Name | File | Manuscript |
Chapter Introduction | life11e_ch65_1.html | 580e1d17757a2e7f69000003 |
DLAP questions | life11e_ch65_1_dlap.xml | 580e1d17757a2e7f69000003 |
Life The Science of Biology
| life11e_ch65_2.html | 580e1d17757a2e7f69000003 |
DLAP questions | life11e_ch65_2_dlap.xml | 580e1d17757a2e7f69000003 |
The Vision of Life: The Science of Biology
| life11e_ch65_3.html | 580e1d17757a2e7f69000003 |
DLAP questions | life11e_ch65_3_dlap.xml | 580e1d17757a2e7f69000003 |
Life is ENGAGING
| life11e_ch65_4.html | 580e1d17757a2e7f69000003 |
DLAP questions | life11e_ch65_4_dlap.xml | 580e1d17757a2e7f69000003 |
Life is ACTIVE
| life11e_ch65_5.html | 580e1d17757a2e7f69000003 |
DLAP questions | life11e_ch65_5_dlap.xml | 580e1d17757a2e7f69000003 |
Life is FOCUSED ON SKILLS
| life11e_ch65_6.html | 580e1d17757a2e7f69000003 |
DLAP questions | life11e_ch65_6_dlap.xml | 580e1d17757a2e7f69000003 |
Life in LAUNCHPAD
| life11e_ch65_7.html | 580e1d17757a2e7f69000003 |
DLAP questions | life11e_ch65_7_dlap.xml | 580e1d17757a2e7f69000003 |
Life and ASSESSMENT
| life11e_ch65_8.html | 580e1d17757a2e7f69000003 |
DLAP questions | life11e_ch65_8_dlap.xml | 580e1d17757a2e7f69000003 |
Life is VISUAL
| life11e_ch65_9.html | 580e1d17757a2e7f69000003 |
DLAP questions | life11e_ch65_9_dlap.xml | 580e1d17757a2e7f69000003 |
Life is CURRENT
| life11e_ch65_10.html | 580e1d17757a2e7f69000003 |
DLAP questions | life11e_ch65_10_dlap.xml | 580e1d17757a2e7f69000003 |
Acclaim for Life
| life11e_ch65_11.html | 580e1d17757a2e7f69000003 |
DLAP questions | life11e_ch65_11_dlap.xml | 580e1d17757a2e7f69000003 |
Authors
| life11e_ch65_12.html | 580e1d17757a2e7f69000003 |
DLAP questions | life11e_ch65_12_dlap.xml | 580e1d17757a2e7f69000003 |
Acknowledgments
| life11e_ch65_13.html | 580e1d17757a2e7f69000003 |
DLAP questions | life11e_ch65_13_dlap.xml | 580e1d17757a2e7f69000003 |
Reviewers and Contributors
| life11e_ch65_14.html | 580e1d17757a2e7f69000003 |
DLAP questions | life11e_ch65_14_dlap.xml | 580e1d17757a2e7f69000003 |
Media and Supplements
| life11e_ch65_15.html | 580e1d17757a2e7f69000003 |
DLAP questions | life11e_ch65_15_dlap.xml | 580e1d17757a2e7f69000003 |
Chapter Introduction | life11e_ch01_1.html | 5743404a757a2ea618000005 |
DLAP questions | life11e_ch01_1_dlap.xml | 5743404a757a2ea618000005 |
key concept1.1Living Organisms Share Similarities and a Common Origin
| life11e_ch01_2.html | 5743404a757a2ea618000005 |
DLAP questions | life11e_ch01_2_dlap.xml | 5743404a757a2ea618000005 |
Life arose from non-life via chemical evolution
| life11e_ch01_3.html | 5743404a757a2ea618000005 |
DLAP questions | life11e_ch01_3_dlap.xml | 5743404a757a2ea618000005 |
Cellular structure evolved in the common ancestor of life
| life11e_ch01_4.html | 5743404a757a2ea618000005 |
DLAP questions | life11e_ch01_4_dlap.xml | 5743404a757a2ea618000005 |
Photosynthesis allows some organisms to capture energy from the sun
| life11e_ch01_5.html | 5743404a757a2ea618000005 |
DLAP questions | life11e_ch01_5_dlap.xml | 5743404a757a2ea618000005 |
Biological information is stored in a genetic code common to all organisms
| life11e_ch01_6.html | 5743404a757a2ea618000005 |
DLAP questions | life11e_ch01_6_dlap.xml | 5743404a757a2ea618000005 |
Populations of all living organisms evolve
| life11e_ch01_7.html | 5743404a757a2ea618000005 |
DLAP questions | life11e_ch01_7_dlap.xml | 5743404a757a2ea618000005 |
Biologists trace the evolutionary tree of life
| life11e_ch01_8.html | 5743404a757a2ea618000005 |
DLAP questions | life11e_ch01_8_dlap.xml | 5743404a757a2ea618000005 |
Cellular differentiation and specialization underlie multicellular life
| life11e_ch01_9.html | 5743404a757a2ea618000005 |
DLAP questions | life11e_ch01_9_dlap.xml | 5743404a757a2ea618000005 |
Organisms extract energy and raw materials from the environment
| life11e_ch01_10.html | 5743404a757a2ea618000005 |
DLAP questions | life11e_ch01_10_dlap.xml | 5743404a757a2ea618000005 |
Living organisms must regulate their internal environment
| life11e_ch01_11.html | 5743404a757a2ea618000005 |
DLAP questions | life11e_ch01_11_dlap.xml | 5743404a757a2ea618000005 |
Living organisms interact
| life11e_ch01_12.html | 5743404a757a2ea618000005 |
DLAP questions | life11e_ch01_12_dlap.xml | 5743404a757a2ea618000005 |
recap | life11e_ch01_13.html | 5743404a757a2ea618000005 |
DLAP questions | life11e_ch01_13_dlap.xml | 5743404a757a2ea618000005 |
key concept1.2Biologists Investigate Life through Experiments That Test Hypotheses
| life11e_ch01_14.html | 5743404a757a2ea618000005 |
DLAP questions | life11e_ch01_14_dlap.xml | 5743404a757a2ea618000005 |
Observing and quantifying are important skills
| life11e_ch01_15.html | 5743404a757a2ea618000005 |
DLAP questions | life11e_ch01_15_dlap.xml | 5743404a757a2ea618000005 |
Scientific methods combine observation, experimentation, and logic
| life11e_ch01_16.html | 5743404a757a2ea618000005 |
DLAP questions | life11e_ch01_16_dlap.xml | 5743404a757a2ea618000005 |
Good experiments have the potential to falsify hypotheses
| life11e_ch01_17.html | 5743404a757a2ea618000005 |
DLAP questions | life11e_ch01_17_dlap.xml | 5743404a757a2ea618000005 |
Statistical methods are essential scientific tools
| life11e_ch01_18.html | 5743404a757a2ea618000005 |
DLAP questions | life11e_ch01_18_dlap.xml | 5743404a757a2ea618000005 |
Discoveries in biology can be generalized
| life11e_ch01_19.html | 5743404a757a2ea618000005 |
DLAP questions | life11e_ch01_19_dlap.xml | 5743404a757a2ea618000005 |
Not all forms of inquiry are scientific
| life11e_ch01_20.html | 5743404a757a2ea618000005 |
DLAP questions | life11e_ch01_20_dlap.xml | 5743404a757a2ea618000005 |
recap | life11e_ch01_21.html | 5743404a757a2ea618000005 |
DLAP questions | life11e_ch01_21_dlap.xml | 5743404a757a2ea618000005 |
key concept1.3Understanding Biology Is Important for Health, Well-Being, and Public-Policy Decisions
| life11e_ch01_22.html | 5743404a757a2ea618000005 |
DLAP questions | life11e_ch01_22_dlap.xml | 5743404a757a2ea618000005 |
Modern agriculture depends on biology
| life11e_ch01_23.html | 5743404a757a2ea618000005 |
DLAP questions | life11e_ch01_23_dlap.xml | 5743404a757a2ea618000005 |
Biology is the basis of medical practice
| life11e_ch01_24.html | 5743404a757a2ea618000005 |
DLAP questions | life11e_ch01_24_dlap.xml | 5743404a757a2ea618000005 |
Biology can inform public policy
| life11e_ch01_25.html | 5743404a757a2ea618000005 |
DLAP questions | life11e_ch01_25_dlap.xml | 5743404a757a2ea618000005 |
Biology is crucial for understanding ecosystems
| life11e_ch01_26.html | 5743404a757a2ea618000005 |
DLAP questions | life11e_ch01_26_dlap.xml | 5743404a757a2ea618000005 |
Biodiversity helps us understand, enjoy, and appreciate our world
| life11e_ch01_27.html | 5743404a757a2ea618000005 |
DLAP questions | life11e_ch01_27_dlap.xml | 5743404a757a2ea618000005 |
recap | life11e_ch01_28.html | 5743404a757a2ea618000005 |
DLAP questions | life11e_ch01_28_dlap.xml | 5743404a757a2ea618000005 |
Investigating Life | life11e_ch01_29.html | 5743404a757a2ea618000005 |
DLAP questions | life11e_ch01_29_dlap.xml | 5743404a757a2ea618000005 |
Chapter Summary
| life11e_ch01_30.html | 5743404a757a2ea618000005 |
DLAP questions | life11e_ch01_30_dlap.xml | 5743404a757a2ea618000005 |
Apply What Youâve Learned
| life11e_ch01_31.html | 5743404a757a2ea618000005 |
DLAP questions | life11e_ch01_31_dlap.xml | 5743404a757a2ea618000005 |
Chapter Introduction | life11e_ch02_1.html | 5745e9b2757a2e6045000000 |
DLAP questions | life11e_ch02_1_dlap.xml | 5745e9b2757a2e6045000000 |
key concept2.1Atomic Structure Explains the Properties of Matter
| life11e_ch02_2.html | 5745e9b2757a2e6045000000 |
DLAP questions | life11e_ch02_2_dlap.xml | 5745e9b2757a2e6045000000 |
What are atoms?
