2e054f000000 |
DLAP questions | morris2e_ch30_2_dlap.xml | 5639b5a6757a2e054f000000 |
The algal sister groups of land plants have one multicellular generation in their life cycle.
| morris2e_ch30_3.html | 5639b5a6757a2e054f000000 |
DLAP questions | morris2e_ch30_3_dlap.xml | 5639b5a6757a2e054f000000 |
Bryophytes illustrate how the alternation of generations allows the dispersal of spores in the air.
| morris2e_ch30_4.html | 5639b5a6757a2e054f000000 |
DLAP questions | morris2e_ch30_4_dlap.xml | 5639b5a6757a2e054f000000 |
Dispersal enhances reproductive fitness in several ways.
| morris2e_ch30_5.html | 5639b5a6757a2e054f000000 |
DLAP questions | morris2e_ch30_5_dlap.xml | 5639b5a6757a2e054f000000 |
Spore-dispersing vascular plants have free-living gametophytes and sporophytes.
| morris2e_ch30_6.html | 5639b5a6757a2e054f000000 |
DLAP questions | morris2e_ch30_6_dlap.xml | 5639b5a6757a2e054f000000 |
30.2 Seed Plants
| morris2e_ch30_7.html | 5639b5a6757a2e054f000000 |
DLAP questions | morris2e_ch30_7_dlap.xml | 5639b5a6757a2e054f000000 |
The seed plant life cycle is distinguished by four major steps.
| morris2e_ch30_8.html | 5639b5a6757a2e054f000000 |
DLAP questions | morris2e_ch30_8_dlap.xml | 5639b5a6757a2e054f000000 |
Pine trees illustrate how the transport of pollen in air allows fertilization to occur in the absence of external sources of water.
| morris2e_ch30_9.html | 5639b5a6757a2e054f000000 |
DLAP questions | morris2e_ch30_9_dlap.xml | 5639b5a6757a2e054f000000 |
Seeds enhance the establishment of the next sporophyte generation.
| morris2e_ch30_10.html | 5639b5a6757a2e054f000000 |
DLAP questions | morris2e_ch30_10_dlap.xml | 5639b5a6757a2e054f000000 |
30.3 Flowering Plants
| morris2e_ch30_11.html | 5639b5a6757a2e054f000000 |
DLAP questions | morris2e_ch30_11_dlap.xml | 5639b5a6757a2e054f000000 |
Flowers are reproductive shoots specialized for the transfer and receipt of pollen.
| morris2e_ch30_12.html | 5639b5a6757a2e054f000000 |
DLAP questions | morris2e_ch30_12_dlap.xml | 5639b5a6757a2e054f000000 |
The diversity of floral morphology is related to modes of pollination.
| morris2e_ch30_13.html | 5639b5a6757a2e054f000000 |
DLAP questions | morris2e_ch30_13_dlap.xml | 5639b5a6757a2e054f000000 |
Angiosperms have mechanisms to increase outcrossing.
| morris2e_ch30_14.html | 5639b5a6757a2e054f000000 |
DLAP questions | morris2e_ch30_14_dlap.xml | 5639b5a6757a2e054f000000 |
Angiosperms delay provisioning their ovules until after fertilization.
| morris2e_ch30_15.html | 5639b5a6757a2e054f000000 |
DLAP questions | morris2e_ch30_15_dlap.xml | 5639b5a6757a2e054f000000 |
Fruits enhance the dispersal of seeds.
| morris2e_ch30_16.html | 5639b5a6757a2e054f000000 |
DLAP questions | morris2e_ch30_16_dlap.xml | 5639b5a6757a2e054f000000 |
Case 6: How did scientists increase crop yields during the Green Revolution?
| morris2e_ch30_17.html | 5639b5a6757a2e054f000000 |
DLAP questions | morris2e_ch30_17_dlap.xml | 5639b5a6757a2e054f000000 |
30.4 Asexual Reproduction
| morris2e_ch30_18.html | 5639b5a6757a2e054f000000 |
DLAP questions | morris2e_ch30_18_dlap.xml | 5639b5a6757a2e054f000000 |
Asexually produced plants disperse with and without seeds.
| morris2e_ch30_19.html | 5639b5a6757a2e054f000000 |
DLAP questions | morris2e_ch30_19_dlap.xml | 5639b5a6757a2e054f000000 |
Chapter 30 Summary | morris2e_ch30_20.html | 5639b5a6757a2e054f000000 |
DLAP questions | morris2e_ch30_20_dlap.xml | 5639b5a6757a2e054f000000 |
Chapter 31 Introduction | morris2e_ch31_1.html | 563bac7b757a2ef524000000 |
DLAP questions | morris2e_ch31_1_dlap.xml | 563bac7b757a2ef524000000 |
31.1 Shoot Growth and Development
| morris2e_ch31_2.html | 563bac7b757a2ef524000000 |
DLAP questions | morris2e_ch31_2_dlap.xml | 563bac7b757a2ef524000000 |
Stems grow by adding new cells at their tips.
| morris2e_ch31_3.html | 563bac7b757a2ef524000000 |
DLAP questions | morris2e_ch31_3_dlap.xml | 563bac7b757a2ef524000000 |
Stem elongation occurs just below the apical meristem.
| morris2e_ch31_4.html | 563bac7b757a2ef524000000 |
DLAP questions | morris2e_ch31_4_dlap.xml | 563bac7b757a2ef524000000 |
The development of new apical meristems allows stems to branch.
| morris2e_ch31_5.html | 563bac7b757a2ef524000000 |
DLAP questions | morris2e_ch31_5_dlap.xml | 563bac7b757a2ef524000000 |
The shoot apical meristem controls the production and arrangement of leaves.
| morris2e_ch31_6.html | 563bac7b757a2ef524000000 |
DLAP questions | morris2e_ch31_6_dlap.xml | 563bac7b757a2ef524000000 |
Young leaves develop vascular connections to the stem.
| morris2e_ch31_7.html | 563bac7b757a2ef524000000 |
DLAP questions | morris2e_ch31_7_dlap.xml | 563bac7b757a2ef524000000 |
Flower development terminates the growth of shoot meristems.
| morris2e_ch31_8.html | 563bac7b757a2ef524000000 |
DLAP questions | morris2e_ch31_8_dlap.xml | 563bac7b757a2ef524000000 |
31.2 Plant Hormones
| morris2e_ch31_9.html | 563bac7b757a2ef524000000 |
DLAP questions | morris2e_ch31_9_dlap.xml | 563bac7b757a2ef524000000 |
Hormones affect the growth and differentiation of plant cells.
| morris2e_ch31_10.html | 563bac7b757a2ef524000000 |
DLAP questions | morris2e_ch31_10_dlap.xml | 563bac7b757a2ef524000000 |
Polar transport of auxin guides the placement of leaf primordia and the development of vascular connections with the stem.
| morris2e_ch31_11.html | 563bac7b757a2ef524000000 |
DLAP questions | morris2e_ch31_11_dlap.xml | 563bac7b757a2ef524000000 |
Case 6: What is the developmental basis for the shorter stems of high-yielding rice and wheat?
| morris2e_ch31_12.html | 563bac7b757a2ef524000000 |
DLAP questions | morris2e_ch31_12_dlap.xml | 563bac7b757a2ef524000000 |
Cytokinins, in combination with other hormones, control the outgrowth of axillary buds.
| morris2e_ch31_13.html | 563bac7b757a2ef524000000 |
DLAP questions | morris2e_ch31_13_dlap.xml | 563bac7b757a2ef524000000 |
31.3 Secondary Growth
| morris2e_ch31_14.html | 563bac7b757a2ef524000000 |
DLAP questions | morris2e_ch31_14_dlap.xml | 563bac7b757a2ef524000000 |
Shoots produce two types of lateral meristem.
| morris2e_ch31_15.html | 563bac7b757a2ef524000000 |
DLAP questions | morris2e_ch31_15_dlap.xml | 563bac7b757a2ef524000000 |
The vascular cambium produces secondary xylem and phloem.
| morris2e_ch31_16.html | 563bac7b757a2ef524000000 |
DLAP questions | morris2e_ch31_16_dlap.xml | 563bac7b757a2ef524000000 |
The cork cambium produces an outer protective layer.
| morris2e_ch31_17.html | 563bac7b757a2ef524000000 |
DLAP questions | morris2e_ch31_17_dlap.xml | 563bac7b757a2ef524000000 |
Wood has both mechanical and transport functions.
| morris2e_ch31_18.html | 563bac7b757a2ef524000000 |
DLAP questions | morris2e_ch31_18_dlap.xml | 563bac7b757a2ef524000000 |
31.4 Root Growth and Development
| morris2e_ch31_19.html | 563bac7b757a2ef524000000 |
DLAP questions | morris2e_ch31_19_dlap.xml | 563bac7b757a2ef524000000 |
Roots grow by producing new cells at their tips.
| morris2e_ch31_20.html | 563bac7b757a2ef524000000 |
DLAP questions | morris2e_ch31_20_dlap.xml | 563bac7b757a2ef524000000 |
Root elongation and vascular development are coordinated.
| morris2e_ch31_21.html | 563bac7b757a2ef524000000 |
DLAP questions | morris2e_ch31_21_dlap.xml | 563bac7b757a2ef524000000 |
The formation of new root apical meristems allows roots to branch.
| morris2e_ch31_22.html | 563bac7b757a2ef524000000 |
DLAP questions | morris2e_ch31_22_dlap.xml | 563bac7b757a2ef524000000 |
The structures and functions of root systems are diverse.
| morris2e_ch31_23.html | 563bac7b757a2ef524000000 |
DLAP questions | morris2e_ch31_23_dlap.xml | 563bac7b757a2ef524000000 |
31.5 The Environmental Context of Growth and Development
| morris2e_ch31_24.html | 563bac7b757a2ef524000000 |
DLAP questions | morris2e_ch31_24_dlap.xml | 563bac7b757a2ef524000000 |
Plants orient the growth of their stems and roots by light and gravity.
| morris2e_ch31_25.html | 563bac7b757a2ef524000000 |
DLAP questions | morris2e_ch31_25_dlap.xml | 563bac7b757a2ef524000000 |
Seeds can delay germination if they detect the presence of plants overhead.
| morris2e_ch31_26.html | 563bac7b757a2ef524000000 |
DLAP questions | morris2e_ch31_26_dlap.xml | 563bac7b757a2ef524000000 |
Plants grow taller and branch less when growing in the shade of other plants.
| morris2e_ch31_27.html | 563bac7b757a2ef524000000 |
DLAP questions | morris2e_ch31_27_dlap.xml | 563bac7b757a2ef524000000 |
Roots elongate more and branch less when water is scarce.
| morris2e_ch31_28.html | 563bac7b757a2ef524000000 |
DLAP questions | morris2e_ch31_28_dlap.xml | 563bac7b757a2ef524000000 |
Exposure to wind results in shorter and stronger stems.
| morris2e_ch31_29.html | 563bac7b757a2ef524000000 |
DLAP questions | morris2e_ch31_29_dlap.xml | 563bac7b757a2ef524000000 |
31.6 Timing of Developmental Events
| morris2e_ch31_30.html | 563bac7b757a2ef524000000 |
DLAP questions | morris2e_ch31_30_dlap.xml | 563bac7b757a2ef524000000 |
Flowering time is affected by day length.
| morris2e_ch31_31.html | 563bac7b757a2ef524000000 |
DLAP questions | morris2e_ch31_31_dlap.xml | 563bac7b757a2ef524000000 |
Plants use their internal circadian clock and photoreceptors to determine day length.
| morris2e_ch31_32.html | 563bac7b757a2ef524000000 |
DLAP questions | morris2e_ch31_32_dlap.xml | 563bac7b757a2ef524000000 |
Vernalization prevents plants from flowering until winter has passed.
| morris2e_ch31_33.html | 563bac7b757a2ef524000000 |
DLAP questions | morris2e_ch31_33_dlap.xml | 563bac7b757a2ef524000000 |
Plants use day length as a cue to prepare for winter.
| morris2e_ch31_34.html | 563bac7b757a2ef524000000 |
DLAP questions | morris2e_ch31_34_dlap.xml | 563bac7b757a2ef524000000 |
Chapter 31 Summary | morris2e_ch31_35.html | 563bac7b757a2ef524000000 |
DLAP questions | morris2e_ch31_35_dlap.xml | 563bac7b757a2ef524000000 |
Chapter 32 Introduction | morris2e_ch32_1.html | 563bb9d7757a2e862a000000 |
DLAP questions | morris2e_ch32_1_dlap.xml | 563bb9d7757a2e862a000000 |
32.1 Protection Against Pathogens
| morris2e_ch32_2.html | 563bb9d7757a2e862a000000 |
DLAP questions | morris2e_ch32_2_dlap.xml | 563bb9d7757a2e862a000000 |
Plant pathogens infect and exploit host plants by a variety of mechanisms.
| morris2e_ch32_3.html | 563bb9d7757a2e862a000000 |
DLAP questions | morris2e_ch32_3_dlap.xml | 563bb9d7757a2e862a000000 |
Plants are able to detect and respond to pathogens.
| morris2e_ch32_4.html | 563bb9d7757a2e862a000000 |
DLAP questions | morris2e_ch32_4_dlap.xml | 563bb9d7757a2e862a000000 |
Plants respond to infections by isolating infected regions.
| morris2e_ch32_5.html | 563bb9d7757a2e862a000000 |
DLAP questions | morris2e_ch32_5_dlap.xml | 563bb9d7757a2e862a000000 |
Mobile signals trigger defenses in uninfected tissues.
| morris2e_ch32_6.html | 563bb9d7757a2e862a000000 |
DLAP questions | morris2e_ch32_6_dlap.xml | 563bb9d7757a2e862a000000 |
Plants defend against viral infections by producing siRNA.
| morris2e_ch32_7.html | 563bb9d7757a2e862a000000 |
DLAP questions | morris2e_ch32_7_dlap.xml | 563bb9d7757a2e862a000000 |
A pathogenic bacterium provides a way to modify plant genomes.
| morris2e_ch32_8.html | 563bb9d7757a2e862a000000 |
DLAP questions | morris2e_ch32_8_dlap.xml | 563bb9d7757a2e862a000000 |
32.2 Defense Against Herbivores
| morris2e_ch32_9.html | 563bb9d7757a2e862a000000 |
DLAP questions | morris2e_ch32_9_dlap.xml | 563bb9d7757a2e862a000000 |
Plants use mechanical and chemical defenses to avoid being eaten.