| life11e_ch02_3.html | 5745e9b2757a2e6045000000 |
DLAP questions | life11e_ch02_3_dlap.xml | 5745e9b2757a2e6045000000 |
An element consists of only one kind of atom
| life11e_ch02_4.html | 5745e9b2757a2e6045000000 |
DLAP questions | life11e_ch02_4_dlap.xml | 5745e9b2757a2e6045000000 |
Each element has a unique number of protons
| life11e_ch02_5.html | 5745e9b2757a2e6045000000 |
DLAP questions | life11e_ch02_5_dlap.xml | 5745e9b2757a2e6045000000 |
The number of neutrons differs among isotopes
| life11e_ch02_6.html | 5745e9b2757a2e6045000000 |
DLAP questions | life11e_ch02_6_dlap.xml | 5745e9b2757a2e6045000000 |
The behavior of electrons determines chemical bonding and geometry
| life11e_ch02_7.html | 5745e9b2757a2e6045000000 |
DLAP questions | life11e_ch02_7_dlap.xml | 5745e9b2757a2e6045000000 |
recap | life11e_ch02_8.html | 5745e9b2757a2e6045000000 |
DLAP questions | life11e_ch02_8_dlap.xml | 5745e9b2757a2e6045000000 |
key concept2.2Atoms Bond to Form Molecules
| life11e_ch02_9.html | 5745e9b2757a2e6045000000 |
DLAP questions | life11e_ch02_9_dlap.xml | 5745e9b2757a2e6045000000 |
Covalent bonds consist of shared pairs of electrons
| life11e_ch02_10.html | 5745e9b2757a2e6045000000 |
DLAP questions | life11e_ch02_10_dlap.xml | 5745e9b2757a2e6045000000 |
Ionic attractions form by electrical attraction
| life11e_ch02_11.html | 5745e9b2757a2e6045000000 |
DLAP questions | life11e_ch02_11_dlap.xml | 5745e9b2757a2e6045000000 |
Hydrogen bonds may form within or between molecules with polar covalent bonds
| life11e_ch02_12.html | 5745e9b2757a2e6045000000 |
DLAP questions | life11e_ch02_12_dlap.xml | 5745e9b2757a2e6045000000 |
Hydrophobic interactions bring together nonpolar molecules
| life11e_ch02_13.html | 5745e9b2757a2e6045000000 |
DLAP questions | life11e_ch02_13_dlap.xml | 5745e9b2757a2e6045000000 |
van der Waals forces involve contacts between atoms
| life11e_ch02_14.html | 5745e9b2757a2e6045000000 |
DLAP questions | life11e_ch02_14_dlap.xml | 5745e9b2757a2e6045000000 |
recap | life11e_ch02_15.html | 5745e9b2757a2e6045000000 |
DLAP questions | life11e_ch02_15_dlap.xml | 5745e9b2757a2e6045000000 |
key concept2.3Atoms Change Partners in Chemical Reactions
| life11e_ch02_16.html | 5745e9b2757a2e6045000000 |
DLAP questions | life11e_ch02_16_dlap.xml | 5745e9b2757a2e6045000000 |
recap | life11e_ch02_17.html | 5745e9b2757a2e6045000000 |
DLAP questions | life11e_ch02_17_dlap.xml | 5745e9b2757a2e6045000000 |
key concept2.4Water Is Critical for Life
| life11e_ch02_18.html | 5745e9b2757a2e6045000000 |
DLAP questions | life11e_ch02_18_dlap.xml | 5745e9b2757a2e6045000000 |
Water has a unique structure and special properties
| life11e_ch02_19.html | 5745e9b2757a2e6045000000 |
DLAP questions | life11e_ch02_19_dlap.xml | 5745e9b2757a2e6045000000 |
The reactions of life take place in aqueous solutions
| life11e_ch02_20.html | 5745e9b2757a2e6045000000 |
DLAP questions | life11e_ch02_20_dlap.xml | 5745e9b2757a2e6045000000 |
Aqueous solutions may be acidic or basic
| life11e_ch02_21.html | 5745e9b2757a2e6045000000 |
DLAP questions | life11e_ch02_21_dlap.xml | 5745e9b2757a2e6045000000 |
recap | life11e_ch02_22.html | 5745e9b2757a2e6045000000 |
DLAP questions | life11e_ch02_22_dlap.xml | 5745e9b2757a2e6045000000 |
Investigating Life | life11e_ch02_23.html | 5745e9b2757a2e6045000000 |
DLAP questions | life11e_ch02_23_dlap.xml | 5745e9b2757a2e6045000000 |
Chapter Summary
| life11e_ch02_24.html | 5745e9b2757a2e6045000000 |
DLAP questions | life11e_ch02_24_dlap.xml | 5745e9b2757a2e6045000000 |
Apply What Youâve Learned
| life11e_ch02_25.html | 5745e9b2757a2e6045000000 |
DLAP questions | life11e_ch02_25_dlap.xml | 5745e9b2757a2e6045000000 |
Chapter Introduction | life11e_ch03_1.html | 577160fb757a2ef06a000000 |
DLAP questions | life11e_ch03_1_dlap.xml | 577160fb757a2ef06a000000 |
key concept3.1Macromolecules Characterize Living Things
| life11e_ch03_2.html | 577160fb757a2ef06a000000 |
DLAP questions | life11e_ch03_2_dlap.xml | 577160fb757a2ef06a000000 |
Chemical groupings determine the structures of macromolecules
| life11e_ch03_3.html | 577160fb757a2ef06a000000 |
DLAP questions | life11e_ch03_3_dlap.xml | 577160fb757a2ef06a000000 |
The structures of macromolecules reflect their functions
| life11e_ch03_4.html | 577160fb757a2ef06a000000 |
DLAP questions | life11e_ch03_4_dlap.xml | 577160fb757a2ef06a000000 |
Most macromolecules are formed by condensation and broken down by hydrolysis
| life11e_ch03_5.html | 577160fb757a2ef06a000000 |
DLAP questions | life11e_ch03_5_dlap.xml | 577160fb757a2ef06a000000 |
recap | life11e_ch03_6.html | 577160fb757a2ef06a000000 |
DLAP questions | life11e_ch03_6_dlap.xml | 577160fb757a2ef06a000000 |
key concept3.2The Function of a Protein Depends on Its Three-Dimensional Structure
| life11e_ch03_7.html | 577160fb757a2ef06a000000 |
DLAP questions | life11e_ch03_7_dlap.xml | 577160fb757a2ef06a000000 |
Monomers of proteins link together to make the macromolecule
| life11e_ch03_8.html | 577160fb757a2ef06a000000 |
DLAP questions | life11e_ch03_8_dlap.xml | 577160fb757a2ef06a000000 |
Peptide linkages form the backbone of a protein
| life11e_ch03_9.html | 577160fb757a2ef06a000000 |
DLAP questions | life11e_ch03_9_dlap.xml | 577160fb757a2ef06a000000 |
The primary structure of a protein is its amino acid sequence
| life11e_ch03_10.html | 577160fb757a2ef06a000000 |
DLAP questions | life11e_ch03_10_dlap.xml | 577160fb757a2ef06a000000 |
The secondary structure of a protein requires hydrogen bonding
| life11e_ch03_11.html | 577160fb757a2ef06a000000 |
DLAP questions | life11e_ch03_11_dlap.xml | 577160fb757a2ef06a000000 |
The tertiary structure of a protein is formed by bending and folding
| life11e_ch03_12.html | 577160fb757a2ef06a000000 |
DLAP questions | life11e_ch03_12_dlap.xml | 577160fb757a2ef06a000000 |
The quaternary structure of a protein consists of subunits
| life11e_ch03_13.html | 577160fb757a2ef06a000000 |
DLAP questions | life11e_ch03_13_dlap.xml | 577160fb757a2ef06a000000 |
Shape and surface chemistry contribute to protein function
| life11e_ch03_14.html | 577160fb757a2ef06a000000 |
DLAP questions | life11e_ch03_14_dlap.xml | 577160fb757a2ef06a000000 |
Environmental conditions affect protein structure
| life11e_ch03_15.html | 577160fb757a2ef06a000000 |
DLAP questions | life11e_ch03_15_dlap.xml | 577160fb757a2ef06a000000 |
Protein shapes can change
| life11e_ch03_16.html | 577160fb757a2ef06a000000 |
DLAP questions | life11e_ch03_16_dlap.xml | 577160fb757a2ef06a000000 |
Molecular chaperones help shape proteins
| life11e_ch03_17.html | 577160fb757a2ef06a000000 |
DLAP questions | life11e_ch03_17_dlap.xml | 577160fb757a2ef06a000000 |
recap | life11e_ch03_18.html | 577160fb757a2ef06a000000 |
DLAP questions | life11e_ch03_18_dlap.xml | 577160fb757a2ef06a000000 |