| morris2e_ch32_10.html | 563bb9d7757a2e862a000000 |
DLAP questions | morris2e_ch32_10_dlap.xml | 563bb9d7757a2e862a000000 |
Diverse chemical compounds deter herbivores.
| morris2e_ch32_11.html | 563bb9d7757a2e862a000000 |
DLAP questions | morris2e_ch32_11_dlap.xml | 563bb9d7757a2e862a000000 |
Some plants provide food and shelter for ants, which actively defend them.
| morris2e_ch32_12.html | 563bb9d7757a2e862a000000 |
DLAP questions | morris2e_ch32_12_dlap.xml | 563bb9d7757a2e862a000000 |
Grasses can regrow quickly following grazing by mammals.
| morris2e_ch32_13.html | 563bb9d7757a2e862a000000 |
DLAP questions | morris2e_ch32_13_dlap.xml | 563bb9d7757a2e862a000000 |
32.3 Allocating Resources to Defense
| morris2e_ch32_14.html | 563bb9d7757a2e862a000000 |
DLAP questions | morris2e_ch32_14_dlap.xml | 563bb9d7757a2e862a000000 |
Some defenses are always present, whereas others are turned on in response to a threat.
| morris2e_ch32_15.html | 563bb9d7757a2e862a000000 |
DLAP questions | morris2e_ch32_15_dlap.xml | 563bb9d7757a2e862a000000 |
Plants can sense and respond to herbivores.
| morris2e_ch32_16.html | 563bb9d7757a2e862a000000 |
DLAP questions | morris2e_ch32_16_dlap.xml | 563bb9d7757a2e862a000000 |
Plants produce volatile signals that attract insects that prey upon herbivores.
| morris2e_ch32_17.html | 563bb9d7757a2e862a000000 |
DLAP questions | morris2e_ch32_17_dlap.xml | 563bb9d7757a2e862a000000 |
Nutrient-rich environments select for plants that allocate more resources to growth than to defense.
| morris2e_ch32_18.html | 563bb9d7757a2e862a000000 |
DLAP questions | morris2e_ch32_18_dlap.xml | 563bb9d7757a2e862a000000 |
Exposure to multiple threats can lead to trade-offs.
| morris2e_ch32_19.html | 563bb9d7757a2e862a000000 |
DLAP questions | morris2e_ch32_19_dlap.xml | 563bb9d7757a2e862a000000 |
32.4 Defense and Plant Diversity
| morris2e_ch32_20.html | 563bb9d7757a2e862a000000 |
DLAP questions | morris2e_ch32_20_dlap.xml | 563bb9d7757a2e862a000000 |
The evolution of new defenses may allow plants to diversify.
| morris2e_ch32_21.html | 563bb9d7757a2e862a000000 |
DLAP questions | morris2e_ch32_21_dlap.xml | 563bb9d7757a2e862a000000 |
Pathogens, herbivores, and seed predators can increase plant diversity.
| morris2e_ch32_22.html | 563bb9d7757a2e862a000000 |
DLAP questions | morris2e_ch32_22_dlap.xml | 563bb9d7757a2e862a000000 |
Case 6: Can modifying plants genetically protect crops from herbivores and pathogens?
| morris2e_ch32_23.html | 563bb9d7757a2e862a000000 |
DLAP questions | morris2e_ch32_23_dlap.xml | 563bb9d7757a2e862a000000 |
Chapter 32 Summary | morris2e_ch32_24.html | 563bb9d7757a2e862a000000 |
DLAP questions | morris2e_ch32_24_dlap.xml | 563bb9d7757a2e862a000000 |
Chapter 33 Introduction | morris2e_ch33_1.html | 563bc113757a2e312d000000 |
DLAP questions | morris2e_ch33_1_dlap.xml | 563bc113757a2e312d000000 |
33.1 Plant Diversity: An Evolutionary Overview
| morris2e_ch33_2.html | 563bc113757a2e312d000000 |
DLAP questions | morris2e_ch33_2_dlap.xml | 563bc113757a2e312d000000 |
Four major transformations in life cycle and structure characterize the evolutionary history of plants.
| morris2e_ch33_3.html | 563bc113757a2e312d000000 |
DLAP questions | morris2e_ch33_3_dlap.xml | 563bc113757a2e312d000000 |
Plant diversity has changed over time.
| morris2e_ch33_4.html | 563bc113757a2e312d000000 |
DLAP questions | morris2e_ch33_4_dlap.xml | 563bc113757a2e312d000000 |
33.2 Bryophytes
| morris2e_ch33_5.html | 563bc113757a2e312d000000 |
DLAP questions | morris2e_ch33_5_dlap.xml | 563bc113757a2e312d000000 |
Bryophytes are small, simple, and tough.
| morris2e_ch33_6.html | 563bc113757a2e312d000000 |
DLAP questions | morris2e_ch33_6_dlap.xml | 563bc113757a2e312d000000 |
The small gametophytes and unbranched sporophytes of bryophytes are adaptations for reproducing on land.
| morris2e_ch33_7.html | 563bc113757a2e312d000000 |
DLAP questions | morris2e_ch33_7_dlap.xml | 563bc113757a2e312d000000 |
Bryophytes exhibit several cases of convergent evolution with the vascular plants.
| morris2e_ch33_8.html | 563bc113757a2e312d000000 |
DLAP questions | morris2e_ch33_8_dlap.xml | 563bc113757a2e312d000000 |
Sphagnum moss plays an important role in the global carbon cycle.
| morris2e_ch33_9.html | 563bc113757a2e312d000000 |
DLAP questions | morris2e_ch33_9_dlap.xml | 563bc113757a2e312d000000 |
33.3 Spore-Dispersing Vascular Plants
| morris2e_ch33_10.html | 563bc113757a2e312d000000 |
DLAP questions | morris2e_ch33_10_dlap.xml | 563bc113757a2e312d000000 |
Rhynie cherts provide a window into the early evolution of vascular plants.
| morris2e_ch33_11.html | 563bc113757a2e312d000000 |
DLAP questions | morris2e_ch33_11_dlap.xml | 563bc113757a2e312d000000 |
Lycophytes are the sister group of all other vascular plants.
| morris2e_ch33_12.html | 563bc113757a2e312d000000 |
DLAP questions | morris2e_ch33_12_dlap.xml | 563bc113757a2e312d000000 |
Ancient lycophytes included giant trees that dominated coal swamps about 320 million years ago.
| morris2e_ch33_13.html | 563bc113757a2e312d000000 |
DLAP questions | morris2e_ch33_13_dlap.xml | 563bc113757a2e312d000000 |
Ferns and horsetails are morphologically and ecologically diverse.
| morris2e_ch33_14.html | 563bc113757a2e312d000000 |
DLAP questions | morris2e_ch33_14_dlap.xml | 563bc113757a2e312d000000 |
Fern diversity has been strongly affected by the evolution of angiosperms.
| morris2e_ch33_15.html | 563bc113757a2e312d000000 |
DLAP questions | morris2e_ch33_15_dlap.xml | 563bc113757a2e312d000000 |
An aquatic fern contributes to rice production.
| morris2e_ch33_16.html | 563bc113757a2e312d000000 |
DLAP questions | morris2e_ch33_16_dlap.xml | 563bc113757a2e312d000000 |
33.4 Gymnosperms
| morris2e_ch33_17.html | 563bc113757a2e312d000000 |
DLAP questions | morris2e_ch33_17_dlap.xml | 563bc113757a2e312d000000 |
Cycads and ginkgos are the earliest diverging groups of living gymnosperms.
| morris2e_ch33_18.html | 563bc113757a2e312d000000 |
DLAP questions | morris2e_ch33_18_dlap.xml | 563bc113757a2e312d000000 |
Conifers are woody plants that thrive in dry and cold climates.
| morris2e_ch33_19.html | 563bc113757a2e312d000000 |
DLAP questions | morris2e_ch33_19_dlap.xml | 563bc113757a2e312d000000 |
Gnetophytes are gymnosperms that have independently evolved xylem vessels and double fertilization.
| morris2e_ch33_20.html | 563bc113757a2e312d000000 |
DLAP questions | morris2e_ch33_20_dlap.xml | 563bc113757a2e312d000000 |
33.5 Angiosperms
| morris2e_ch33_21.html | 563bc113757a2e312d000000 |
DLAP questions | morris2e_ch33_21_dlap.xml | 563bc113757a2e312d000000 |
Angiosperms may have originated in the shady understory of tropical forests.
| morris2e_ch33_22.html | 563bc113757a2e312d000000 |
DLAP questions | morris2e_ch33_22_dlap.xml | 563bc113757a2e312d000000 |
Angiosperm diversity results from flowers and xylem vessels, among other traits, as well as coevolutionary interactions with animals and other organisms.
| morris2e_ch33_23.html | 563bc113757a2e312d000000 |
DLAP questions | morris2e_ch33_23_dlap.xml | 563bc113757a2e312d000000 |
Monocots are diverse in shape and size despite not forming a vascular cambium.
| morris2e_ch33_24.html | 563bc113757a2e312d000000 |
DLAP questions | morris2e_ch33_24_dlap.xml | 563bc113757a2e312d000000 |
Eudicots are the most diverse group of angiosperms.
| morris2e_ch33_25.html | 563bc113757a2e312d000000 |
DLAP questions | morris2e_ch33_25_dlap.xml | 563bc113757a2e312d000000 |
Case 6: What can be done to protect the genetic diversity of crop species?
| morris2e_ch33_26.html | 563bc113757a2e312d000000 |
DLAP questions | morris2e_ch33_26_dlap.xml | 563bc113757a2e312d000000 |
Chapter 33 Summary | morris2e_ch33_27.html | 563bc113757a2e312d000000 |
DLAP questions | morris2e_ch33_27_dlap.xml | 563bc113757a2e312d000000 |
Chapter 34 Introduction | morris2e_ch34_1.html | 563bc259757a2e692a000000 |
DLAP questions | morris2e_ch34_1_dlap.xml | 563bc259757a2e692a000000 |
34.1 Growth and Nutrition
| morris2e_ch34_2.html | 563bc259757a2e692a000000 |
DLAP questions | morris2e_ch34_2_dlap.xml | 563bc259757a2e692a000000 |
Hyphae permit fungi to explore their environment for food resources.
| morris2e_ch34_3.html | 563bc259757a2e692a000000 |
DLAP questions | morris2e_ch34_3_dlap.xml | 563bc259757a2e692a000000 |
Fungi transport materials within their hyphae.
| morris2e_ch34_4.html | 563bc259757a2e692a000000 |
DLAP questions | morris2e_ch34_4_dlap.xml | 563bc259757a2e692a000000 |
Not all fungi produce hyphae.
| morris2e_ch34_5.html | 563bc259757a2e692a000000 |
DLAP questions | morris2e_ch34_5_dlap.xml | 563bc259757a2e692a000000 |
Fungi are principal decomposers of plant tissues.
| morris2e_ch34_6.html | 563bc259757a2e692a000000 |
DLAP questions | morris2e_ch34_6_dlap.xml | 563bc259757a2e692a000000 |
Fungi are important plant and animal pathogens.
| morris2e_ch34_7.html | 563bc259757a2e692a000000 |
DLAP questions | morris2e_ch34_7_dlap.xml | 563bc259757a2e692a000000 |
Many fungi form symbiotic associations with plants and animals.
| morris2e_ch34_8.html | 563bc259757a2e692a000000 |
DLAP questions | morris2e_ch34_8_dlap.xml | 563bc259757a2e692a000000 |
Lichens are symbioses between a fungus and a green alga or a cyanobacterium.
| morris2e_ch34_9.html | 563bc259757a2e692a000000 |
DLAP questions | morris2e_ch34_9_dlap.xml | 563bc259757a2e692a000000 |
34.2 Reproduction
| morris2e_ch34_10.html | 563bc259757a2e692a000000 |
DLAP questions | morris2e_ch34_10_dlap.xml | 563bc259757a2e692a000000 |
Fungi proliferate and disperse using spores.
| morris2e_ch34_11.html | 563bc259757a2e692a000000 |
DLAP questions | morris2e_ch34_11_dlap.xml | 563bc259757a2e692a000000 |
Multicellular fruiting bodies facilitate the dispersal of sexually produced spores.
| morris2e_ch34_12.html | 563bc259757a2e692a000000 |
DLAP questions | morris2e_ch34_12_dlap.xml | 563bc259757a2e692a000000 |
The fungal life cycle often includes a stage in which haploid cells fuse, but nuclei do not.
| morris2e_ch34_13.html | 563bc259757a2e692a000000 |
DLAP questions | morris2e_ch34_13_dlap.xml | 563bc259757a2e692a000000 |
Genetically distinct mating types promote outcrossing.
| morris2e_ch34_14.html | 563bc259757a2e692a000000 |
DLAP questions | morris2e_ch34_14_dlap.xml | 563bc259757a2e692a000000 |
34.3 Diversity
| morris2e_ch34_15.html | 563bc259757a2e692a000000 |
DLAP questions | morris2e_ch34_15_dlap.xml | 563bc259757a2e692a000000 |
Fungi are highly diverse.
| morris2e_ch34_16.html | 563bc259757a2e692a000000 |
DLAP questions | morris2e_ch34_16_dlap.xml | 563bc259757a2e692a000000 |
Fungi evolved from aquatic, unicellular, and flagellated ancestors.
| morris2e_ch34_17.html | 563bc259757a2e692a000000 |
DLAP questions | morris2e_ch34_17_dlap.xml | 563bc259757a2e692a000000 |
Zygomycetes produce hyphae undivided by septa.
| morris2e_ch34_18.html | 563bc259757a2e692a000000 |
DLAP questions | morris2e_ch34_18_dlap.xml | 563bc259757a2e692a000000 |
Glomeromycetes form endomycorrhizae.
| morris2e_ch34_19.html | 563bc259757a2e692a000000 |
DLAP questions | morris2e_ch34_19_dlap.xml | 563bc259757a2e692a000000 |
The Dikarya produce regular septa during mitosis.
| morris2e_ch34_20.html | 563bc259757a2e692a000000 |
DLAP questions | morris2e_ch34_20_dlap.xml | 563bc259757a2e692a000000 |
Ascomycetes are the most diverse group of fungi.
| morris2e_ch34_21.html | 563bc259757a2e692a000000 |
DLAP questions | morris2e_ch34_21_dlap.xml | 563bc259757a2e692a000000 |
Basidiomycetes include smuts, rusts, and mushrooms.