key concept3.3Simple Sugars Are the Basic Structural Unit of Carbohydrates
| life11e_ch03_19.html | 577160fb757a2ef06a000000 |
DLAP questions | life11e_ch03_19_dlap.xml | 577160fb757a2ef06a000000 |
Monosaccharides are simple sugars
| life11e_ch03_20.html | 577160fb757a2ef06a000000 |
DLAP questions | life11e_ch03_20_dlap.xml | 577160fb757a2ef06a000000 |
Glycosidic linkages bond monosaccharides
| life11e_ch03_21.html | 577160fb757a2ef06a000000 |
DLAP questions | life11e_ch03_21_dlap.xml | 577160fb757a2ef06a000000 |
Polysaccharides store energy and provide structural materials
| life11e_ch03_22.html | 577160fb757a2ef06a000000 |
DLAP questions | life11e_ch03_22_dlap.xml | 577160fb757a2ef06a000000 |
Chemically modified carbohydrates contain additional functional groups
| life11e_ch03_23.html | 577160fb757a2ef06a000000 |
DLAP questions | life11e_ch03_23_dlap.xml | 577160fb757a2ef06a000000 |
recap | life11e_ch03_24.html | 577160fb757a2ef06a000000 |
DLAP questions | life11e_ch03_24_dlap.xml | 577160fb757a2ef06a000000 |
key concept3.4Lipids Are Defined by Their Solubility Rather Than by Chemical Structure
| life11e_ch03_25.html | 577160fb757a2ef06a000000 |
DLAP questions | life11e_ch03_25_dlap.xml | 577160fb757a2ef06a000000 |
Fats and oils are triglycerides
| life11e_ch03_26.html | 577160fb757a2ef06a000000 |
DLAP questions | life11e_ch03_26_dlap.xml | 577160fb757a2ef06a000000 |
Phospholipids form biological membranes
| life11e_ch03_27.html | 577160fb757a2ef06a000000 |
DLAP questions | life11e_ch03_27_dlap.xml | 577160fb757a2ef06a000000 |
Some lipids have roles in energy conversion, regulation, and protection
| life11e_ch03_28.html | 577160fb757a2ef06a000000 |
DLAP questions | life11e_ch03_28_dlap.xml | 577160fb757a2ef06a000000 |
recap | life11e_ch03_29.html | 577160fb757a2ef06a000000 |
DLAP questions | life11e_ch03_29_dlap.xml | 577160fb757a2ef06a000000 |
Investigating Life | life11e_ch03_30.html | 577160fb757a2ef06a000000 |
DLAP questions | life11e_ch03_30_dlap.xml | 577160fb757a2ef06a000000 |
Chapter Summary
| life11e_ch03_31.html | 577160fb757a2ef06a000000 |
DLAP questions | life11e_ch03_31_dlap.xml | 577160fb757a2ef06a000000 |
Apply What Youâve Learned
| life11e_ch03_32.html | 577160fb757a2ef06a000000 |
DLAP questions | life11e_ch03_32_dlap.xml | 577160fb757a2ef06a000000 |
Chapter Introduction | life11e_ch04_1.html | 577267fc757a2ed971000002 |
DLAP questions | life11e_ch04_1_dlap.xml | 577267fc757a2ed971000002 |
key concept4.1Nucleic Acid Structures Reflect Their Functions
| life11e_ch04_2.html | 577267fc757a2ed971000002 |
DLAP questions | life11e_ch04_2_dlap.xml | 577267fc757a2ed971000002 |
Nucleic acids are informational macromolecules
| life11e_ch04_3.html | 577267fc757a2ed971000002 |
DLAP questions | life11e_ch04_3_dlap.xml | 577267fc757a2ed971000002 |
Base pairing occurs in both DNA and RNA
| life11e_ch04_4.html | 577267fc757a2ed971000002 |
DLAP questions | life11e_ch04_4_dlap.xml | 577267fc757a2ed971000002 |
DNA carries information and is expressed through RNA
| life11e_ch04_5.html | 577267fc757a2ed971000002 |
DLAP questions | life11e_ch04_5_dlap.xml | 577267fc757a2ed971000002 |
The DNA base sequence reveals evolutionary relationships
| life11e_ch04_6.html | 577267fc757a2ed971000002 |
DLAP questions | life11e_ch04_6_dlap.xml | 577267fc757a2ed971000002 |
Nucleotides have other important roles
| life11e_ch04_7.html | 577267fc757a2ed971000002 |
DLAP questions | life11e_ch04_7_dlap.xml | 577267fc757a2ed971000002 |
recap | life11e_ch04_8.html | 577267fc757a2ed971000002 |
DLAP questions | life11e_ch04_8_dlap.xml | 577267fc757a2ed971000002 |
key concept4.2The Small Molecules of Life Originated on Primitive Earth
| life11e_ch04_9.html | 577267fc757a2ed971000002 |
DLAP questions | life11e_ch04_9_dlap.xml | 577267fc757a2ed971000002 |
Living organisms do not repeatedly come from inanimate nature
| life11e_ch04_10.html | 577267fc757a2ed971000002 |
DLAP questions | life11e_ch04_10_dlap.xml | 577267fc757a2ed971000002 |
Life began in water
| life11e_ch04_11.html | 577267fc757a2ed971000002 |
DLAP questions | life11e_ch04_11_dlap.xml | 577267fc757a2ed971000002 |
Prebiotic synthesis experiments model early Earth
| life11e_ch04_12.html | 577267fc757a2ed971000002 |
DLAP questions | life11e_ch04_12_dlap.xml | 577267fc757a2ed971000002 |
Life may have come from outside Earth
| life11e_ch04_13.html | 577267fc757a2ed971000002 |
DLAP questions | life11e_ch04_13_dlap.xml | 577267fc757a2ed971000002 |
recap | life11e_ch04_14.html | 577267fc757a2ed971000002 |
DLAP questions | life11e_ch04_14_dlap.xml | 577267fc757a2ed971000002 |
key concept4.3The Large Molecules of Life Originated from Small Molecules
| life11e_ch04_15.html | 577267fc757a2ed971000002 |
DLAP questions | life11e_ch04_15_dlap.xml | 577267fc757a2ed971000002 |
Complex molecules could be formed from simpler ones on primitive Earth
| life11e_ch04_16.html | 577267fc757a2ed971000002 |
DLAP questions | life11e_ch04_16_dlap.xml | 577267fc757a2ed971000002 |
RNA may have been the first biological catalyst
| life11e_ch04_17.html | 577267fc757a2ed971000002 |
DLAP questions | life11e_ch04_17_dlap.xml | 577267fc757a2ed971000002 |
recap | life11e_ch04_18.html | 577267fc757a2ed971000002 |
DLAP questions | life11e_ch04_18_dlap.xml | 577267fc757a2ed971000002 |
key concept4.4Cells Originated from Their Molecular Building Blocks
| life11e_ch04_19.html | 577267fc757a2ed971000002 |
DLAP questions | life11e_ch04_19_dlap.xml | 577267fc757a2ed971000002 |
How did the first cells with membranes come into existence?
| life11e_ch04_20.html | 577267fc757a2ed971000002 |
DLAP questions | life11e_ch04_20_dlap.xml | 577267fc757a2ed971000002 |
Some ancient cells left a fossil imprint
| life11e_ch04_21.html | 577267fc757a2ed971000002 |
DLAP questions | life11e_ch04_21_dlap.xml | 577267fc757a2ed971000002 |
recap | life11e_ch04_22.html | 577267fc757a2ed971000002 |
DLAP questions | life11e_ch04_22_dlap.xml | 577267fc757a2ed971000002 |
Investigating Life | life11e_ch04_23.html | 577267fc757a2ed971000002 |
DLAP questions | life11e_ch04_23_dlap.xml | 577267fc757a2ed971000002 |
Chapter Summary
| life11e_ch04_24.html | 577267fc757a2ed971000002 |
DLAP questions | life11e_ch04_24_dlap.xml | 577267fc757a2ed971000002 |
Apply What Youâve Learned
| life11e_ch04_25.html | 577267fc757a2ed971000002 |
DLAP questions | life11e_ch04_25_dlap.xml | 577267fc757a2ed971000002 |
Chapter Introduction | life11e_ch05_1.html | 577283f2757a2eed6f000007 |
DLAP questions | life11e_ch05_1_dlap.xml | 577283f2757a2eed6f000007 |
key concept5.1Cells Are the Fundamental Units of Life
| life11e_ch05_2.html | 577283f2757a2eed6f000007 |
DLAP questions | life11e_ch05_2_dlap.xml | 577283f2757a2eed6f000007 |
What is the cell theory?
| life11e_ch05_3.html | 577283f2757a2eed6f000007 |
DLAP questions | life11e_ch05_3_dlap.xml | 577283f2757a2eed6f000007 |
Cell size is limited by the surface area-to-volume ratio
| life11e_ch05_4.html | 577283f2757a2eed6f000007 |
DLAP questions | life11e_ch05_4_dlap.xml | 577283f2757a2eed6f000007 |
Microscopes reveal the features of cells
| life11e_ch05_5.html | 577283f2757a2eed6f000007 |
DLAP questions | life11e_ch05_5_dlap.xml | 577283f2757a2eed6f000007 |
The cell membrane forms an outer boundary of every cell
| life11e_ch05_6.html | 577283f2757a2eed6f000007 |
DLAP questions | life11e_ch05_6_dlap.xml | 577283f2757a2eed6f000007 |
Cells may be classified as either prokaryotic or eukaryotic
| life11e_ch05_7.html | 577283f2757a2eed6f000007 |
DLAP questions | life11e_ch05_7_dlap.xml | 577283f2757a2eed6f000007 |
recap | life11e_ch05_8.html | 577283f2757a2eed6f000007 |
DLAP questions | life11e_ch05_8_dlap.xml | 577283f2757a2eed6f000007 |
key concept5.2Prokaryotic Cells Are the Simplest Cells
| life11e_ch05_9.html | 577283f2757a2eed6f000007 |
DLAP questions | life11e_ch05_9_dlap.xml | 577283f2757a2eed6f000007 |
What are the features of prokaryotic cells?
| life11e_ch05_10.html | 577283f2757a2eed6f000007 |
DLAP questions | life11e_ch05_10_dlap.xml | 577283f2757a2eed6f000007 |
Specialized features are found in some prokaryotes
| life11e_ch05_11.html | 577283f2757a2eed6f000007 |
DLAP questions | life11e_ch05_11_dlap.xml | 577283f2757a2eed6f000007 |
recap | life11e_ch05_12.html | 577283f2757a2eed6f000007 |
DLAP questions | life11e_ch05_12_dlap.xml | 577283f2757a2eed6f000007 |
key concept5.3Eukaryotic Cells Contain Organelles
| life11e_ch05_13.html | 577283f2757a2eed6f000007 |
DLAP questions | life11e_ch05_13_dlap.xml | 577283f2757a2eed6f000007 |
Compartmentalization is important to eukaryotic cell function
| life11e_ch05_14.html | 577283f2757a2eed6f000007 |
DLAP questions | life11e_ch05_14_dlap.xml | 577283f2757a2eed6f000007 |
Organelles can be studied by microscopy or isolated for chemical analysis
| life11e_ch05_15.html | 577283f2757a2eed6f000007 |
DLAP questions | life11e_ch05_15_dlap.xml | 577283f2757a2eed6f000007 |
Ribosomes are factories for protein synthesis
| life11e_ch05_16.html | 577283f2757a2eed6f000007 |
DLAP questions | life11e_ch05_16_dlap.xml | 577283f2757a2eed6f000007 |
The nucleus contains most of the genetic information
| life11e_ch05_17.html | 577283f2757a2eed6f000007 |
DLAP questions | life11e_ch05_17_dlap.xml | 577283f2757a2eed6f000007 |
The endomembrane system is a group of interrelated organelles
| life11e_ch05_18.html | 577283f2757a2eed6f000007 |
DLAP questions | life11e_ch05_18_dlap.xml | 577283f2757a2eed6f000007 |
Some organelles transform energy
| life11e_ch05_19.html | 577283f2757a2eed6f000007 |
DLAP questions | life11e_ch05_19_dlap.xml | 577283f2757a2eed6f000007 |
There are several other membrane-enclosed organelles
| life11e_ch05_20.html | 577283f2757a2eed6f000007 |
DLAP questions | life11e_ch05_20_dlap.xml | 577283f2757a2eed6f000007 |
The cytoskeleton is important in cell structure and movement
| life11e_ch05_21.html | 577283f2757a2eed6f000007 |
DLAP questions | life11e_ch05_21_dlap.xml | 577283f2757a2eed6f000007 |
Biologists can manipulate living systems to establish cause and effect
| life11e_ch05_22.html | 577283f2757a2eed6f000007 |
DLAP questions | life11e_ch05_22_dlap.xml | 577283f2757a2eed6f000007 |
recap | life11e_ch05_23.html | 577283f2757a2eed6f000007 |
DLAP questions | life11e_ch05_23_dlap.xml | 577283f2757a2eed6f000007 |
key concept5.4Extracellular Structures Have Important Roles
| life11e_ch05_24.html | 577283f2757a2eed6f000007 |
DLAP questions | life11e_ch05_24_dlap.xml | 577283f2757a2eed6f000007 |
What is the plant cell wall?
| life11e_ch05_25.html | 577283f2757a2eed6f000007 |
DLAP questions | life11e_ch05_25_dlap.xml | 577283f2757a2eed6f000007 |
The extracellular matrix supports tissue functions in animals
| life11e_ch05_26.html | 577283f2757a2eed6f000007 |
DLAP questions | life11e_ch05_26_dlap.xml | 577283f2757a2eed6f000007 |
recap | life11e_ch05_27.html | 577283f2757a2eed6f000007 |
DLAP questions | life11e_ch05_27_dlap.xml | 577283f2757a2eed6f000007 |
key concept5.5Eukaryotic Cells Evolved in Several Steps
| life11e_ch05_28.html | 577283f2757a2eed6f000007 |
DLAP questions | life11e_ch05_28_dlap.xml | 577283f2757a2eed6f000007 |
Internal membranes and the nuclear envelope probably came from the cell membrane
| life11e_ch05_29.html | 577283f2757a2eed6f000007 |
DLAP questions | life11e_ch05_29_dlap.xml | 577283f2757a2eed6f000007 |
Some organelles arose by endosymbiosis
| life11e_ch05_30.html | 577283f2757a2eed6f000007 |
DLAP questions | life11e_ch05_30_dlap.xml | 577283f2757a2eed6f000007 |
recap | life11e_ch05_31.html | 577283f2757a2eed6f000007 |
DLAP questions | life11e_ch05_31_dlap.xml | 577283f2757a2eed6f000007 |
Investigating Life | life11e_ch05_32.html | 577283f2757a2eed6f000007 |
DLAP questions | life11e_ch05_32_dlap.xml | 577283f2757a2eed6f000007 |
Chapter Summary
| life11e_ch05_33.html | 577283f2757a2eed6f000007 |
DLAP questions | life11e_ch05_33_dlap.xml | 577283f2757a2eed6f000007 |
Apply What Youâve Learned
| life11e_ch05_34.html | 577283f2757a2eed6f000007 |
DLAP questions | life11e_ch05_34_dlap.xml | 577283f2757a2eed6f000007 |
Chapter Introduction | life11e_ch06_1.html | 5773de48757a2ede0e000000 |
DLAP questions | life11e_ch06_1_dlap.xml | 5773de48757a2ede0e000000 |
key concept6.1Biological Membranes Are LipidâProtein Bilayers
| life11e_ch06_2.html | 5773de48757a2ede0e000000 |
DLAP questions | life11e_ch06_2_dlap.xml | 5773de48757a2ede0e000000 |
Lipids form the hydrophobic core of the membrane
| life11e_ch06_3.html | 5773de48757a2ede0e000000 |
DLAP questions | life11e_ch06_3_dlap.xml | 5773de48757a2ede0e000000 |
Membrane proteins are asymmetrically distributed
| life11e_ch06_4.html | 5773de48757a2ede0e000000 |
DLAP questions | life11e_ch06_4_dlap.xml | 5773de48757a2ede0e000000 |
Membranes are constantly changing
| life11e_ch06_5.html | 5773de48757a2ede0e000000 |
DLAP questions | life11e_ch06_5_dlap.xml | 5773de48757a2ede0e000000 |
Cell membrane carbohydrates are recognition sites
| life11e_ch06_6.html | 5773de48757a2ede0e000000 |
DLAP questions | life11e_ch06_6_dlap.xml | 5773de48757a2ede0e000000 |
recap | life11e_ch06_7.html | 5773de48757a2ede0e000000 |
DLAP questions | life11e_ch06_7_dlap.xml | 5773de48757a2ede0e000000 |
key concept6.2The Cell Membrane Is Important in Cell Adhesion and Recognition
| life11e_ch06_8.html | 5773de48757a2ede0e000000 |
DLAP questions | life11e_ch06_8_dlap.xml | 5773de48757a2ede0e000000 |
Cell recognition and adhesion involve proteins and carbohydrates at the cell surface
| life11e_ch06_9.html | 5773de48757a2ede0e000000 |
DLAP questions | life11e_ch06_9_dlap.xml | 5773de48757a2ede0e000000 |
Three types of cell junctions connect adjacent cells
| life11e_ch06_10.html | 5773de48757a2ede0e000000 |
DLAP questions | life11e_ch06_10_dlap.xml | 5773de48757a2ede0e000000 |
Cell membranes adhere to the extracellular matrix