| morris2e_ch34_22.html | 563bc259757a2e692a000000 |
DLAP questions | morris2e_ch34_22_dlap.xml | 563bc259757a2e692a000000 |
Case 6: How do fungi threaten global wheat production?
| morris2e_ch34_23.html | 563bc259757a2e692a000000 |
DLAP questions | morris2e_ch34_23_dlap.xml | 563bc259757a2e692a000000 |
Chapter 34 Summary | morris2e_ch34_24.html | 563bc259757a2e692a000000 |
DLAP questions | morris2e_ch34_24_dlap.xml | 563bc259757a2e692a000000 |
Chapter 35 Introduction | morris2e_ch35_1.html | 563bc4c8757a2e3f2d000000 |
DLAP questions | morris2e_ch35_1_dlap.xml | 563bc4c8757a2e3f2d000000 |
35.1 Nervous System Function and Evolution
| morris2e_ch35_2.html | 563bc4c8757a2e3f2d000000 |
DLAP questions | morris2e_ch35_2_dlap.xml | 563bc4c8757a2e3f2d000000 |
Animal nervous systems have three types of nerve cell.
| morris2e_ch35_3.html | 563bc4c8757a2e3f2d000000 |
DLAP questions | morris2e_ch35_3_dlap.xml | 563bc4c8757a2e3f2d000000 |
Nervous systems range from simple to complex.
| morris2e_ch35_4.html | 563bc4c8757a2e3f2d000000 |
DLAP questions | morris2e_ch35_4_dlap.xml | 563bc4c8757a2e3f2d000000 |
Case 7: What body features arose as adaptations for successful predation?
| morris2e_ch35_5.html | 563bc4c8757a2e3f2d000000 |
DLAP questions | morris2e_ch35_5_dlap.xml | 563bc4c8757a2e3f2d000000 |
35.2 Neuron Structure
| morris2e_ch35_6.html | 563bc4c8757a2e3f2d000000 |
DLAP questions | morris2e_ch35_6_dlap.xml | 563bc4c8757a2e3f2d000000 |
Neurons share a common organization.
| morris2e_ch35_7.html | 563bc4c8757a2e3f2d000000 |
DLAP questions | morris2e_ch35_7_dlap.xml | 563bc4c8757a2e3f2d000000 |
Neurons differ in size and shape.
| morris2e_ch35_8.html | 563bc4c8757a2e3f2d000000 |
DLAP questions | morris2e_ch35_8_dlap.xml | 563bc4c8757a2e3f2d000000 |
Neurons are supported by other types of cell.
| morris2e_ch35_9.html | 563bc4c8757a2e3f2d000000 |
DLAP questions | morris2e_ch35_9_dlap.xml | 563bc4c8757a2e3f2d000000 |
35.3 Neuron Function
| morris2e_ch35_10.html | 563bc4c8757a2e3f2d000000 |
DLAP questions | morris2e_ch35_10_dlap.xml | 563bc4c8757a2e3f2d000000 |
The resting membrane potential is negative and results in part from the movement of potassium ions.
| morris2e_ch35_11.html | 563bc4c8757a2e3f2d000000 |
DLAP questions | morris2e_ch35_11_dlap.xml | 563bc4c8757a2e3f2d000000 |
Neurons are excitable cells that transmit information by action potentials.
| morris2e_ch35_12.html | 563bc4c8757a2e3f2d000000 |
DLAP questions | morris2e_ch35_12_dlap.xml | 563bc4c8757a2e3f2d000000 |
Neurons propagate action potentials along their axons by sequentially opening and closing adjacent Na+ and K+ ion channels.
| morris2e_ch35_13.html | 563bc4c8757a2e3f2d000000 |
DLAP questions | morris2e_ch35_13_dlap.xml | 563bc4c8757a2e3f2d000000 |
Neurons communicate at synapses.
| morris2e_ch35_14.html | 563bc4c8757a2e3f2d000000 |
DLAP questions | morris2e_ch35_14_dlap.xml | 563bc4c8757a2e3f2d000000 |
Signals between neurons can be excitatory or inhibitory.
| morris2e_ch35_15.html | 563bc4c8757a2e3f2d000000 |
DLAP questions | morris2e_ch35_15_dlap.xml | 563bc4c8757a2e3f2d000000 |
35.4 Nervous System Organization
| morris2e_ch35_16.html | 563bc4c8757a2e3f2d000000 |
DLAP questions | morris2e_ch35_16_dlap.xml | 563bc4c8757a2e3f2d000000 |
Nervous systems are organized into peripheral and central components.
| morris2e_ch35_17.html | 563bc4c8757a2e3f2d000000 |
DLAP questions | morris2e_ch35_17_dlap.xml | 563bc4c8757a2e3f2d000000 |
Peripheral nervous systems have voluntary and involuntary components.
| morris2e_ch35_18.html | 563bc4c8757a2e3f2d000000 |
DLAP questions | morris2e_ch35_18_dlap.xml | 563bc4c8757a2e3f2d000000 |
The nervous system helps to maintain homeostasis.
| morris2e_ch35_19.html | 563bc4c8757a2e3f2d000000 |
DLAP questions | morris2e_ch35_19_dlap.xml | 563bc4c8757a2e3f2d000000 |
Simple reflex circuits provide rapid responses to stimuli.
| morris2e_ch35_20.html | 563bc4c8757a2e3f2d000000 |
DLAP questions | morris2e_ch35_20_dlap.xml | 563bc4c8757a2e3f2d000000 |
Chapter 35 Summary | morris2e_ch35_21.html | 563bc4c8757a2e3f2d000000 |
DLAP questions | morris2e_ch35_21_dlap.xml | 563bc4c8757a2e3f2d000000 |
Chapter 36 Introduction | morris2e_ch36_1.html | 563c30a2757a2e2539000000 |
DLAP questions | morris2e_ch36_1_dlap.xml | 563c30a2757a2e2539000000 |
36.1 Animal Sensory Systems
| morris2e_ch36_2.html | 563c30a2757a2e2539000000 |
DLAP questions | morris2e_ch36_2_dlap.xml | 563c30a2757a2e2539000000 |
Specialized sensory receptors detect diverse stimuli.
| morris2e_ch36_3.html | 563c30a2757a2e2539000000 |
DLAP questions | morris2e_ch36_3_dlap.xml | 563c30a2757a2e2539000000 |
Chemoreceptors are universally present in animals.
| morris2e_ch36_4.html | 563c30a2757a2e2539000000 |
DLAP questions | morris2e_ch36_4_dlap.xml | 563c30a2757a2e2539000000 |
Mechanoreceptors are a second general class of ancient sensory receptors.
| morris2e_ch36_5.html | 563c30a2757a2e2539000000 |
DLAP questions | morris2e_ch36_5_dlap.xml | 563c30a2757a2e2539000000 |
Electromagnetic receptors sense light, thermoreceptors sense temperature, and nociceptors sense pain.
| morris2e_ch36_6.html | 563c30a2757a2e2539000000 |
DLAP questions | morris2e_ch36_6_dlap.xml | 563c30a2757a2e2539000000 |
Stimuli are transmitted by changes in the firing rate of action potentials.
| morris2e_ch36_7.html | 563c30a2757a2e2539000000 |
DLAP questions | morris2e_ch36_7_dlap.xml | 563c30a2757a2e2539000000 |
36.2 Smell and Taste
| morris2e_ch36_8.html | 563c30a2757a2e2539000000 |
DLAP questions | morris2e_ch36_8_dlap.xml | 563c30a2757a2e2539000000 |
Smell and taste depend on chemoreception of molecules carried in the environment and in food.
| morris2e_ch36_9.html | 563c30a2757a2e2539000000 |
DLAP questions | morris2e_ch36_9_dlap.xml | 563c30a2757a2e2539000000 |
36.3 Gravity, Movement, and Sound
| morris2e_ch36_10.html | 563c30a2757a2e2539000000 |
DLAP questions | morris2e_ch36_10_dlap.xml | 563c30a2757a2e2539000000 |
Hair cells sense gravity and motion.
| morris2e_ch36_11.html | 563c30a2757a2e2539000000 |
DLAP questions | morris2e_ch36_11_dlap.xml | 563c30a2757a2e2539000000 |
Hair cells detect the physical vibrations of sound.
| morris2e_ch36_12.html | 563c30a2757a2e2539000000 |
DLAP questions | morris2e_ch36_12_dlap.xml | 563c30a2757a2e2539000000 |
Case 7: How have sensory systems evolved in predators and prey?
| morris2e_ch36_13.html | 563c30a2757a2e2539000000 |
DLAP questions | morris2e_ch36_13_dlap.xml | 563c30a2757a2e2539000000 |
36.4 Vision
| morris2e_ch36_14.html | 563c30a2757a2e2539000000 |
DLAP questions | morris2e_ch36_14_dlap.xml | 563c30a2757a2e2539000000 |
Animals see the world through different types of eyes.
| morris2e_ch36_15.html | 563c30a2757a2e2539000000 |
DLAP questions | morris2e_ch36_15_dlap.xml | 563c30a2757a2e2539000000 |
The structure and function of the vertebrate eye underlie image processing.
| morris2e_ch36_16.html | 563c30a2757a2e2539000000 |
DLAP questions | morris2e_ch36_16_dlap.xml | 563c30a2757a2e2539000000 |
Vertebrate photoreceptors are unusual because they hyperpolarize in response to light.
| morris2e_ch36_17.html | 563c30a2757a2e2539000000 |
DLAP questions | morris2e_ch36_17_dlap.xml | 563c30a2757a2e2539000000 |
Color vision detects different wavelengths of light.
| morris2e_ch36_18.html | 563c30a2757a2e2539000000 |
DLAP questions | morris2e_ch36_18_dlap.xml | 563c30a2757a2e2539000000 |
Local sensory processing of light determines basic features of shape and movement.
| morris2e_ch36_19.html | 563c30a2757a2e2539000000 |
DLAP questions | morris2e_ch36_19_dlap.xml | 563c30a2757a2e2539000000 |
36.5 Brain Organization and Function
| morris2e_ch36_20.html | 563c30a2757a2e2539000000 |
DLAP questions | morris2e_ch36_20_dlap.xml | 563c30a2757a2e2539000000 |
The brain processes and integrates information received from different sensory systems.
| morris2e_ch36_21.html | 563c30a2757a2e2539000000 |
DLAP questions | morris2e_ch36_21_dlap.xml | 563c30a2757a2e2539000000 |
The brain is divided into lobes with specialized functions.
| morris2e_ch36_22.html | 563c30a2757a2e2539000000 |
DLAP questions | morris2e_ch36_22_dlap.xml | 563c30a2757a2e2539000000 |
Information is topographically mapped into the vertebrate cerebral cortex.
| morris2e_ch36_23.html | 563c30a2757a2e2539000000 |
DLAP questions | morris2e_ch36_23_dlap.xml | 563c30a2757a2e2539000000 |
36.6 Memory and Cognition
| morris2e_ch36_24.html | 563c30a2757a2e2539000000 |
DLAP questions | morris2e_ch36_24_dlap.xml | 563c30a2757a2e2539000000 |
The brain serves an important role in memory and learning.
| morris2e_ch36_25.html | 563c30a2757a2e2539000000 |
DLAP questions | morris2e_ch36_25_dlap.xml | 563c30a2757a2e2539000000 |
Cognition involves brain information processing and decision making.
| morris2e_ch36_26.html | 563c30a2757a2e2539000000 |
DLAP questions | morris2e_ch36_26_dlap.xml | 563c30a2757a2e2539000000 |
Chapter 36 Summary | morris2e_ch36_27.html | 563c30a2757a2e2539000000 |
DLAP questions | morris2e_ch36_27_dlap.xml | 563c30a2757a2e2539000000 |
Chapter 37 Introduction | morris2e_ch37_1.html | 563c33c0757a2e1741000000 |
DLAP questions | morris2e_ch37_1_dlap.xml | 563c33c0757a2e1741000000 |
37.1 Muscles: Biological Motors That Generate Force and Produce Movement
| morris2e_ch37_2.html | 563c33c0757a2e1741000000 |
DLAP questions | morris2e_ch37_2_dlap.xml | 563c33c0757a2e1741000000 |
Muscles use chemical energy to produce force and movement.
| morris2e_ch37_3.html | 563c33c0757a2e1741000000 |
DLAP questions | morris2e_ch37_3_dlap.xml | 563c33c0757a2e1741000000 |
Muscles can be striated or smooth.
| morris2e_ch37_4.html | 563c33c0757a2e1741000000 |
DLAP questions | morris2e_ch37_4_dlap.xml | 563c33c0757a2e1741000000 |
Skeletal and cardiac muscle fibers are organized into repeating contractile units called sarcomeres.
| morris2e_ch37_5.html | 563c33c0757a2e1741000000 |
DLAP questions | morris2e_ch37_5_dlap.xml | 563c33c0757a2e1741000000 |
Muscles contract by the sliding of myosin and actin filaments.
| morris2e_ch37_6.html | 563c33c0757a2e1741000000 |
DLAP questions | morris2e_ch37_6_dlap.xml | 563c33c0757a2e1741000000 |
Calcium regulates actinâmyosin interaction through excitationâcontraction coupling.
| morris2e_ch37_7.html | 563c33c0757a2e1741000000 |
DLAP questions | morris2e_ch37_7_dlap.xml | 563c33c0757a2e1741000000 |
Calmodulin regulates Ca2+ activation and relaxation of smooth muscle.
| morris2e_ch37_8.html | 563c33c0757a2e1741000000 |
DLAP questions | morris2e_ch37_8_dlap.xml | 563c33c0757a2e1741000000 |
37.2 Muscle Contractile Properties
| morris2e_ch37_9.html | 563c33c0757a2e1741000000 |
DLAP questions | morris2e_ch37_9_dlap.xml | 563c33c0757a2e1741000000 |
Muscle length affects actinâmyosin overlap and generation of force.
| morris2e_ch37_10.html | 563c33c0757a2e1741000000 |
DLAP questions | morris2e_ch37_10_dlap.xml | 563c33c0757a2e1741000000 |
Muscle force and shortening velocity are inversely related.
| morris2e_ch37_11.html | 563c33c0757a2e1741000000 |
DLAP questions | morris2e_ch37_11_dlap.xml | 563c33c0757a2e1741000000 |
Antagonist pairs of muscles produce reciprocal motions at a joint.
| morris2e_ch37_12.html | 563c33c0757a2e1741000000 |
DLAP questions | morris2e_ch37_12_dlap.xml | 563c33c0757a2e1741000000 |
Muscle force is summed by an increase in stimulation frequency and the recruitment of motor units.
| morris2e_ch37_13.html | 563c33c0757a2e1741000000 |
DLAP questions | morris2e_ch37_13_dlap.xml | 563c33c0757a2e1741000000 |
Skeletal muscles have slow-twitch and fast-twitch fibers.
| morris2e_ch37_14.html | 563c33c0757a2e1741000000 |
DLAP questions | morris2e_ch37_14_dlap.xml | 563c33c0757a2e1741000000 |
Case 7: How do different types of muscle fiber affect the speed of predators and prey?
| morris2e_ch37_15.html | 563c33c0757a2e1741000000 |
DLAP questions | morris2e_ch37_15_dlap.xml | 563c33c0757a2e1741000000 |
37.3 Animal Skeletons
| morris2e_ch37_16.html | 563c33c0757a2e1741000000 |
DLAP questions | morris2e_ch37_16_dlap.xml | 563c33c0757a2e1741000000 |
Hydrostatic skeletons support animals by muscles that act on a fluid-filled cavity.
| morris2e_ch37_17.html | 563c33c0757a2e1741000000 |
DLAP questions | morris2e_ch37_17_dlap.xml | 563c33c0757a2e1741000000 |
Exoskeletons provide hard external support and protection.
| morris2e_ch37_18.html | 563c33c0757a2e1741000000 |
DLAP questions | morris2e_ch37_18_dlap.xml | 563c33c0757a2e1741000000 |
The rigid bones of vertebrate endoskeletons are jointed for motion and can be repaired if damaged.
| morris2e_ch37_19.html | 563c33c0757a2e1741000000 |
DLAP questions | morris2e_ch37_19_dlap.xml | 563c33c0757a2e1741000000 |
37.4 Vertebrate Skeletons
| morris2e_ch37_20.html | 563c33c0757a2e1741000000 |
DLAP questions | morris2e_ch37_20_dlap.xml | 563c33c0757a2e1741000000 |
Vertebrate bones form directly or by forming a cartilage model first.
| morris2e_ch37_21.html | 563c33c0757a2e1741000000 |
DLAP questions | morris2e_ch37_21_dlap.xml | 563c33c0757a2e1741000000 |
Two main types of bone are compact and spongy bone.
| morris2e_ch37_22.html | 563c33c0757a2e1741000000 |
DLAP questions | morris2e_ch37_22_dlap.xml | 563c33c0757a2e1741000000 |
Bones grow in length and width, and can be repaired.
| morris2e_ch37_23.html | 563c33c0757a2e1741000000 |
DLAP questions | morris2e_ch37_23_dlap.xml | 563c33c0757a2e1741000000 |
Joint shape determines range of motion and skeletal muscle organization.
| morris2e_ch37_24.html | 563c33c0757a2e1741000000 |
DLAP questions | morris2e_ch37_24_dlap.xml | 563c33c0757a2e1741000000 |
Muscles exert forces by skeletal levers to produce joint motion.
| morris2e_ch37_25.html | 563c33c0757a2e1741000000 |
DLAP questions | morris2e_ch37_25_dlap.xml | 563c33c0757a2e1741000000 |
Chapter 37 Summary | morris2e_ch37_26.html | 563c33c0757a2e1741000000 |
DLAP questions | morris2e_ch37_26_dlap.xml | 563c33c0757a2e1741000000 |
Chapter 38 Introduction | morris2e_ch38_1.html | 563c35b0757a2e663e000000 |
DLAP questions | morris2e_ch38_1_dlap.xml | 563c35b0757a2e663e000000 |
38.1 An Overview of Endocrine Function
| morris2e_ch38_2.html | 563c35b0757a2e663e000000 |
DLAP questions | morris2e_ch38_2_dlap.xml | 563c35b0757a2e663e000000 |
The endocrine system helps to regulate an organismâs response to its environment.
| morris2e_ch38_3.html | 563c35b0757a2e663e000000 |
DLAP questions | morris2e_ch38_3_dlap.xml | 563c35b0757a2e663e000000 |
The endocrine system regulates growth and development.
| morris2e_ch38_4.html | 563c35b0757a2e663e000000 |
DLAP questions | morris2e_ch38_4_dlap.xml | 563c35b0757a2e663e000000 |
The endocrine system underlies homeostasis.
| morris2e_ch38_5.html | 563c35b0757a2e663e000000 |
DLAP questions | morris2e_ch38_5_dlap.xml | 563c35b0757a2e663e000000 |
38.2 Properties of Hormones
| morris2e_ch38_6.html | 563c35b0757a2e663e000000 |
DLAP questions | morris2e_ch38_6_dlap.xml | 563c35b0757a2e663e000000 |
Hormones act specifically on cells that bind the hormone.
| morris2e_ch38_7.html | 563c35b0757a2e663e000000 |
DLAP questions | morris2e_ch38_7_dlap.xml | 563c35b0757a2e663e000000 |
Two main classes of hormone are peptide and amines, and steroid hormones.
| morris2e_ch38_8.html | 563c35b0757a2e663e000000 |
DLAP questions | morris2e_ch38_8_dlap.xml | 563c35b0757a2e663e000000 |
Hormonal signals are amplified to strengthen their effect.
| morris2e_ch38_9.html | 563c35b0757a2e663e000000 |
DLAP questions | morris2e_ch38_9_dlap.xml | 563c35b0757a2e663e000000 |
Hormones are evolutionarily conserved molecules with diverse functions.
| morris2e_ch38_10.html | 563c35b0757a2e663e000000 |
DLAP questions | morris2e_ch38_10_dlap.xml | 563c35b0757a2e663e000000 |
38.3 The Vertebrate Endocrine System
| morris2e_ch38_11.html | 563c35b0757a2e663e000000 |
DLAP questions | morris2e_ch38_11_dlap.xml | 563c35b0757a2e663e000000 |
The pituitary gland integrates diverse bodily functions by secreting hormones in response to signals from the hypothalamus.
| morris2e_ch38_12.html | 563c35b0757a2e663e000000 |
DLAP questions | morris2e_ch38_12_dlap.xml | 563c35b0757a2e663e000000 |
Many targets of pituitary hormones are endocrine tissues that also secrete hormones.
| morris2e_ch38_13.html | 563c35b0757a2e663e000000 |
DLAP questions | morris2e_ch38_13_dlap.xml | 563c35b0757a2e663e000000 |
Other endocrine organs have diverse functions.
| morris2e_ch38_14.html | 563c35b0757a2e663e000000 |
DLAP questions | morris2e_ch38_14_dlap.xml | 563c35b0757a2e663e000000 |
Case 7: How does the endocrine system influence predators and prey?
| morris2e_ch38_15.html | 563c35b0757a2e663e000000 |
DLAP questions | morris2e_ch38_15_dlap.xml | 563c35b0757a2e663e000000 |
38.4 Other Forms of Chemical Communication
| morris2e_ch38_16.html | 563c35b0757a2e663e000000 |
DLAP questions | morris2e_ch38_16_dlap.xml | 563c35b0757a2e663e000000 |
Local chemical signals regulate neighboring target cells.
| morris2e_ch38_17.html | 563c35b0757a2e663e000000 |
DLAP questions | morris2e_ch38_17_dlap.xml | 563c35b0757a2e663e000000 |
Pheromones are chemical compounds released into the environment to signal physiological and behavioral changes in other species members.
| morris2e_ch38_18.html | 563c35b0757a2e663e000000 |
DLAP questions | morris2e_ch38_18_dlap.xml | 563c35b0757a2e663e000000 |
Chapter 38 Summary | morris2e_ch38_19.html | 563c35b0757a2e663e000000 |
DLAP questions | morris2e_ch38_19_dlap.xml | 563c35b0757a2e663e000000 |
Chapter 39 Introduction | morris2e_ch39_1.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_1_dlap.xml | 563c3832757a2e4941000000 |
39.1 Delivery of Oxygen and Elimination of Carbon Dioxide
| morris2e_ch39_2.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_2_dlap.xml | 563c3832757a2e4941000000 |
Diffusion governs gas exchange over short distances.
| morris2e_ch39_3.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_3_dlap.xml | 563c3832757a2e4941000000 |
Bulk flow moves fluid over long distances.
| morris2e_ch39_4.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_4_dlap.xml | 563c3832757a2e4941000000 |
39.2 Respiratory Gas Exchange
| morris2e_ch39_5.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_5_dlap.xml | 563c3832757a2e4941000000 |
Many aquatic animals breathe through gills.
| morris2e_ch39_6.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_6_dlap.xml | 563c3832757a2e4941000000 |
Insects breathe air through tracheae.
| morris2e_ch39_7.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_7_dlap.xml | 563c3832757a2e4941000000 |
Most terrestrial vertebrates breathe by tidal ventilation of internal lungs.
| morris2e_ch39_8.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_8_dlap.xml | 563c3832757a2e4941000000 |
Mammalian lungs are well adapted for gas exchange.
| morris2e_ch39_9.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_9_dlap.xml | 563c3832757a2e4941000000 |
The structure of bird lungs allows unidirectional airflow for increased oxygen uptake.
| morris2e_ch39_10.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_10_dlap.xml | 563c3832757a2e4941000000 |
Voluntary and involuntary mechanisms control breathing.
| morris2e_ch39_11.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_11_dlap.xml | 563c3832757a2e4941000000 |
39.3 Oxygen Transport by Hemoglobin
| morris2e_ch39_12.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_12_dlap.xml | 563c3832757a2e4941000000 |
Blood is composed of fluid and several types of cell.
| morris2e_ch39_13.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_13_dlap.xml | 563c3832757a2e4941000000 |
Hemoglobin is an ancient molecule with diverse roles related to oxygen binding and transport.
| morris2e_ch39_14.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_14_dlap.xml | 563c3832757a2e4941000000 |
Hemoglobin reversibly binds oxygen.
| morris2e_ch39_15.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_15_dlap.xml | 563c3832757a2e4941000000 |
Myoglobin stores oxygen, enhancing delivery to muscle mitochondria.
| morris2e_ch39_16.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_16_dlap.xml | 563c3832757a2e4941000000 |
Many factors affect hemoglobinâoxygen binding.
| morris2e_ch39_17.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_17_dlap.xml | 563c3832757a2e4941000000 |
39.4 Circulatory Systems
| morris2e_ch39_18.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_18_dlap.xml | 563c3832757a2e4941000000 |
Circulatory systems have vessels of different sizes to facilitate bulk flow and diffusion.
| morris2e_ch39_19.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_19_dlap.xml | 563c3832757a2e4941000000 |
Arteries are muscular, elastic vessels that carry blood away from the heart under high pressure.
| morris2e_ch39_20.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_20_dlap.xml | 563c3832757a2e4941000000 |
Veins are thin-walled vessels that return blood to the heart under low pressure.
| morris2e_ch39_21.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_21_dlap.xml | 563c3832757a2e4941000000 |
Compounds and fluid move across capillary walls by diffusion, filtration, and osmosis.
| morris2e_ch39_22.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_22_dlap.xml | 563c3832757a2e4941000000 |
Case 7: How do hormones and nerves provide homeostatic regulation of blood flow as well as allow an animal to respond to stress?
| morris2e_ch39_23.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_23_dlap.xml | 563c3832757a2e4941000000 |
39.5 The Evolution, Structure, and Function of the Heart
| morris2e_ch39_24.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_24_dlap.xml | 563c3832757a2e4941000000 |
Fish have two-chambered hearts and a single circulatory system.
| morris2e_ch39_25.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_25_dlap.xml | 563c3832757a2e4941000000 |
Amphibians and reptiles have three-chambered hearts and partially divided circulations.
| morris2e_ch39_26.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_26_dlap.xml | 563c3832757a2e4941000000 |
Mammals and birds have four-chambered hearts and fully divided pulmonary and systemic circulations.
| morris2e_ch39_27.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_27_dlap.xml | 563c3832757a2e4941000000 |
Cardiac muscle cells are electrically connected to contract in synchrony.
| morris2e_ch39_28.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_28_dlap.xml | 563c3832757a2e4941000000 |
Heart rate and cardiac output are regulated by the autonomic nervous system.
| morris2e_ch39_29.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_29_dlap.xml | 563c3832757a2e4941000000 |
Chapter 39 Summary | morris2e_ch39_30.html | 563c3832757a2e4941000000 |
DLAP questions | morris2e_ch39_30_dlap.xml | 563c3832757a2e4941000000 |
Chapter 40 Introduction | morris2e_ch40_1.html | 563c38e4757a2e1f36000000 |
DLAP questions | morris2e_ch40_1_dlap.xml | 563c38e4757a2e1f36000000 |
40.1 Patterns of Animal Metabolism
| morris2e_ch40_2.html | 563c38e4757a2e1f36000000 |
DLAP questions | morris2e_ch40_2_dlap.xml | 563c38e4757a2e1f36000000 |
Animals rely on anaerobic and aerobic metabolism.
| morris2e_ch40_3.html | 563c38e4757a2e1f36000000 |
DLAP questions | morris2e_ch40_3_dlap.xml | 563c38e4757a2e1f36000000 |
Metabolic rate varies with activity level.
| morris2e_ch40_4.html | 563c38e4757a2e1f36000000 |
DLAP questions | morris2e_ch40_4_dlap.xml | 563c38e4757a2e1f36000000 |
Case 7: Does body temperature limit activity level in predators and prey?
| morris2e_ch40_5.html | 563c38e4757a2e1f36000000 |
DLAP questions | morris2e_ch40_5_dlap.xml | 563c38e4757a2e1f36000000 |
Metabolic rate is affected by body size.
| morris2e_ch40_6.html | 563c38e4757a2e1f36000000 |
DLAP questions | morris2e_ch40_6_dlap.xml | 563c38e4757a2e1f36000000 |
Metabolic rate is linked to body temperature.
| morris2e_ch40_7.html | 563c38e4757a2e1f36000000 |
DLAP questions | morris2e_ch40_7_dlap.xml | 563c38e4757a2e1f36000000 |
40.2 Animal Nutrition and Diet
| morris2e_ch40_8.html | 563c38e4757a2e1f36000000 |
DLAP questions | morris2e_ch40_8_dlap.xml | 563c38e4757a2e1f36000000 |
Energy balance is a form of homeostasis.