| life11e_ch06_11.html | 5773de48757a2ede0e000000 |
DLAP questions | life11e_ch06_11_dlap.xml | 5773de48757a2ede0e000000 |
recap | life11e_ch06_12.html | 5773de48757a2ede0e000000 |
DLAP questions | life11e_ch06_12_dlap.xml | 5773de48757a2ede0e000000 |
key concept6.3Substances Can Cross Membranes by Passive Processes
| life11e_ch06_13.html | 5773de48757a2ede0e000000 |
DLAP questions | life11e_ch06_13_dlap.xml | 5773de48757a2ede0e000000 |
Diffusion is the process of random movement toward a state of equilibrium
| life11e_ch06_14.html | 5773de48757a2ede0e000000 |
DLAP questions | life11e_ch06_14_dlap.xml | 5773de48757a2ede0e000000 |
Simple diffusion takes place through the phospholipid bilayer
| life11e_ch06_15.html | 5773de48757a2ede0e000000 |
DLAP questions | life11e_ch06_15_dlap.xml | 5773de48757a2ede0e000000 |
Osmosis is the diffusion of water across membranes
| life11e_ch06_16.html | 5773de48757a2ede0e000000 |
DLAP questions | life11e_ch06_16_dlap.xml | 5773de48757a2ede0e000000 |
Diffusion may be aided by channel proteins
| life11e_ch06_17.html | 5773de48757a2ede0e000000 |
DLAP questions | life11e_ch06_17_dlap.xml | 5773de48757a2ede0e000000 |
Carrier proteins aid diffusion by binding substances
| life11e_ch06_18.html | 5773de48757a2ede0e000000 |
DLAP questions | life11e_ch06_18_dlap.xml | 5773de48757a2ede0e000000 |
recap | life11e_ch06_19.html | 5773de48757a2ede0e000000 |
DLAP questions | life11e_ch06_19_dlap.xml | 5773de48757a2ede0e000000 |
key concept6.4Active Transport across Membranes Requires Energy
| life11e_ch06_20.html | 5773de48757a2ede0e000000 |
DLAP questions | life11e_ch06_20_dlap.xml | 5773de48757a2ede0e000000 |
Active transport is directional
| life11e_ch06_21.html | 5773de48757a2ede0e000000 |
DLAP questions | life11e_ch06_21_dlap.xml | 5773de48757a2ede0e000000 |
Different energy sources distinguish different active transport systems
| life11e_ch06_22.html | 5773de48757a2ede0e000000 |
DLAP questions | life11e_ch06_22_dlap.xml | 5773de48757a2ede0e000000 |
recap | life11e_ch06_23.html | 5773de48757a2ede0e000000 |
DLAP questions | life11e_ch06_23_dlap.xml | 5773de48757a2ede0e000000 |
key concept6.5Large Molecules Enter and Leave a Cell through Vesicles
| life11e_ch06_24.html | 5773de48757a2ede0e000000 |
DLAP questions | life11e_ch06_24_dlap.xml | 5773de48757a2ede0e000000 |
Macromolecules and particles enter the cell by endocytosis
| life11e_ch06_25.html | 5773de48757a2ede0e000000 |
DLAP questions | life11e_ch06_25_dlap.xml | 5773de48757a2ede0e000000 |
Receptor-mediated endocytosis is highly specific
| life11e_ch06_26.html | 5773de48757a2ede0e000000 |
DLAP questions | life11e_ch06_26_dlap.xml | 5773de48757a2ede0e000000 |
Exocytosis moves materials out of the cell
| life11e_ch06_27.html | 5773de48757a2ede0e000000 |
DLAP questions | life11e_ch06_27_dlap.xml | 5773de48757a2ede0e000000 |
recap | life11e_ch06_28.html | 5773de48757a2ede0e000000 |
DLAP questions | life11e_ch06_28_dlap.xml | 5773de48757a2ede0e000000 |
Investigating Life | life11e_ch06_29.html | 5773de48757a2ede0e000000 |
DLAP questions | life11e_ch06_29_dlap.xml | 5773de48757a2ede0e000000 |
Chapter Summary
| life11e_ch06_30.html | 5773de48757a2ede0e000000 |
DLAP questions | life11e_ch06_30_dlap.xml | 5773de48757a2ede0e000000 |
Apply What Youâve Learned
| life11e_ch06_31.html | 5773de48757a2ede0e000000 |
DLAP questions | life11e_ch06_31_dlap.xml | 5773de48757a2ede0e000000 |
Chapter Introduction | life11e_ch07_1.html | 5773f788757a2e3510000000 |
DLAP questions | life11e_ch07_1_dlap.xml | 5773f788757a2e3510000000 |
key concept7.1Signals and Signaling Affect Cell Function
| life11e_ch07_2.html | 5773f788757a2e3510000000 |
DLAP questions | life11e_ch07_2_dlap.xml | 5773f788757a2e3510000000 |
Cells receive several types of signals
| life11e_ch07_3.html | 5773f788757a2e3510000000 |
DLAP questions | life11e_ch07_3_dlap.xml | 5773f788757a2e3510000000 |
A signal transduction pathway involves a signal, a receptor, and responses: Overview
| life11e_ch07_4.html | 5773f788757a2e3510000000 |
DLAP questions | life11e_ch07_4_dlap.xml | 5773f788757a2e3510000000 |
recap | life11e_ch07_5.html | 5773f788757a2e3510000000 |
DLAP questions | life11e_ch07_5_dlap.xml | 5773f788757a2e3510000000 |
key concept7.2Receptors Bind Signals to Initiate a Cellular Response
| life11e_ch07_6.html | 5773f788757a2e3510000000 |
DLAP questions | life11e_ch07_6_dlap.xml | 5773f788757a2e3510000000 |
Receptors that recognize chemical signals have specific binding sites
| life11e_ch07_7.html | 5773f788757a2e3510000000 |
DLAP questions | life11e_ch07_7_dlap.xml | 5773f788757a2e3510000000 |
Receptors can be classified by location and function
| life11e_ch07_8.html | 5773f788757a2e3510000000 |
DLAP questions | life11e_ch07_8_dlap.xml | 5773f788757a2e3510000000 |
Intracellular receptors are located in the cytoplasm or the nucleus
| life11e_ch07_9.html | 5773f788757a2e3510000000 |
DLAP questions | life11e_ch07_9_dlap.xml | 5773f788757a2e3510000000 |
recap | life11e_ch07_10.html | 5773f788757a2e3510000000 |
DLAP questions | life11e_ch07_10_dlap.xml | 5773f788757a2e3510000000 |
key concept7.3The Response to a Signal Spreads through the Cell
| life11e_ch07_11.html | 5773f788757a2e3510000000 |
DLAP questions | life11e_ch07_11_dlap.xml | 5773f788757a2e3510000000 |
The cell amplifies its response to ligand binding
| life11e_ch07_12.html | 5773f788757a2e3510000000 |
DLAP questions | life11e_ch07_12_dlap.xml | 5773f788757a2e3510000000 |
Second messengers can amplify signals between receptors and target molecules
| life11e_ch07_13.html | 5773f788757a2e3510000000 |
DLAP questions | life11e_ch07_13_dlap.xml | 5773f788757a2e3510000000 |
Signal transduction is highly regulated
| life11e_ch07_14.html | 5773f788757a2e3510000000 |
DLAP questions | life11e_ch07_14_dlap.xml | 5773f788757a2e3510000000 |
recap | life11e_ch07_15.html | 5773f788757a2e3510000000 |
DLAP questions | life11e_ch07_15_dlap.xml | 5773f788757a2e3510000000 |
key concept7.4Cells Change in Response to Signals in Several Ways
| life11e_ch07_16.html | 5773f788757a2e3510000000 |
DLAP questions | life11e_ch07_16_dlap.xml | 5773f788757a2e3510000000 |
Ion channels respond to signals by opening or closing
| life11e_ch07_17.html | 5773f788757a2e3510000000 |
DLAP questions | life11e_ch07_17_dlap.xml | 5773f788757a2e3510000000 |
Enzyme activities change in response to signals
| life11e_ch07_18.html | 5773f788757a2e3510000000 |
DLAP questions | life11e_ch07_18_dlap.xml | 5773f788757a2e3510000000 |
Signals can initiate DNA transcription
| life11e_ch07_19.html | 5773f788757a2e3510000000 |
DLAP questions | life11e_ch07_19_dlap.xml | 5773f788757a2e3510000000 |
recap | life11e_ch07_20.html | 5773f788757a2e3510000000 |
DLAP questions | life11e_ch07_20_dlap.xml | 5773f788757a2e3510000000 |
key concept7.5Adjacent Cells in a Multicellular Organism Can Communicate Directly
| life11e_ch07_21.html | 5773f788757a2e3510000000 |
DLAP questions | life11e_ch07_21_dlap.xml | 5773f788757a2e3510000000 |
How do animal cells directly communicate?