| morris2e_ch40_9.html | 563c38e4757a2e1f36000000 |
DLAP questions | morris2e_ch40_9_dlap.xml | 563c38e4757a2e1f36000000 |
An animalâs diet must supply nutrients that it cannot synthesize.
| morris2e_ch40_10.html | 563c38e4757a2e1f36000000 |
DLAP questions | morris2e_ch40_10_dlap.xml | 563c38e4757a2e1f36000000 |
40.3 Adaptations for Feeding
| morris2e_ch40_11.html | 563c38e4757a2e1f36000000 |
DLAP questions | morris2e_ch40_11_dlap.xml | 563c38e4757a2e1f36000000 |
Suspension filter feeding is common in many aquatic animals.
| morris2e_ch40_12.html | 563c38e4757a2e1f36000000 |
DLAP questions | morris2e_ch40_12_dlap.xml | 563c38e4757a2e1f36000000 |
Large aquatic animals apprehend prey by suction feeding and active swimming.
| morris2e_ch40_13.html | 563c38e4757a2e1f36000000 |
DLAP questions | morris2e_ch40_13_dlap.xml | 563c38e4757a2e1f36000000 |
Jaws and teeth provide specialized food capture and mechanical breakdown of food.
| morris2e_ch40_14.html | 563c38e4757a2e1f36000000 |
DLAP questions | morris2e_ch40_14_dlap.xml | 563c38e4757a2e1f36000000 |
40.4 Digestion and Absorption of Food
| morris2e_ch40_15.html | 563c38e4757a2e1f36000000 |
DLAP questions | morris2e_ch40_15_dlap.xml | 563c38e4757a2e1f36000000 |
The digestive tract has regional specializations.
| morris2e_ch40_16.html | 563c38e4757a2e1f36000000 |
DLAP questions | morris2e_ch40_16_dlap.xml | 563c38e4757a2e1f36000000 |
Digestion begins in the mouth.
| morris2e_ch40_17.html | 563c38e4757a2e1f36000000 |
DLAP questions | morris2e_ch40_17_dlap.xml | 563c38e4757a2e1f36000000 |
Further digestion and storage of nutrients take place in the stomach.
| morris2e_ch40_18.html | 563c38e4757a2e1f36000000 |
DLAP questions | morris2e_ch40_18_dlap.xml | 563c38e4757a2e1f36000000 |
Final digestion and nutrient absorption take place in the small intestine.
| morris2e_ch40_19.html | 563c38e4757a2e1f36000000 |
DLAP questions | morris2e_ch40_19_dlap.xml | 563c38e4757a2e1f36000000 |
The large intestine absorbs water and stores waste.
| morris2e_ch40_20.html | 563c38e4757a2e1f36000000 |
DLAP questions | morris2e_ch40_20_dlap.xml | 563c38e4757a2e1f36000000 |
The lining of the digestive tract is composed of distinct layers.
| morris2e_ch40_21.html | 563c38e4757a2e1f36000000 |
DLAP questions | morris2e_ch40_21_dlap.xml | 563c38e4757a2e1f36000000 |
Plant-eating animals have specialized digestive tracts that reflect their diets.
| morris2e_ch40_22.html | 563c38e4757a2e1f36000000 |
DLAP questions | morris2e_ch40_22_dlap.xml | 563c38e4757a2e1f36000000 |
Chapter 40 Summary | morris2e_ch40_23.html | 563c38e4757a2e1f36000000 |
DLAP questions | morris2e_ch40_23_dlap.xml | 563c38e4757a2e1f36000000 |
Chapter 41 Introduction | morris2e_ch41_1.html | 563c39b3757a2ed243000000 |
DLAP questions | morris2e_ch41_1_dlap.xml | 563c39b3757a2ed243000000 |
41.1 Water and Electrolyte Balance
| morris2e_ch41_2.html | 563c39b3757a2ed243000000 |
DLAP questions | morris2e_ch41_2_dlap.xml | 563c39b3757a2ed243000000 |
Osmosis governs the movement of water across cell membranes.
| morris2e_ch41_3.html | 563c39b3757a2ed243000000 |
DLAP questions | morris2e_ch41_3_dlap.xml | 563c39b3757a2ed243000000 |
Osmoregulation is the control of osmotic pressure inside cells and organisms.
| morris2e_ch41_4.html | 563c39b3757a2ed243000000 |
DLAP questions | morris2e_ch41_4_dlap.xml | 563c39b3757a2ed243000000 |
Osmoconformers match their internal solute concentration to that of the environment.
| morris2e_ch41_5.html | 563c39b3757a2ed243000000 |
DLAP questions | morris2e_ch41_5_dlap.xml | 563c39b3757a2ed243000000 |
Osmoregulators have internal solute concentrations that differ from that of their environment.
| morris2e_ch41_6.html | 563c39b3757a2ed243000000 |
DLAP questions | morris2e_ch41_6_dlap.xml | 563c39b3757a2ed243000000 |
Case 7: Can the loss of water and electrolytes in exercise be exploited as a strategy to hunt prey?
| morris2e_ch41_7.html | 563c39b3757a2ed243000000 |
DLAP questions | morris2e_ch41_7_dlap.xml | 563c39b3757a2ed243000000 |
41.2 Excretion of Wastes
| morris2e_ch41_8.html | 563c39b3757a2ed243000000 |
DLAP questions | morris2e_ch41_8_dlap.xml | 563c39b3757a2ed243000000 |
The excretion of nitrogenous wastes is linked to an animalâs habitat and evolutionary history.
| morris2e_ch41_9.html | 563c39b3757a2ed243000000 |
DLAP questions | morris2e_ch41_9_dlap.xml | 563c39b3757a2ed243000000 |
Excretory organs work by filtration, reabsorption and secretion.
| morris2e_ch41_10.html | 563c39b3757a2ed243000000 |
DLAP questions | morris2e_ch41_10_dlap.xml | 563c39b3757a2ed243000000 |
Animals have diverse excretory organs.
| morris2e_ch41_11.html | 563c39b3757a2ed243000000 |
DLAP questions | morris2e_ch41_11_dlap.xml | 563c39b3757a2ed243000000 |
Vertebrates filter blood under pressure through paired kidneys.
| morris2e_ch41_12.html | 563c39b3757a2ed243000000 |
DLAP questions | morris2e_ch41_12_dlap.xml | 563c39b3757a2ed243000000 |
41.3 Structure and Function of the Mammalian Kidney
| morris2e_ch41_13.html | 563c39b3757a2ed243000000 |
DLAP questions | morris2e_ch41_13_dlap.xml | 563c39b3757a2ed243000000 |
The mammalian kidney has an outer cortex and inner medulla.
| morris2e_ch41_14.html | 563c39b3757a2ed243000000 |
DLAP questions | morris2e_ch41_14_dlap.xml | 563c39b3757a2ed243000000 |
Glomerular filtration isolates wastes carried by the blood along with water and small solutes.
| morris2e_ch41_15.html | 563c39b3757a2ed243000000 |
DLAP questions | morris2e_ch41_15_dlap.xml | 563c39b3757a2ed243000000 |
The proximal convoluted tubule reabsorbs solutes by active transport.
| morris2e_ch41_16.html | 563c39b3757a2ed243000000 |
DLAP questions | morris2e_ch41_16_dlap.xml | 563c39b3757a2ed243000000 |
The loop of Henle acts as a countercurrent multiplier to create a concentration gradient from the cortex to the medulla.
| morris2e_ch41_17.html | 563c39b3757a2ed243000000 |
DLAP questions | morris2e_ch41_17_dlap.xml | 563c39b3757a2ed243000000 |
The distal convoluted tubule secretes additional wastes.
| morris2e_ch41_18.html | 563c39b3757a2ed243000000 |
DLAP questions | morris2e_ch41_18_dlap.xml | 563c39b3757a2ed243000000 |
The final concentration of urine is determined in the collecting ducts and is under hormonal control.
| morris2e_ch41_19.html | 563c39b3757a2ed243000000 |
DLAP questions | morris2e_ch41_19_dlap.xml | 563c39b3757a2ed243000000 |
The kidneys help regulate blood pressure and blood volume.
| morris2e_ch41_20.html | 563c39b3757a2ed243000000 |
DLAP questions | morris2e_ch41_20_dlap.xml | 563c39b3757a2ed243000000 |
Chapter 41 Summary | morris2e_ch41_21.html | 563c39b3757a2ed243000000 |
DLAP questions | morris2e_ch41_21_dlap.xml | 563c39b3757a2ed243000000 |
Chapter 42 Introduction | morris2e_ch42_1.html | 563c3c81757a2e0059000000 |
DLAP questions | morris2e_ch42_1_dlap.xml | 563c3c81757a2e0059000000 |
42.1 The Evolutionary History of Reproduction
| morris2e_ch42_2.html | 563c3c81757a2e0059000000 |
DLAP questions | morris2e_ch42_2_dlap.xml | 563c3c81757a2e0059000000 |
Asexual reproduction produces clones.
| morris2e_ch42_3.html | 563c3c81757a2e0059000000 |
DLAP questions | morris2e_ch42_3_dlap.xml | 563c3c81757a2e0059000000 |
Sexual reproduction involves the formation and fusion of gametes.
| morris2e_ch42_4.html | 563c3c81757a2e0059000000 |
DLAP questions | morris2e_ch42_4_dlap.xml | 563c3c81757a2e0059000000 |
Many species reproduce both sexually and asexually.
| morris2e_ch42_5.html | 563c3c81757a2e0059000000 |
DLAP questions | morris2e_ch42_5_dlap.xml | 563c3c81757a2e0059000000 |
Exclusive asexuality is often an evolutionary dead end.
| morris2e_ch42_6.html | 563c3c81757a2e0059000000 |
DLAP questions | morris2e_ch42_6_dlap.xml | 563c3c81757a2e0059000000 |
42.2 Movement Onto Land and Reproductive Adaptations
| morris2e_ch42_7.html | 563c3c81757a2e0059000000 |
DLAP questions | morris2e_ch42_7_dlap.xml | 563c3c81757a2e0059000000 |
Fertilization can take place externally or internally.
| morris2e_ch42_8.html | 563c3c81757a2e0059000000 |
DLAP questions | morris2e_ch42_8_dlap.xml | 563c3c81757a2e0059000000 |
r-strategists and K-strategists differ in number of offspring and parental care.
| morris2e_ch42_9.html | 563c3c81757a2e0059000000 |
DLAP questions | morris2e_ch42_9_dlap.xml | 563c3c81757a2e0059000000 |
Animals either lay eggs or give birth to live young.
| morris2e_ch42_10.html | 563c3c81757a2e0059000000 |
DLAP questions | morris2e_ch42_10_dlap.xml | 563c3c81757a2e0059000000 |
42.3 Human Reproductive Anatomy and Physiology
| morris2e_ch42_11.html | 563c3c81757a2e0059000000 |
DLAP questions | morris2e_ch42_11_dlap.xml | 563c3c81757a2e0059000000 |
The male reproductive system is specialized for the production and delivery of sperm.
| morris2e_ch42_12.html | 563c3c81757a2e0059000000 |
DLAP questions | morris2e_ch42_12_dlap.xml | 563c3c81757a2e0059000000 |
The female reproductive system produces eggs and supports the developing embryo.
| morris2e_ch42_13.html | 563c3c81757a2e0059000000 |
DLAP questions | morris2e_ch42_13_dlap.xml | 563c3c81757a2e0059000000 |
Hormones regulate the human reproductive system.
| morris2e_ch42_14.html | 563c3c81757a2e0059000000 |
DLAP questions | morris2e_ch42_14_dlap.xml | 563c3c81757a2e0059000000 |
42.4 Gamete Formation to Birth in Humans
| morris2e_ch42_15.html | 563c3c81757a2e0059000000 |
DLAP questions | morris2e_ch42_15_dlap.xml | 563c3c81757a2e0059000000 |
Male and female gametogenesis have both shared and distinct features.
| morris2e_ch42_16.html | 563c3c81757a2e0059000000 |
DLAP questions | morris2e_ch42_16_dlap.xml | 563c3c81757a2e0059000000 |
Fertilization occurs when a sperm fuses with an oocyte.
| morris2e_ch42_17.html | 563c3c81757a2e0059000000 |
DLAP questions | morris2e_ch42_17_dlap.xml | 563c3c81757a2e0059000000 |
The first trimester includes cleavage, gastrulation, and organogenesis.
| morris2e_ch42_18.html | 563c3c81757a2e0059000000 |
DLAP questions | morris2e_ch42_18_dlap.xml | 563c3c81757a2e0059000000 |
The second and third trimesters are characterized by fetal growth.
| morris2e_ch42_19.html | 563c3c81757a2e0059000000 |
DLAP questions | morris2e_ch42_19_dlap.xml | 563c3c81757a2e0059000000 |
Childbirth is initiated by hormonal changes.
| morris2e_ch42_20.html | 563c3c81757a2e0059000000 |
DLAP questions | morris2e_ch42_20_dlap.xml | 563c3c81757a2e0059000000 |
Chapter 42 Summary | morris2e_ch42_21.html | 563c3c81757a2e0059000000 |
DLAP questions | morris2e_ch42_21_dlap.xml | 563c3c81757a2e0059000000 |
Chapter 43 Introduction | morris2e_ch43_1.html | 563c3f37757a2ecd43000000 |
DLAP questions | morris2e_ch43_1_dlap.xml | 563c3f37757a2ecd43000000 |
43.1 An Overview of the Immune System
| morris2e_ch43_2.html | 563c3f37757a2ecd43000000 |
DLAP questions | morris2e_ch43_2_dlap.xml | 563c3f37757a2ecd43000000 |
Pathogens cause disease.
| morris2e_ch43_3.html | 563c3f37757a2ecd43000000 |
DLAP questions | morris2e_ch43_3_dlap.xml | 563c3f37757a2ecd43000000 |
The immune system distinguishes self from nonself.
| morris2e_ch43_4.html | 563c3f37757a2ecd43000000 |
DLAP questions | morris2e_ch43_4_dlap.xml | 563c3f37757a2ecd43000000 |
The immune system consists of innate and adaptive immunity.
| morris2e_ch43_5.html | 563c3f37757a2ecd43000000 |
DLAP questions | morris2e_ch43_5_dlap.xml | 563c3f37757a2ecd43000000 |
43.2 Innate Immunity
| morris2e_ch43_6.html | 563c3f37757a2ecd43000000 |
DLAP questions | morris2e_ch43_6_dlap.xml | 563c3f37757a2ecd43000000 |
The skin and mucous membranes provide the first line of defense against infection.
| morris2e_ch43_7.html | 563c3f37757a2ecd43000000 |
DLAP questions | morris2e_ch43_7_dlap.xml | 563c3f37757a2ecd43000000 |
White blood cells provide a second line of defense against pathogens.
| morris2e_ch43_8.html | 563c3f37757a2ecd43000000 |
DLAP questions | morris2e_ch43_8_dlap.xml | 563c3f37757a2ecd43000000 |
Phagocytes recognize foreign molecules and send signals to other cells.
| morris2e_ch43_9.html | 563c3f37757a2ecd43000000 |
DLAP questions | morris2e_ch43_9_dlap.xml | 563c3f37757a2ecd43000000 |
Inflammation is a coordinated response to tissue injury.
| morris2e_ch43_10.html | 563c3f37757a2ecd43000000 |
DLAP questions | morris2e_ch43_10_dlap.xml | 563c3f37757a2ecd43000000 |
The complement system participates in the innate and adaptive immune systems.
| morris2e_ch43_11.html | 563c3f37757a2ecd43000000 |
DLAP questions | morris2e_ch43_11_dlap.xml | 563c3f37757a2ecd43000000 |
43.3 Adaptive Immunity: B Cells and Antibodies
| morris2e_ch43_12.html | 563c3f37757a2ecd43000000 |
DLAP questions | morris2e_ch43_12_dlap.xml | 563c3f37757a2ecd43000000 |
B cells produce antibodies.
| morris2e_ch43_13.html | 563c3f37757a2ecd43000000 |
DLAP questions | morris2e_ch43_13_dlap.xml | 563c3f37757a2ecd43000000 |
Mammals produce five classes of antibody with different functions.
| morris2e_ch43_14.html | 563c3f37757a2ecd43000000 |
DLAP questions | morris2e_ch43_14_dlap.xml | 563c3f37757a2ecd43000000 |
Clonal selection is the basis for antibody specificity.
| morris2e_ch43_15.html | 563c3f37757a2ecd43000000 |
DLAP questions | morris2e_ch43_15_dlap.xml | 563c3f37757a2ecd43000000 |
Clonal selection also explains immunological memory.
| morris2e_ch43_16.html | 563c3f37757a2ecd43000000 |
DLAP questions | morris2e_ch43_16_dlap.xml | 563c3f37757a2ecd43000000 |
Genomic rearrangement generates antibody diversity.
| morris2e_ch43_17.html | 563c3f37757a2ecd43000000 |
DLAP questions | morris2e_ch43_17_dlap.xml | 563c3f37757a2ecd43000000 |
43.4 Adaptive Immunity: T Cells and Cell-Mediated Immunity
| morris2e_ch43_18.html | 563c3f37757a2ecd43000000 |
DLAP questions | morris2e_ch43_18_dlap.xml | 563c3f37757a2ecd43000000 |
T cells include helper and cytotoxic cells.
| morris2e_ch43_19.html | 563c3f37757a2ecd43000000 |
DLAP questions | morris2e_ch43_19_dlap.xml | 563c3f37757a2ecd43000000 |
T cells have T cell receptors on their surface that recognize an antigen in association with MHC proteins.
| morris2e_ch43_20.html | 563c3f37757a2ecd43000000 |
DLAP questions | morris2e_ch43_20_dlap.xml | 563c3f37757a2ecd43000000 |
The ability to distinguish between self and nonself is acquired during T cell maturation.
| morris2e_ch43_21.html | 563c3f37757a2ecd43000000 |
DLAP questions | morris2e_ch43_21_dlap.xml | 563c3f37757a2ecd43000000 |
43.5 Three Pathogens: A Virus, Bacterium, and Eukaryote
| morris2e_ch43_22.html | 563c3f37757a2ecd43000000 |
DLAP questions | morris2e_ch43_22_dlap.xml | 563c3f37757a2ecd43000000 |
The flu virus evades the immune system by antigenic drift and shift.
| morris2e_ch43_23.html | 563c3f37757a2ecd43000000 |
DLAP questions | morris2e_ch43_23_dlap.xml | 563c3f37757a2ecd43000000 |
Tuberculosis is caused by a slow-growing, intracellular bacterium.
| morris2e_ch43_24.html | 563c3f37757a2ecd43000000 |
DLAP questions | morris2e_ch43_24_dlap.xml | 563c3f37757a2ecd43000000 |
The malaria parasite changes surface molecules by antigenic variation.
| morris2e_ch43_25.html | 563c3f37757a2ecd43000000 |
DLAP questions | morris2e_ch43_25_dlap.xml | 563c3f37757a2ecd43000000 |
Chapter 43 Summary | morris2e_ch43_26.html | 563c3f37757a2ecd43000000 |
DLAP questions | morris2e_ch43_26_dlap.xml | 563c3f37757a2ecd43000000 |
Chapter 44 Introduction | morris2e_ch44_1.html | 563c416f757a2e2541000000 |
DLAP questions | morris2e_ch44_1_dlap.xml | 563c416f757a2e2541000000 |
44.1 A Tree of Life for More Than a Million Animal Species
| morris2e_ch44_2.html | 563c416f757a2e2541000000 |
DLAP questions | morris2e_ch44_2_dlap.xml | 563c416f757a2e2541000000 |
Phylogenetic trees propose an evolutionary history of animals.
| morris2e_ch44_3.html | 563c416f757a2e2541000000 |
DLAP questions | morris2e_ch44_3_dlap.xml | 563c416f757a2e2541000000 |
Morphology and development provide clues to animal phylogeny.
| morris2e_ch44_4.html | 563c416f757a2e2541000000 |
DLAP questions | morris2e_ch44_4_dlap.xml | 563c416f757a2e2541000000 |
Molecular sequence comparisons have confirmed some relationships and raised new questions.
| morris2e_ch44_5.html | 563c416f757a2e2541000000 |
DLAP questions | morris2e_ch44_5_dlap.xml | 563c416f757a2e2541000000 |
44.2 The Simplest Animals: Sponges, Cnidarians, Ctenophores, and Placozoans
| morris2e_ch44_6.html | 563c416f757a2e2541000000 |
DLAP questions | morris2e_ch44_6_dlap.xml | 563c416f757a2e2541000000 |
Sponges are simple and widespread in the oceans.
| morris2e_ch44_7.html | 563c416f757a2e2541000000 |
DLAP questions | morris2e_ch44_7_dlap.xml | 563c416f757a2e2541000000 |
Cnidarians are the architects of lifeâs largest constructions: coral reefs.
| morris2e_ch44_8.html | 563c416f757a2e2541000000 |
DLAP questions | morris2e_ch44_8_dlap.xml | 563c416f757a2e2541000000 |
Ctenophores and placozoans represent the extremes of body organization among animals that branch from early nodes.
| morris2e_ch44_9.html | 563c416f757a2e2541000000 |
DLAP questions | morris2e_ch44_9_dlap.xml | 563c416f757a2e2541000000 |
Branching relationships among early nodes on the animal tree remain uncertain.
| morris2e_ch44_10.html | 563c416f757a2e2541000000 |
DLAP questions | morris2e_ch44_10_dlap.xml | 563c416f757a2e2541000000 |
The discovery of new animals with a unique body plan complicates phylogenetic hypotheses still further.
| morris2e_ch44_11.html | 563c416f757a2e2541000000 |
DLAP questions | morris2e_ch44_11_dlap.xml | 563c416f757a2e2541000000 |
44.3 Bilaterian Animals
| morris2e_ch44_12.html | 563c416f757a2e2541000000 |
DLAP questions | morris2e_ch44_12_dlap.xml | 563c416f757a2e2541000000 |
Lophotrochozoans make up nearly half of all animal phyla, including the diverse and ecologically important annelids and mollusks.
| morris2e_ch44_13.html | 563c416f757a2e2541000000 |
DLAP questions | morris2e_ch44_13_dlap.xml | 563c416f757a2e2541000000 |
Ecdysozoans include nematodes, the most numerous animals, and arthropods, the most diverse.
| morris2e_ch44_14.html | 563c416f757a2e2541000000 |
DLAP questions | morris2e_ch44_14_dlap.xml | 563c416f757a2e2541000000 |
Deuterostomes include humans and other chordates, and also acorn worms and sea stars.
| morris2e_ch44_15.html | 563c416f757a2e2541000000 |
DLAP questions | morris2e_ch44_15_dlap.xml | 563c416f757a2e2541000000 |
Chordates include vertebrates, cephalochordates, and tunicates.
| morris2e_ch44_16.html | 563c416f757a2e2541000000 |
DLAP questions | morris2e_ch44_16_dlap.xml | 563c416f757a2e2541000000 |
44.4 Vertebrate Diversity
| morris2e_ch44_17.html | 563c416f757a2e2541000000 |
DLAP questions | morris2e_ch44_17_dlap.xml | 563c416f757a2e2541000000 |
Fish are the earliest-branching and most diverse vertebrate animals.
| morris2e_ch44_18.html | 563c416f757a2e2541000000 |
DLAP questions | morris2e_ch44_18_dlap.xml | 563c416f757a2e2541000000 |
The common ancestor of tetrapods had four limbs.
| morris2e_ch44_19.html | 563c416f757a2e2541000000 |
DLAP questions | morris2e_ch44_19_dlap.xml | 563c416f757a2e2541000000 |
Amniotes evolved terrestrial eggs.
| morris2e_ch44_20.html | 563c416f757a2e2541000000 |
DLAP questions | morris2e_ch44_20_dlap.xml | 563c416f757a2e2541000000 |
44.5 The Evolutionary History of Animals
| morris2e_ch44_21.html | 563c416f757a2e2541000000 |
DLAP questions | morris2e_ch44_21_dlap.xml | 563c416f757a2e2541000000 |
Fossils and phylogeny show that animal forms were initially simple but rapidly evolved complexity.
| morris2e_ch44_22.html | 563c416f757a2e2541000000 |
DLAP questions | morris2e_ch44_22_dlap.xml | 563c416f757a2e2541000000 |
The animal body plans we see today emerged during the Cambrian Period.
| morris2e_ch44_23.html | 563c416f757a2e2541000000 |
DLAP questions | morris2e_ch44_23_dlap.xml | 563c416f757a2e2541000000 |
Tabulations of described fossils show that animal diversity has been shaped by both radiation and mass extinction over the past 500 million years.
| morris2e_ch44_24.html | 563c416f757a2e2541000000 |
DLAP questions | morris2e_ch44_24_dlap.xml | 563c416f757a2e2541000000 |
Animals began to colonize the land 420 million years ago.
| morris2e_ch44_25.html | 563c416f757a2e2541000000 |
DLAP questions | morris2e_ch44_25_dlap.xml | 563c416f757a2e2541000000 |
Case 8: How have reefs changed through time?
| morris2e_ch44_26.html | 563c416f757a2e2541000000 |
DLAP questions | morris2e_ch44_26_dlap.xml | 563c416f757a2e2541000000 |
Chapter 44 Summary | morris2e_ch44_27.html | 563c416f757a2e2541000000 |
DLAP questions | morris2e_ch44_27_dlap.xml | 563c416f757a2e2541000000 |
Chapter 45 Introduction | morris2e_ch45_1.html | 563c4327757a2e4841000000 |
DLAP questions | morris2e_ch45_1_dlap.xml | 563c4327757a2e4841000000 |
45.1 Tinbergenâs Questions
| morris2e_ch45_2.html | 563c4327757a2e4841000000 |
DLAP questions | morris2e_ch45_2_dlap.xml | 563c4327757a2e4841000000 |
45.2 Dissecting Behavior
| morris2e_ch45_3.html | 563c4327757a2e4841000000 |
DLAP questions | morris2e_ch45_3_dlap.xml | 563c4327757a2e4841000000 |
The fixed action pattern is a stereotyped behavior.
| morris2e_ch45_4.html | 563c4327757a2e4841000000 |
DLAP questions | morris2e_ch45_4_dlap.xml | 563c4327757a2e4841000000 |
The nervous system processes stimuli and evokes behaviors.
| morris2e_ch45_5.html | 563c4327757a2e4841000000 |
DLAP questions | morris2e_ch45_5_dlap.xml | 563c4327757a2e4841000000 |
Hormones can trigger certain behaviors.
| morris2e_ch45_6.html | 563c4327757a2e4841000000 |
DLAP questions | morris2e_ch45_6_dlap.xml | 563c4327757a2e4841000000 |
Breeding experiments can help determine the degree to which a behavior is genetic.
| morris2e_ch45_7.html | 563c4327757a2e4841000000 |
DLAP questions | morris2e_ch45_7_dlap.xml | 563c4327757a2e4841000000 |
Molecular techniques provide new ways of testing the role of genes in behavior.
| morris2e_ch45_8.html | 563c4327757a2e4841000000 |
DLAP questions | morris2e_ch45_8_dlap.xml | 563c4327757a2e4841000000 |
45.3 Learning
| morris2e_ch45_9.html | 563c4327757a2e4841000000 |
DLAP questions | morris2e_ch45_9_dlap.xml | 563c4327757a2e4841000000 |
Non-associative learning occurs without linking two events.
| morris2e_ch45_10.html | 563c4327757a2e4841000000 |
DLAP questions | morris2e_ch45_10_dlap.xml | 563c4327757a2e4841000000 |
Associative learning occurs when two events are linked.
| morris2e_ch45_11.html | 563c4327757a2e4841000000 |
DLAP questions | morris2e_ch45_11_dlap.xml | 563c4327757a2e4841000000 |
Learning is an adaptation.
| morris2e_ch45_12.html | 563c4327757a2e4841000000 |
DLAP questions | morris2e_ch45_12_dlap.xml | 563c4327757a2e4841000000 |
45.4 Orientation, Navigation, and Biological Clocks
| morris2e_ch45_13.html | 563c4327757a2e4841000000 |
DLAP questions | morris2e_ch45_13_dlap.xml | 563c4327757a2e4841000000 |
Orientation involves a directed response to a stimulus.
| morris2e_ch45_14.html | 563c4327757a2e4841000000 |
DLAP questions | morris2e_ch45_14_dlap.xml | 563c4327757a2e4841000000 |
Navigation is demonstrated by the remarkable ability of homing in birds.
| morris2e_ch45_15.html | 563c4327757a2e4841000000 |
DLAP questions | morris2e_ch45_15_dlap.xml | 563c4327757a2e4841000000 |
Biological clocks provide important time cues for many behaviors.