| life11e_ch07_22.html | 5773f788757a2e3510000000 |
DLAP questions | life11e_ch07_22_dlap.xml | 5773f788757a2e3510000000 |
Plant cells communicate through plasmodesmata
| life11e_ch07_23.html | 5773f788757a2e3510000000 |
DLAP questions | life11e_ch07_23_dlap.xml | 5773f788757a2e3510000000 |
Modern organisms provide clues about the evolution of cellâcell interactions and multicellularity
| life11e_ch07_24.html | 5773f788757a2e3510000000 |
DLAP questions | life11e_ch07_24_dlap.xml | 5773f788757a2e3510000000 |
recap | life11e_ch07_25.html | 5773f788757a2e3510000000 |
DLAP questions | life11e_ch07_25_dlap.xml | 5773f788757a2e3510000000 |
Investigating Life | life11e_ch07_26.html | 5773f788757a2e3510000000 |
DLAP questions | life11e_ch07_26_dlap.xml | 5773f788757a2e3510000000 |
Chapter Summary
| life11e_ch07_27.html | 5773f788757a2e3510000000 |
DLAP questions | life11e_ch07_27_dlap.xml | 5773f788757a2e3510000000 |
Apply What Youâve Learned
| life11e_ch07_28.html | 5773f788757a2e3510000000 |
DLAP questions | life11e_ch07_28_dlap.xml | 5773f788757a2e3510000000 |
Chapter Introduction | life11e_ch08_1.html | 5774100a757a2e760f000000 |
DLAP questions | life11e_ch08_1_dlap.xml | 5774100a757a2e760f000000 |
key concept8.1Physical Principles Underlie Biological Energy Transformations
| life11e_ch08_2.html | 5774100a757a2e760f000000 |
DLAP questions | life11e_ch08_2_dlap.xml | 5774100a757a2e760f000000 |
There are two basic types of energy
| life11e_ch08_3.html | 5774100a757a2e760f000000 |
DLAP questions | life11e_ch08_3_dlap.xml | 5774100a757a2e760f000000 |
There are two basic types of metabolism
| life11e_ch08_4.html | 5774100a757a2e760f000000 |
DLAP questions | life11e_ch08_4_dlap.xml | 5774100a757a2e760f000000 |
The first law of thermodynamics: Energy is neither created nor destroyed
| life11e_ch08_5.html | 5774100a757a2e760f000000 |
DLAP questions | life11e_ch08_5_dlap.xml | 5774100a757a2e760f000000 |
The second law of thermodynamics: Disorder tends to increase
| life11e_ch08_6.html | 5774100a757a2e760f000000 |
DLAP questions | life11e_ch08_6_dlap.xml | 5774100a757a2e760f000000 |
Chemical reactions release or consume energy
| life11e_ch08_7.html | 5774100a757a2e760f000000 |
DLAP questions | life11e_ch08_7_dlap.xml | 5774100a757a2e760f000000 |
Chemical equilibrium and free energy are related
| life11e_ch08_8.html | 5774100a757a2e760f000000 |
DLAP questions | life11e_ch08_8_dlap.xml | 5774100a757a2e760f000000 |
recap | life11e_ch08_9.html | 5774100a757a2e760f000000 |
DLAP questions | life11e_ch08_9_dlap.xml | 5774100a757a2e760f000000 |
key concept8.2ATP Plays a Key Role in Biochemical Energetics
| life11e_ch08_10.html | 5774100a757a2e760f000000 |
DLAP questions | life11e_ch08_10_dlap.xml | 5774100a757a2e760f000000 |
ATP hydrolysis releases energy
| life11e_ch08_11.html | 5774100a757a2e760f000000 |
DLAP questions | life11e_ch08_11_dlap.xml | 5774100a757a2e760f000000 |
ATP couples exergonic and endergonic reactions
| life11e_ch08_12.html | 5774100a757a2e760f000000 |
DLAP questions | life11e_ch08_12_dlap.xml | 5774100a757a2e760f000000 |
recap | life11e_ch08_13.html | 5774100a757a2e760f000000 |
DLAP questions | life11e_ch08_13_dlap.xml | 5774100a757a2e760f000000 |
key concept8.3Enzymes Speed Up Biochemical Transformations
| life11e_ch08_14.html | 5774100a757a2e760f000000 |
DLAP questions | life11e_ch08_14_dlap.xml | 5774100a757a2e760f000000 |
To speed up a reaction, an energy barrier must be overcome
| life11e_ch08_15.html | 5774100a757a2e760f000000 |
DLAP questions | life11e_ch08_15_dlap.xml | 5774100a757a2e760f000000 |
Enzymes bind specific reactants at their active sites
| life11e_ch08_16.html | 5774100a757a2e760f000000 |
DLAP questions | life11e_ch08_16_dlap.xml | 5774100a757a2e760f000000 |
Enzymes lower the energy barrier but do not affect equilibrium
| life11e_ch08_17.html | 5774100a757a2e760f000000 |
DLAP questions | life11e_ch08_17_dlap.xml | 5774100a757a2e760f000000 |
recap | life11e_ch08_18.html | 5774100a757a2e760f000000 |
DLAP questions | life11e_ch08_18_dlap.xml | 5774100a757a2e760f000000 |
key concept8.4Enzymes Bring Substrates Together so Reactions Readily Occur
| life11e_ch08_19.html | 5774100a757a2e760f000000 |
DLAP questions | life11e_ch08_19_dlap.xml | 5774100a757a2e760f000000 |
Enzymes can orient substrates
| life11e_ch08_20.html | 5774100a757a2e760f000000 |
DLAP questions | life11e_ch08_20_dlap.xml | 5774100a757a2e760f000000 |
Enzymes can induce strain in the substrate
| life11e_ch08_21.html | 5774100a757a2e760f000000 |
DLAP questions | life11e_ch08_21_dlap.xml | 5774100a757a2e760f000000 |
Enzymes can temporarily add chemical groups to substrates
| life11e_ch08_22.html | 5774100a757a2e760f000000 |
DLAP questions | life11e_ch08_22_dlap.xml | 5774100a757a2e760f000000 |
Molecular structure determines enzyme function
| life11e_ch08_23.html | 5774100a757a2e760f000000 |
DLAP questions | life11e_ch08_23_dlap.xml | 5774100a757a2e760f000000 |
Not all enzymes are proteins
| life11e_ch08_24.html | 5774100a757a2e760f000000 |
DLAP questions | life11e_ch08_24_dlap.xml | 5774100a757a2e760f000000 |
Some enzymes require other molecules in order to function
| life11e_ch08_25.html | 5774100a757a2e760f000000 |
DLAP questions | life11e_ch08_25_dlap.xml | 5774100a757a2e760f000000 |
The substrate concentration affects the reaction rate
| life11e_ch08_26.html | 5774100a757a2e760f000000 |
DLAP questions | life11e_ch08_26_dlap.xml | 5774100a757a2e760f000000 |
recap | life11e_ch08_27.html | 5774100a757a2e760f000000 |
DLAP questions | life11e_ch08_27_dlap.xml | 5774100a757a2e760f000000 |
key concept8.5Enzyme Activities Can Be Regulated
| life11e_ch08_28.html | 5774100a757a2e760f000000 |
DLAP questions | life11e_ch08_28_dlap.xml | 5774100a757a2e760f000000 |
Enzymes can be regulated by inhibitors
| life11e_ch08_29.html | 5774100a757a2e760f000000 |
DLAP questions | life11e_ch08_29_dlap.xml | 5774100a757a2e760f000000 |
Allosteric enzymes are controlled via changes in shape
| life11e_ch08_30.html | 5774100a757a2e760f000000 |
DLAP questions | life11e_ch08_30_dlap.xml | 5774100a757a2e760f000000 |
Allosteric effects regulate many metabolic pathways
| life11e_ch08_31.html | 5774100a757a2e760f000000 |
DLAP questions | life11e_ch08_31_dlap.xml | 5774100a757a2e760f000000 |
Many enzymes are regulated through reversible phosphorylation
| life11e_ch08_32.html | 5774100a757a2e760f000000 |
DLAP questions | life11e_ch08_32_dlap.xml | 5774100a757a2e760f000000 |
Enzymes are affected by their environment
| life11e_ch08_33.html | 5774100a757a2e760f000000 |
DLAP questions | life11e_ch08_33_dlap.xml | 5774100a757a2e760f000000 |
recap | life11e_ch08_34.html | 5774100a757a2e760f000000 |
DLAP questions | life11e_ch08_34_dlap.xml | 5774100a757a2e760f000000 |
Investigating Life | life11e_ch08_35.html | 5774100a757a2e760f000000 |
DLAP questions | life11e_ch08_35_dlap.xml | 5774100a757a2e760f000000 |
Chapter Summary
| life11e_ch08_36.html | 5774100a757a2e760f000000 |
DLAP questions | life11e_ch08_36_dlap.xml | 5774100a757a2e760f000000 |
Apply What Youâve Learned
| life11e_ch08_37.html | 5774100a757a2e760f000000 |
DLAP questions | life11e_ch08_37_dlap.xml | 5774100a757a2e760f000000 |
Chapter Introduction | life11e_ch09_1.html | 57742271757a2e5d11000000 |
DLAP questions | life11e_ch09_1_dlap.xml | 57742271757a2e5d11000000 |
key concept9.1Cells Harvest Chemical Energy from Glucose Oxidation
| life11e_ch09_2.html | 57742271757a2e5d11000000 |
DLAP questions | life11e_ch09_2_dlap.xml | 57742271757a2e5d11000000 |
How do cells obtain energy from glucose?