| morris2e_ch45_16.html | 563c4327757a2e4841000000 |
DLAP questions | morris2e_ch45_16_dlap.xml | 563c4327757a2e4841000000 |
45.5 Communication
| morris2e_ch45_17.html | 563c4327757a2e4841000000 |
DLAP questions | morris2e_ch45_17_dlap.xml | 563c4327757a2e4841000000 |
Communication is the transfer of information between a sender and receiver.
| morris2e_ch45_18.html | 563c4327757a2e4841000000 |
DLAP questions | morris2e_ch45_18_dlap.xml | 563c4327757a2e4841000000 |
Some forms of communication are complex and learned during a sensitive period.
| morris2e_ch45_19.html | 563c4327757a2e4841000000 |
DLAP questions | morris2e_ch45_19_dlap.xml | 563c4327757a2e4841000000 |
Other forms of communication convey specific information.
| morris2e_ch45_20.html | 563c4327757a2e4841000000 |
DLAP questions | morris2e_ch45_20_dlap.xml | 563c4327757a2e4841000000 |
45.6 Social Behavior
| morris2e_ch45_21.html | 563c4327757a2e4841000000 |
DLAP questions | morris2e_ch45_21_dlap.xml | 563c4327757a2e4841000000 |
Group selection is a weak explanation of altruistic behavior.
| morris2e_ch45_22.html | 563c4327757a2e4841000000 |
DLAP questions | morris2e_ch45_22_dlap.xml | 563c4327757a2e4841000000 |
Reciprocal altruism is one way that altruism can evolve.
| morris2e_ch45_23.html | 563c4327757a2e4841000000 |
DLAP questions | morris2e_ch45_23_dlap.xml | 563c4327757a2e4841000000 |
The concept of kin selection is based on the idea that it is possible to contribute genetically to future generations by helping close relatives.
| morris2e_ch45_24.html | 563c4327757a2e4841000000 |
DLAP questions | morris2e_ch45_24_dlap.xml | 563c4327757a2e4841000000 |
Chapter 45 Summary | morris2e_ch45_25.html | 563c4327757a2e4841000000 |
DLAP questions | morris2e_ch45_25_dlap.xml | 563c4327757a2e4841000000 |
Chapter 46 Introduction | morris2e_ch46_1.html | 563cdae3757a2eea1c000000 |
DLAP questions | morris2e_ch46_1_dlap.xml | 563cdae3757a2eea1c000000 |
46.1 Populations and Their Properties
| morris2e_ch46_2.html | 563cdae3757a2eea1c000000 |
DLAP questions | morris2e_ch46_2_dlap.xml | 563cdae3757a2eea1c000000 |
A population includes all the individuals of a species in a particular place.
| morris2e_ch46_3.html | 563cdae3757a2eea1c000000 |
DLAP questions | morris2e_ch46_3_dlap.xml | 563cdae3757a2eea1c000000 |
Three key features of a population are its size, range, and density.
| morris2e_ch46_4.html | 563cdae3757a2eea1c000000 |
DLAP questions | morris2e_ch46_4_dlap.xml | 563cdae3757a2eea1c000000 |
Ecologists estimate population size by sampling.
| morris2e_ch46_5.html | 563cdae3757a2eea1c000000 |
DLAP questions | morris2e_ch46_5_dlap.xml | 563cdae3757a2eea1c000000 |
46.2 Population Growth and Decline
| morris2e_ch46_6.html | 563cdae3757a2eea1c000000 |
DLAP questions | morris2e_ch46_6_dlap.xml | 563cdae3757a2eea1c000000 |
Population size is affected by birth, death, immigration, and emigration.
| morris2e_ch46_7.html | 563cdae3757a2eea1c000000 |
DLAP questions | morris2e_ch46_7_dlap.xml | 563cdae3757a2eea1c000000 |
Exponential growth is characterized by a constant per capita growth rate.
| morris2e_ch46_8.html | 563cdae3757a2eea1c000000 |
DLAP questions | morris2e_ch46_8_dlap.xml | 563cdae3757a2eea1c000000 |
Carrying capacity is the maximum number of individuals a habitat can support.
| morris2e_ch46_9.html | 563cdae3757a2eea1c000000 |
DLAP questions | morris2e_ch46_9_dlap.xml | 563cdae3757a2eea1c000000 |
Logistic growth produces an S-shaped curve and describes the growth of many natural populations.
| morris2e_ch46_10.html | 563cdae3757a2eea1c000000 |
DLAP questions | morris2e_ch46_10_dlap.xml | 563cdae3757a2eea1c000000 |
Factors that influence population growth can be dependent on or independent of its density.
| morris2e_ch46_11.html | 563cdae3757a2eea1c000000 |
DLAP questions | morris2e_ch46_11_dlap.xml | 563cdae3757a2eea1c000000 |
46.3 Age-Structured Population Growth
| morris2e_ch46_12.html | 563cdae3757a2eea1c000000 |
DLAP questions | morris2e_ch46_12_dlap.xml | 563cdae3757a2eea1c000000 |
Birth and death rates vary with age and environment.
| morris2e_ch46_13.html | 563cdae3757a2eea1c000000 |
DLAP questions | morris2e_ch46_13_dlap.xml | 563cdae3757a2eea1c000000 |
Survivorship curves record changes in survival probability over an organismâs life-span.
| morris2e_ch46_14.html | 563cdae3757a2eea1c000000 |
DLAP questions | morris2e_ch46_14_dlap.xml | 563cdae3757a2eea1c000000 |
Patterns of survivorship vary among organisms.
| morris2e_ch46_15.html | 563cdae3757a2eea1c000000 |
DLAP questions | morris2e_ch46_15_dlap.xml | 563cdae3757a2eea1c000000 |
Reproductive patterns reflect the predictability of a speciesâ environment.
| morris2e_ch46_16.html | 563cdae3757a2eea1c000000 |
DLAP questions | morris2e_ch46_16_dlap.xml | 563cdae3757a2eea1c000000 |
The life history of an organism shows trade-offs among physiological functions.
| morris2e_ch46_17.html | 563cdae3757a2eea1c000000 |
DLAP questions | morris2e_ch46_17_dlap.xml | 563cdae3757a2eea1c000000 |
46.4 Metapopulation Dynamics
| morris2e_ch46_18.html | 563cdae3757a2eea1c000000 |
DLAP questions | morris2e_ch46_18_dlap.xml | 563cdae3757a2eea1c000000 |
A metapopulation is a group of populations linked by immigrants.
| morris2e_ch46_19.html | 563cdae3757a2eea1c000000 |
DLAP questions | morris2e_ch46_19_dlap.xml | 563cdae3757a2eea1c000000 |
Island biogeography explains species diversity on habitat islands.
| morris2e_ch46_20.html | 563cdae3757a2eea1c000000 |
DLAP questions | morris2e_ch46_20_dlap.xml | 563cdae3757a2eea1c000000 |
Case 8: How do islands promote species diversification?
| morris2e_ch46_21.html | 563cdae3757a2eea1c000000 |
DLAP questions | morris2e_ch46_21_dlap.xml | 563cdae3757a2eea1c000000 |
Chapter 46 Summary | morris2e_ch46_22.html | 563cdae3757a2eea1c000000 |
DLAP questions | morris2e_ch46_22_dlap.xml | 563cdae3757a2eea1c000000 |
Chapter 47 Introduction | morris2e_ch47_1.html | 563ce0a9757a2eea1c000001 |
DLAP questions | morris2e_ch47_1_dlap.xml | 563ce0a9757a2eea1c000001 |
47.1 The Niche
| morris2e_ch47_2.html | 563ce0a9757a2eea1c000001 |
DLAP questions | morris2e_ch47_2_dlap.xml | 563ce0a9757a2eea1c000001 |
The niche is a speciesâ place in nature.
| morris2e_ch47_3.html | 563ce0a9757a2eea1c000001 |
DLAP questions | morris2e_ch47_3_dlap.xml | 563ce0a9757a2eea1c000001 |
The realized niche of a species is more restricted than its fundamental niche.
| morris2e_ch47_4.html | 563ce0a9757a2eea1c000001 |
DLAP questions | morris2e_ch47_4_dlap.xml | 563ce0a9757a2eea1c000001 |
Niches are shaped by evolutionary history.
| morris2e_ch47_5.html | 563ce0a9757a2eea1c000001 |
DLAP questions | morris2e_ch47_5_dlap.xml | 563ce0a9757a2eea1c000001 |
47.2 Antagonistic Interactions Between Species
| morris2e_ch47_6.html | 563ce0a9757a2eea1c000001 |
DLAP questions | morris2e_ch47_6_dlap.xml | 563ce0a9757a2eea1c000001 |
Limited resources foster competition.
| morris2e_ch47_7.html | 563ce0a9757a2eea1c000001 |
DLAP questions | morris2e_ch47_7_dlap.xml | 563ce0a9757a2eea1c000001 |
Competitive exclusion can prevent two species from occupying the same niche at the same time.
| morris2e_ch47_8.html | 563ce0a9757a2eea1c000001 |
DLAP questions | morris2e_ch47_8_dlap.xml | 563ce0a9757a2eea1c000001 |
Case 8: Can competition drive species diversification?
| morris2e_ch47_9.html | 563ce0a9757a2eea1c000001 |
DLAP questions | morris2e_ch47_9_dlap.xml | 563ce0a9757a2eea1c000001 |
Species compete for resources other than food.
| morris2e_ch47_10.html | 563ce0a9757a2eea1c000001 |
DLAP questions | morris2e_ch47_10_dlap.xml | 563ce0a9757a2eea1c000001 |
Predation, parasitism, and herbivory are interactions in which one species benefits at the expense of another.
| morris2e_ch47_11.html | 563ce0a9757a2eea1c000001 |
DLAP questions | morris2e_ch47_11_dlap.xml | 563ce0a9757a2eea1c000001 |
Facilitation can occur when two species prey on a third species.
| morris2e_ch47_12.html | 563ce0a9757a2eea1c000001 |
DLAP questions | morris2e_ch47_12_dlap.xml | 563ce0a9757a2eea1c000001 |
47.3 Mutualistic Interactions Between Species
| morris2e_ch47_13.html | 563ce0a9757a2eea1c000001 |
DLAP questions | morris2e_ch47_13_dlap.xml | 563ce0a9757a2eea1c000001 |
Mutualisms are interactions between species that benefit both participants.
| morris2e_ch47_14.html | 563ce0a9757a2eea1c000001 |
DLAP questions | morris2e_ch47_14_dlap.xml | 563ce0a9757a2eea1c000001 |
Mutualisms may evolve increasing interdependence.
| morris2e_ch47_15.html | 563ce0a9757a2eea1c000001 |
DLAP questions | morris2e_ch47_15_dlap.xml | 563ce0a9757a2eea1c000001 |
Digestive symbioses recycle plant material.
| morris2e_ch47_16.html | 563ce0a9757a2eea1c000001 |
DLAP questions | morris2e_ch47_16_dlap.xml | 563ce0a9757a2eea1c000001 |
Mutualisms may be obligate or facultative.
| morris2e_ch47_17.html | 563ce0a9757a2eea1c000001 |
DLAP questions | morris2e_ch47_17_dlap.xml | 563ce0a9757a2eea1c000001 |
The costs and benefits of species interactions can change over time.
| morris2e_ch47_18.html | 563ce0a9757a2eea1c000001 |
DLAP questions | morris2e_ch47_18_dlap.xml | 563ce0a9757a2eea1c000001 |
47.4 Ecological Communities
| morris2e_ch47_19.html | 563ce0a9757a2eea1c000001 |
DLAP questions | morris2e_ch47_19_dlap.xml | 563ce0a9757a2eea1c000001 |
Species that live in the same place make up communities.
| morris2e_ch47_20.html | 563ce0a9757a2eea1c000001 |
DLAP questions | morris2e_ch47_20_dlap.xml | 563ce0a9757a2eea1c000001 |
Case 8: How is biodiversity measured?
| morris2e_ch47_21.html | 563ce0a9757a2eea1c000001 |
DLAP questions | morris2e_ch47_21_dlap.xml | 563ce0a9757a2eea1c000001 |
One species can have a great effect on all other members of the community.
| morris2e_ch47_22.html | 563ce0a9757a2eea1c000001 |
DLAP questions | morris2e_ch47_22_dlap.xml | 563ce0a9757a2eea1c000001 |
Keystone species have disproportionate effects on communities.
| morris2e_ch47_23.html | 563ce0a9757a2eea1c000001 |
DLAP questions | morris2e_ch47_23_dlap.xml | 563ce0a9757a2eea1c000001 |
Disturbance can modify community composition.
| morris2e_ch47_24.html | 563ce0a9757a2eea1c000001 |
DLAP questions | morris2e_ch47_24_dlap.xml | 563ce0a9757a2eea1c000001 |
Succession describes the community response to new habitats or disturbance.
| morris2e_ch47_25.html | 563ce0a9757a2eea1c000001 |
DLAP questions | morris2e_ch47_25_dlap.xml | 563ce0a9757a2eea1c000001 |
47.5 Ecosystems
| morris2e_ch47_26.html | 563ce0a9757a2eea1c000001 |
DLAP questions | morris2e_ch47_26_dlap.xml | 563ce0a9757a2eea1c000001 |
Species interactions result in food webs that cycle carbon and other elements through ecosystems.
| morris2e_ch47_27.html | 563ce0a9757a2eea1c000001 |
DLAP questions | morris2e_ch47_27_dlap.xml | 563ce0a9757a2eea1c000001 |
Species interactions form trophic pyramids that transfer energy through ecosystems.
| morris2e_ch47_28.html | 563ce0a9757a2eea1c000001 |
DLAP questions | morris2e_ch47_28_dlap.xml | 563ce0a9757a2eea1c000001 |
Light, water, nutrients, and diversity all influence rates of primary production.
| morris2e_ch47_29.html | 563ce0a9757a2eea1c000001 |
DLAP questions | morris2e_ch47_29_dlap.xml | 563ce0a9757a2eea1c000001 |
Chapter 47 Summary | morris2e_ch47_30.html | 563ce0a9757a2eea1c000001 |
DLAP questions | morris2e_ch47_30_dlap.xml | 563ce0a9757a2eea1c000001 |
Chapter 48 Introduction | morris2e_ch48_1.html | 563ce92c757a2eea1c000002 |
DLAP questions | morris2e_ch48_1_dlap.xml | 563ce92c757a2eea1c000002 |
48.1 The Physical Basis of Climate
| morris2e_ch48_2.html | 563ce92c757a2eea1c000002 |
DLAP questions | morris2e_ch48_2_dlap.xml | 563ce92c757a2eea1c000002 |
The principal control on Earthâs surface temperature is the angle at which solar radiation strikes the surface.