| life11e_ch09_3.html | 57742271757a2e5d11000000 |
DLAP questions | life11e_ch09_3_dlap.xml | 57742271757a2e5d11000000 |
Redox reactions transfer electrons and energy
| life11e_ch09_4.html | 57742271757a2e5d11000000 |
DLAP questions | life11e_ch09_4_dlap.xml | 57742271757a2e5d11000000 |
The coenzyme NAD+ is a key electron carrier in redox reactions
| life11e_ch09_5.html | 57742271757a2e5d11000000 |
DLAP questions | life11e_ch09_5_dlap.xml | 57742271757a2e5d11000000 |
An overview: Harvesting energy from glucose
| life11e_ch09_6.html | 57742271757a2e5d11000000 |
DLAP questions | life11e_ch09_6_dlap.xml | 57742271757a2e5d11000000 |
recap | life11e_ch09_7.html | 57742271757a2e5d11000000 |
DLAP questions | life11e_ch09_7_dlap.xml | 57742271757a2e5d11000000 |
key concept9.2In the Presence of Oxygen, Glucose Is Fully Oxidized
| life11e_ch09_8.html | 57742271757a2e5d11000000 |
DLAP questions | life11e_ch09_8_dlap.xml | 57742271757a2e5d11000000 |
In the glycolysis pathway, glucose is partially oxidized
| life11e_ch09_9.html | 57742271757a2e5d11000000 |
DLAP questions | life11e_ch09_9_dlap.xml | 57742271757a2e5d11000000 |
Pyruvate oxidation links glycolysis and the citric acid cycle
| life11e_ch09_10.html | 57742271757a2e5d11000000 |
DLAP questions | life11e_ch09_10_dlap.xml | 57742271757a2e5d11000000 |
The citric acid cycle completes the oxidation of glucose to CO2 | life11e_ch09_11.html | 57742271757a2e5d11000000 |
DLAP questions | life11e_ch09_11_dlap.xml | 57742271757a2e5d11000000 |
Pyruvate oxidation and the citric acid cycle are regulated by the concentrations of starting materials
| life11e_ch09_12.html | 57742271757a2e5d11000000 |
DLAP questions | life11e_ch09_12_dlap.xml | 57742271757a2e5d11000000 |
recap | life11e_ch09_13.html | 57742271757a2e5d11000000 |
DLAP questions | life11e_ch09_13_dlap.xml | 57742271757a2e5d11000000 |
key concept9.3Oxidative Phosphorylation Forms ATP
| life11e_ch09_14.html | 57742271757a2e5d11000000 |
DLAP questions | life11e_ch09_14_dlap.xml | 57742271757a2e5d11000000 |
What are the steps in oxidative phosphorylation?
| life11e_ch09_15.html | 57742271757a2e5d11000000 |
DLAP questions | life11e_ch09_15_dlap.xml | 57742271757a2e5d11000000 |
The respiratory chain transfers electrons and protons, and releases energy
| life11e_ch09_16.html | 57742271757a2e5d11000000 |
DLAP questions | life11e_ch09_16_dlap.xml | 57742271757a2e5d11000000 |
ATP is made through chemiosmosis
| life11e_ch09_17.html | 57742271757a2e5d11000000 |
DLAP questions | life11e_ch09_17_dlap.xml | 57742271757a2e5d11000000 |
Experiments demonstrate chemiosmosis
| life11e_ch09_18.html | 57742271757a2e5d11000000 |
DLAP questions | life11e_ch09_18_dlap.xml | 57742271757a2e5d11000000 |
Some microorganisms use non-O2 electron acceptors
| life11e_ch09_19.html | 57742271757a2e5d11000000 |
DLAP questions | life11e_ch09_19_dlap.xml | 57742271757a2e5d11000000 |
recap | life11e_ch09_20.html | 57742271757a2e5d11000000 |
DLAP questions | life11e_ch09_20_dlap.xml | 57742271757a2e5d11000000 |
key concept9.4In the Absence of Oxygen, Some Energy Is Harvested from Glucose
| life11e_ch09_21.html | 57742271757a2e5d11000000 |
DLAP questions | life11e_ch09_21_dlap.xml | 57742271757a2e5d11000000 |
Cellular respiration yields much more energy than fermentation
| life11e_ch09_22.html | 57742271757a2e5d11000000 |
DLAP questions | life11e_ch09_22_dlap.xml | 57742271757a2e5d11000000 |
The yield of ATP is reduced by the impermeability of mitochondria to NADH
| life11e_ch09_23.html | 57742271757a2e5d11000000 |
DLAP questions | life11e_ch09_23_dlap.xml | 57742271757a2e5d11000000 |
recap | life11e_ch09_24.html | 57742271757a2e5d11000000 |
DLAP questions | life11e_ch09_24_dlap.xml | 57742271757a2e5d11000000 |
key concept9.5Metabolic Pathways Are Interrelated and Regulated
| life11e_ch09_25.html | 57742271757a2e5d11000000 |
DLAP questions | life11e_ch09_25_dlap.xml | 57742271757a2e5d11000000 |
Catabolism and anabolism are linked
| life11e_ch09_26.html | 57742271757a2e5d11000000 |
DLAP questions | life11e_ch09_26_dlap.xml | 57742271757a2e5d11000000 |
Catabolism and anabolism are integrated
| life11e_ch09_27.html | 57742271757a2e5d11000000 |
DLAP questions | life11e_ch09_27_dlap.xml | 57742271757a2e5d11000000 |
Metabolic pathways are regulated systems
| life11e_ch09_28.html | 57742271757a2e5d11000000 |
DLAP questions | life11e_ch09_28_dlap.xml | 57742271757a2e5d11000000 |
recap | life11e_ch09_29.html | 57742271757a2e5d11000000 |
DLAP questions | life11e_ch09_29_dlap.xml | 57742271757a2e5d11000000 |
Investigating Life | life11e_ch09_30.html | 57742271757a2e5d11000000 |
DLAP questions | life11e_ch09_30_dlap.xml | 57742271757a2e5d11000000 |
Chapter Summary
| life11e_ch09_31.html | 57742271757a2e5d11000000 |
DLAP questions | life11e_ch09_31_dlap.xml | 57742271757a2e5d11000000 |
Apply What Youâve Learned
| life11e_ch09_32.html | 57742271757a2e5d11000000 |
DLAP questions | life11e_ch09_32_dlap.xml | 57742271757a2e5d11000000 |
Chapter Introduction | life11e_ch10_1.html | 577520b7757a2e6015000000 |
DLAP questions | life11e_ch10_1_dlap.xml | 577520b7757a2e6015000000 |
key concept10.1Photosynthesis Uses Light to Make Carbohydrates
| life11e_ch10_2.html | 577520b7757a2e6015000000 |
DLAP questions | life11e_ch10_2_dlap.xml | 577520b7757a2e6015000000 |
Photosynthesis involves light and gas exchange
| life11e_ch10_3.html | 577520b7757a2e6015000000 |
DLAP questions | life11e_ch10_3_dlap.xml | 577520b7757a2e6015000000 |
Experiments with isotopes show that O2 comes from H2O in oxygenic photosynthesis
| life11e_ch10_4.html | 577520b7757a2e6015000000 |
DLAP questions | life11e_ch10_4_dlap.xml | 577520b7757a2e6015000000 |
Photosynthesis involves two pathways
| life11e_ch10_5.html | 577520b7757a2e6015000000 |
DLAP questions | life11e_ch10_5_dlap.xml | 577520b7757a2e6015000000 |
recap | life11e_ch10_6.html | 577520b7757a2e6015000000 |
DLAP questions | life11e_ch10_6_dlap.xml | 577520b7757a2e6015000000 |
key concept10.2Photosynthesis Converts Light Energy into Chemical Energy
| life11e_ch10_7.html | 577520b7757a2e6015000000 |
DLAP questions | life11e_ch10_7_dlap.xml | 577520b7757a2e6015000000 |
Light energy is absorbed by pigments in photosynthesis
| life11e_ch10_8.html | 577520b7757a2e6015000000 |
DLAP questions | life11e_ch10_8_dlap.xml | 577520b7757a2e6015000000 |
Light absorption results in photochemical change
| life11e_ch10_9.html | 577520b7757a2e6015000000 |
DLAP questions | life11e_ch10_9_dlap.xml | 577520b7757a2e6015000000 |
Reduction leads to ATP and NADPH formation
| life11e_ch10_10.html | 577520b7757a2e6015000000 |
DLAP questions | life11e_ch10_10_dlap.xml | 577520b7757a2e6015000000 |
Chemiosmosis is the source of the ATP produced in photophosphorylation
| life11e_ch10_11.html | 577520b7757a2e6015000000 |
DLAP questions | life11e_ch10_11_dlap.xml | 577520b7757a2e6015000000 |
recap | life11e_ch10_12.html | 577520b7757a2e6015000000 |
DLAP questions | life11e_ch10_12_dlap.xml | 577520b7757a2e6015000000 |
key concept10.3Chemical Energy Trapped in Photosynthesis Is Used to Synthesize Carbohydrates
| life11e_ch10_13.html | 577520b7757a2e6015000000 |
DLAP questions | life11e_ch10_13_dlap.xml | 577520b7757a2e6015000000 |
How were the steps in carbohydrate synthesis elucidated?