| morris2e_ch48_3.html | 563ce92c757a2eea1c000002 |
DLAP questions | morris2e_ch48_3_dlap.xml | 563ce92c757a2eea1c000002 |
Heat is transported toward the poles by wind and ocean currents.
| morris2e_ch48_4.html | 563ce92c757a2eea1c000002 |
DLAP questions | morris2e_ch48_4_dlap.xml | 563ce92c757a2eea1c000002 |
Global circulation patterns determine patterns of rainfall, but topography also matters.
| morris2e_ch48_5.html | 563ce92c757a2eea1c000002 |
DLAP questions | morris2e_ch48_5_dlap.xml | 563ce92c757a2eea1c000002 |
48.2 Biomes
| morris2e_ch48_6.html | 563ce92c757a2eea1c000002 |
DLAP questions | morris2e_ch48_6_dlap.xml | 563ce92c757a2eea1c000002 |
Terrestrial biomes reflect the distribution of climate.
| morris2e_ch48_7.html | 563ce92c757a2eea1c000002 |
DLAP questions | morris2e_ch48_7_dlap.xml | 563ce92c757a2eea1c000002 |
Aquatic biomes reflect climate, and also the availability of nutrients and oxygen and the depth to which sunlight penetrates through water.
| morris2e_ch48_8.html | 563ce92c757a2eea1c000002 |
DLAP questions | morris2e_ch48_8_dlap.xml | 563ce92c757a2eea1c000002 |
48.3 Global Ecology: Cycling Bioessential Elements
| morris2e_ch48_9.html | 563ce92c757a2eea1c000002 |
DLAP questions | morris2e_ch48_9_dlap.xml | 563ce92c757a2eea1c000002 |
The biological carbon cycle shapes ecological interactions and reflects evolution.
| morris2e_ch48_10.html | 563ce92c757a2eea1c000002 |
DLAP questions | morris2e_ch48_10_dlap.xml | 563ce92c757a2eea1c000002 |
The nitrogen cycle also reflects the interplay between ecology and evolution.
| morris2e_ch48_11.html | 563ce92c757a2eea1c000002 |
DLAP questions | morris2e_ch48_11_dlap.xml | 563ce92c757a2eea1c000002 |
Phosphorus cycles through ecosystems, supporting primary production.
| morris2e_ch48_12.html | 563ce92c757a2eea1c000002 |
DLAP questions | morris2e_ch48_12_dlap.xml | 563ce92c757a2eea1c000002 |
Global patterns of primary production reflect variations in climate and nutrient availability.
| morris2e_ch48_13.html | 563ce92c757a2eea1c000002 |
DLAP questions | morris2e_ch48_13_dlap.xml | 563ce92c757a2eea1c000002 |
48.4 Global Biodiversity
| morris2e_ch48_14.html | 563ce92c757a2eea1c000002 |
DLAP questions | morris2e_ch48_14_dlap.xml | 563ce92c757a2eea1c000002 |
Case 8: Why does biodiversity decrease from the equator toward the poles?
| morris2e_ch48_15.html | 563ce92c757a2eea1c000002 |
DLAP questions | morris2e_ch48_15_dlap.xml | 563ce92c757a2eea1c000002 |
Evolutionary and ecological history underpins diversity.
| morris2e_ch48_16.html | 563ce92c757a2eea1c000002 |
DLAP questions | morris2e_ch48_16_dlap.xml | 563ce92c757a2eea1c000002 |
Chapter 48 Summary | morris2e_ch48_17.html | 563ce92c757a2eea1c000002 |
DLAP questions | morris2e_ch48_17_dlap.xml | 563ce92c757a2eea1c000002 |
Chapter 49 Introduction | morris2e_ch49_1.html | 563cec9f757a2e8b22000000 |
DLAP questions | morris2e_ch49_1_dlap.xml | 563cec9f757a2e8b22000000 |
49.1 The Anthropocene Period
| morris2e_ch49_2.html | 563cec9f757a2e8b22000000 |
DLAP questions | morris2e_ch49_2_dlap.xml | 563cec9f757a2e8b22000000 |
Humans are a major force on the planet.
| morris2e_ch49_3.html | 563cec9f757a2e8b22000000 |
DLAP questions | morris2e_ch49_3_dlap.xml | 563cec9f757a2e8b22000000 |
49.2 Human Influence On the Carbon Cycle
| morris2e_ch49_4.html | 563cec9f757a2e8b22000000 |
DLAP questions | morris2e_ch49_4_dlap.xml | 563cec9f757a2e8b22000000 |
As atmospheric carbon dioxide levels have increased, so has mean surface temperature.
| morris2e_ch49_5.html | 563cec9f757a2e8b22000000 |
DLAP questions | morris2e_ch49_5_dlap.xml | 563cec9f757a2e8b22000000 |
Changing environments affect species distribution and community composition.
| morris2e_ch49_6.html | 563cec9f757a2e8b22000000 |
DLAP questions | morris2e_ch49_6_dlap.xml | 563cec9f757a2e8b22000000 |
Case 8: How has global environmental change affected coral reefs around the world?
| morris2e_ch49_7.html | 563cec9f757a2e8b22000000 |
DLAP questions | morris2e_ch49_7_dlap.xml | 563cec9f757a2e8b22000000 |
What can be done?
| morris2e_ch49_8.html | 563cec9f757a2e8b22000000 |
DLAP questions | morris2e_ch49_8_dlap.xml | 563cec9f757a2e8b22000000 |
49.3 Human Influence On the Nitrogen and Phosphorus Cycles
| morris2e_ch49_9.html | 563cec9f757a2e8b22000000 |
DLAP questions | morris2e_ch49_9_dlap.xml | 563cec9f757a2e8b22000000 |
Nitrogen fertilizer transported to lakes and the sea causes eutrophication.
| morris2e_ch49_10.html | 563cec9f757a2e8b22000000 |
DLAP questions | morris2e_ch49_10_dlap.xml | 563cec9f757a2e8b22000000 |
Phosphate fertilizer is also used in agriculture, but has finite sources.
| morris2e_ch49_11.html | 563cec9f757a2e8b22000000 |
DLAP questions | morris2e_ch49_11_dlap.xml | 563cec9f757a2e8b22000000 |
What can be done?
| morris2e_ch49_12.html | 563cec9f757a2e8b22000000 |
DLAP questions | morris2e_ch49_12_dlap.xml | 563cec9f757a2e8b22000000 |
49.4 Human Influence On Evolution
| morris2e_ch49_13.html | 563cec9f757a2e8b22000000 |
DLAP questions | morris2e_ch49_13_dlap.xml | 563cec9f757a2e8b22000000 |
Human activities have reduced the quality and size of many habitats, decreasing the number of species they can support.
| morris2e_ch49_14.html | 563cec9f757a2e8b22000000 |
DLAP questions | morris2e_ch49_14_dlap.xml | 563cec9f757a2e8b22000000 |
Overexploitation threatens species and disrupts ecological relationships within communities.
| morris2e_ch49_15.html | 563cec9f757a2e8b22000000 |
DLAP questions | morris2e_ch49_15_dlap.xml | 563cec9f757a2e8b22000000 |
Humans play an important role in the dispersal of species.
| morris2e_ch49_16.html | 563cec9f757a2e8b22000000 |
DLAP questions | morris2e_ch49_16_dlap.xml | 563cec9f757a2e8b22000000 |
Humans have altered the selective landscape for many pathogens.
| morris2e_ch49_17.html | 563cec9f757a2e8b22000000 |
DLAP questions | morris2e_ch49_17_dlap.xml | 563cec9f757a2e8b22000000 |
Are amphibians ecologyâs âcanary in the coal mineâ?
| morris2e_ch49_18.html | 563cec9f757a2e8b22000000 |
DLAP questions | morris2e_ch49_18_dlap.xml | 563cec9f757a2e8b22000000 |
49.5 Conservation Biology
| morris2e_ch49_19.html | 563cec9f757a2e8b22000000 |
DLAP questions | morris2e_ch49_19_dlap.xml | 563cec9f757a2e8b22000000 |
Case 8: What are our conservation priorities?
| morris2e_ch49_20.html | 563cec9f757a2e8b22000000 |
DLAP questions | morris2e_ch49_20_dlap.xml | 563cec9f757a2e8b22000000 |
Conservation biologists have a diverse toolkit for confronting threats to biodiversity.
| morris2e_ch49_21.html | 563cec9f757a2e8b22000000 |
DLAP questions | morris2e_ch49_21_dlap.xml | 563cec9f757a2e8b22000000 |
Global change provides new challenges for conservation biology in the 21st century.
| morris2e_ch49_22.html | 563cec9f757a2e8b22000000 |
DLAP questions | morris2e_ch49_22_dlap.xml | 563cec9f757a2e8b22000000 |
Sustainable development provides a strategy for conserving biodiversity while meeting the needs of the human population.
| morris2e_ch49_23.html | 563cec9f757a2e8b22000000 |
DLAP questions | morris2e_ch49_23_dlap.xml | 563cec9f757a2e8b22000000 |
49.6 Scientists and Citizens in the 21st Century
| morris2e_ch49_24.html | 563cec9f757a2e8b22000000 |
DLAP questions | morris2e_ch49_24_dlap.xml | 563cec9f757a2e8b22000000 |
Chapter 49 Summary | morris2e_ch49_25.html | 563cec9f757a2e8b22000000 |
DLAP questions | morris2e_ch49_25_dlap.xml | 563cec9f757a2e8b22000000 |
Case 1. The First Cell: Lifeâs Origins
| morris2e_ch201_1.html | 563cef28757a2e3e25000000 |
DLAP questions | morris2e_ch201_1_dlap.xml | 563cef28757a2e3e25000000 |
Case 2. Cancer: When Good Cells Go Bad
| morris2e_ch202_1.html | 563cf11b757a2e6725000000 |
DLAP questions | morris2e_ch202_1_dlap.xml | 563cf11b757a2e6725000000 |
Case 3. You, from A to T: Your Personal Genome
| morris2e_ch203_1.html | 563cf24c757a2e0627000000 |
DLAP questions | morris2e_ch203_1_dlap.xml | 563cf24c757a2e0627000000 |
Case 4. Malaria: Coevolution of Humans and a Parasite
| morris2e_ch204_1.html | 563cf3ed757a2e3925000000 |
DLAP questions | morris2e_ch204_1_dlap.xml | 563cf3ed757a2e3925000000 |
Case 5. The Human Microbiome: Diversity Within
| morris2e_ch205_1.html | 563cf523757a2e3a25000000 |
DLAP questions | morris2e_ch205_1_dlap.xml | 563cf523757a2e3a25000000 |
Case 6. Agriculture: Feeding a Growing Population
| morris2e_ch206_1.html | 563cf644757a2e6725000001 |
DLAP questions | morris2e_ch206_1_dlap.xml | 563cf644757a2e6725000001 |
Case 7. PredatorâPrey: A Game of Life and Death
| morris2e_ch207_1.html | 563cf778757a2e2525000000 |
DLAP questions | morris2e_ch207_1_dlap.xml | 563cf778757a2e2525000000 |
Case 8. Biodiversity Hotspots: Rain Forests and Coral Reefs
| morris2e_ch208_1.html | 563cf8bd757a2e8122000000 |
DLAP questions | morris2e_ch208_1_dlap.xml | 563cf8bd757a2e8122000000 |
Quick Check Answers | morris2e_ch301_1.html | 564ad0ac757a2e755f000000 |
DLAP questions | morris2e_ch301_1_dlap.xml | 564ad0ac757a2e755f000000 |
Glossary
| morris2e_ch301_2.html | 564ad0ac757a2e755f000000 |
DLAP questions | morris2e_ch301_2_dlap.xml | 564ad0ac757a2e755f000000 |
Index
| morris2e_ch301_3.html | 564ad0ac757a2e755f000000 |
DLAP questions | morris2e_ch301_3_dlap.xml | 564ad0ac757a2e755f000000 |
Copyright Page | morris2e_ch101_1.html | 565de518757a2edf61000000 |
DLAP questions | morris2e_ch101_1_dlap.xml | 565de518757a2edf61000000 |
About the Authors
| morris2e_ch101_2.html | 565de518757a2edf61000000 |
DLAP questions | morris2e_ch101_2_dlap.xml | 565de518757a2edf61000000 |
Vision and Story of Biology: How Life Works
| morris2e_ch101_3.html | 565de518757a2edf61000000 |
DLAP questions | morris2e_ch101_3_dlap.xml | 565de518757a2edf61000000 |
Rethinking Biology
| morris2e_ch101_4.html | 565de518757a2edf61000000 |
DLAP questions | morris2e_ch101_4_dlap.xml | 565de518757a2edf61000000 |
Rethinking the Textbook Through LaunchPad
| morris2e_ch101_5.html | 565de518757a2edf61000000 |
DLAP questions | morris2e_ch101_5_dlap.xml | 565de518757a2edf61000000 |
Rethinking the Visual Program
| morris2e_ch101_6.html | 565de518757a2edf61000000 |
DLAP questions | morris2e_ch101_6_dlap.xml | 565de518757a2edf61000000 |
Rethinking Assessment
| morris2e_ch101_7.html | 565de518757a2edf61000000 |
DLAP questions | morris2e_ch101_7_dlap.xml | 565de518757a2edf61000000 |
Rethinking Activities
| morris2e_ch101_8.html | 565de518757a2edf61000000 |
DLAP questions | morris2e_ch101_8_dlap.xml | 565de518757a2edf61000000 |
Whatâs New in the Second Edition?
| morris2e_ch101_9.html | 565de518757a2edf61000000 |
DLAP questions | morris2e_ch101_9_dlap.xml | 565de518757a2edf61000000 |
Table of Contents
| morris2e_ch101_10.html | 565de518757a2edf61000000 |
DLAP questions | morris2e_ch101_10_dlap.xml | 565de518757a2edf61000000 |
Praise for How Life Works
| morris2e_ch101_11.html | 565de518757a2edf61000000 |
DLAP questions | morris2e_ch101_11_dlap.xml | 565de518757a2edf61000000 |