| life11e_ch10_14.html | 577520b7757a2e6015000000 |
DLAP questions | life11e_ch10_14_dlap.xml | 577520b7757a2e6015000000 |
The Calvin cycle is made up of three processes
| life11e_ch10_15.html | 577520b7757a2e6015000000 |
DLAP questions | life11e_ch10_15_dlap.xml | 577520b7757a2e6015000000 |
Light stimulates the Calvin cycle
| life11e_ch10_16.html | 577520b7757a2e6015000000 |
DLAP questions | life11e_ch10_16_dlap.xml | 577520b7757a2e6015000000 |
recap | life11e_ch10_17.html | 577520b7757a2e6015000000 |
DLAP questions | life11e_ch10_17_dlap.xml | 577520b7757a2e6015000000 |
key concept10.4Plants Have Adapted Photosynthesis to Environmental Conditions
| life11e_ch10_18.html | 577520b7757a2e6015000000 |
DLAP questions | life11e_ch10_18_dlap.xml | 577520b7757a2e6015000000 |
How do some plants overcome the limitations of CO2 fixation?
| life11e_ch10_19.html | 577520b7757a2e6015000000 |
DLAP questions | life11e_ch10_19_dlap.xml | 577520b7757a2e6015000000 |
C3 plants undergo photorespiration but C4 plants do not
| life11e_ch10_20.html | 577520b7757a2e6015000000 |
DLAP questions | life11e_ch10_20_dlap.xml | 577520b7757a2e6015000000 |
CAM plants also use PEP carboxylase
| life11e_ch10_21.html | 577520b7757a2e6015000000 |
DLAP questions | life11e_ch10_21_dlap.xml | 577520b7757a2e6015000000 |
recap | life11e_ch10_22.html | 577520b7757a2e6015000000 |
DLAP questions | life11e_ch10_22_dlap.xml | 577520b7757a2e6015000000 |
key concept10.5Photosynthesis Is an Integral Part of Plant Metabolism
| life11e_ch10_23.html | 577520b7757a2e6015000000 |
DLAP questions | life11e_ch10_23_dlap.xml | 577520b7757a2e6015000000 |
Photosynthesis interacts with other metabolic pathways
| life11e_ch10_24.html | 577520b7757a2e6015000000 |
DLAP questions | life11e_ch10_24_dlap.xml | 577520b7757a2e6015000000 |
recap | life11e_ch10_25.html | 577520b7757a2e6015000000 |
DLAP questions | life11e_ch10_25_dlap.xml | 577520b7757a2e6015000000 |
Investigating Life | life11e_ch10_26.html | 577520b7757a2e6015000000 |
DLAP questions | life11e_ch10_26_dlap.xml | 577520b7757a2e6015000000 |
Chapter Summary
| life11e_ch10_27.html | 577520b7757a2e6015000000 |
DLAP questions | life11e_ch10_27_dlap.xml | 577520b7757a2e6015000000 |
Apply What Youâve Learned
| life11e_ch10_28.html | 577520b7757a2e6015000000 |
DLAP questions | life11e_ch10_28_dlap.xml | 577520b7757a2e6015000000 |
Chapter Introduction | life11e_ch11_1.html | 578af715757a2e195c000003 |
DLAP questions | life11e_ch11_1_dlap.xml | 578af715757a2e195c000003 |
key concept 11.1 All Cells Derive from Other Cells
| life11e_ch11_2.html | 578af715757a2e195c000003 |
DLAP questions | life11e_ch11_2_dlap.xml | 578af715757a2e195c000003 |
Prokaryotes divide by binary fission
| life11e_ch11_3.html | 578af715757a2e195c000003 |
DLAP questions | life11e_ch11_3_dlap.xml | 578af715757a2e195c000003 |
Eukaryotic cells divide by mitosis followed by cytokinesis
| life11e_ch11_4.html | 578af715757a2e195c000003 |
DLAP questions | life11e_ch11_4_dlap.xml | 578af715757a2e195c000003 |
recap | life11e_ch11_5.html | 578af715757a2e195c000003 |
DLAP questions | life11e_ch11_5_dlap.xml | 578af715757a2e195c000003 |
key concept 11.2 The Eukaryotic Cell Division Cycle Is Regulated
| life11e_ch11_6.html | 578af715757a2e195c000003 |
DLAP questions | life11e_ch11_6_dlap.xml | 578af715757a2e195c000003 |
Specific internal signals trigger events in the cell cycle
| life11e_ch11_7.html | 578af715757a2e195c000003 |
DLAP questions | life11e_ch11_7_dlap.xml | 578af715757a2e195c000003 |
Growth factors can stimulate cells to divide
| life11e_ch11_8.html | 578af715757a2e195c000003 |
DLAP questions | life11e_ch11_8_dlap.xml | 578af715757a2e195c000003 |
recap | life11e_ch11_9.html | 578af715757a2e195c000003 |
DLAP questions | life11e_ch11_9_dlap.xml | 578af715757a2e195c000003 |
key concept 11.3 Eukaryotic Cells Divide by Mitosis
| life11e_ch11_10.html | 578af715757a2e195c000003 |
DLAP questions | life11e_ch11_10_dlap.xml | 578af715757a2e195c000003 |
The centrosomes determine the plane of cell division
| life11e_ch11_11.html | 578af715757a2e195c000003 |
DLAP questions | life11e_ch11_11_dlap.xml | 578af715757a2e195c000003 |
The spindle begins to form during prophase
| life11e_ch11_12.html | 578af715757a2e195c000003 |
DLAP questions | life11e_ch11_12_dlap.xml | 578af715757a2e195c000003 |
Chromosome separation and movement are highly organized
| life11e_ch11_13.html | 578af715757a2e195c000003 |
DLAP questions | life11e_ch11_13_dlap.xml | 578af715757a2e195c000003 |
Cytokinesis divides the cytoplasm
| life11e_ch11_14.html | 578af715757a2e195c000003 |
DLAP questions | life11e_ch11_14_dlap.xml | 578af715757a2e195c000003 |
recap | life11e_ch11_15.html | 578af715757a2e195c000003 |
DLAP questions | life11e_ch11_15_dlap.xml | 578af715757a2e195c000003 |
key concept 11.4 Cell Division Plays Important Roles in the Sexual Life Cycle
| life11e_ch11_16.html | 578af715757a2e195c000003 |
DLAP questions | life11e_ch11_16_dlap.xml | 578af715757a2e195c000003 |
Sexual life cycles produce haploid and diploid cells
| life11e_ch11_17.html | 578af715757a2e195c000003 |
DLAP questions | life11e_ch11_17_dlap.xml | 578af715757a2e195c000003 |
recap | life11e_ch11_18.html | 578af715757a2e195c000003 |
DLAP questions | life11e_ch11_18_dlap.xml | 578af715757a2e195c000003 |
key concept 11.5 Meiosis Leads to the Formation of Gametes
| life11e_ch11_19.html | 578af715757a2e195c000003 |
DLAP questions | life11e_ch11_19_dlap.xml | 578af715757a2e195c000003 |
Meiosis reduces the chromosome number
| life11e_ch11_20.html | 578af715757a2e195c000003 |
DLAP questions | life11e_ch11_20_dlap.xml | 578af715757a2e195c000003 |
Chromatid exchanges during meiosis I generate genetic diversity
| life11e_ch11_21.html | 578af715757a2e195c000003 |
DLAP questions | life11e_ch11_21_dlap.xml | 578af715757a2e195c000003 |
During meiosis homologous chromosomes separate by independent assortment
| life11e_ch11_22.html | 578af715757a2e195c000003 |
DLAP questions | life11e_ch11_22_dlap.xml | 578af715757a2e195c000003 |
Meiotic errors lead to abnormal chromosome structures and numbers
| life11e_ch11_23.html | 578af715757a2e195c000003 |
DLAP questions | life11e_ch11_23_dlap.xml | 578af715757a2e195c000003 |
The number, shapes, and sizes of the metaphase chromosomes constitute the karyotype
| life11e_ch11_24.html | 578af715757a2e195c000003 |
DLAP questions | life11e_ch11_24_dlap.xml | 578af715757a2e195c000003 |
Polyploids have more than two complete sets of chromosomes
| life11e_ch11_25.html | 578af715757a2e195c000003 |
DLAP questions | life11e_ch11_25_dlap.xml | 578af715757a2e195c000003 |
recap | life11e_ch11_26.html | 578af715757a2e195c000003 |
DLAP questions | life11e_ch11_26_dlap.xml | 578af715757a2e195c000003 |
key concept 11.6 Cell Death Is Important in Living Organisms
| life11e_ch11_27.html | 578af715757a2e195c000003 |
DLAP questions | life11e_ch11_27_dlap.xml | 578af715757a2e195c000003 |
Programmed cell death removes cells that do not benefit the organism
| life11e_ch11_28.html | 578af715757a2e195c000003 |
DLAP questions | life11e_ch11_28_dlap.xml | 578af715757a2e195c000003 |
recap | life11e_ch11_29.html | 578af715757a2e195c000003 |
DLAP questions | life11e_ch11_29_dlap.xml | 578af715757a2e195c000003 |
key concept 11.7 Unregulated Cell Division Can Lead to Cancer
| life11e_ch11_30.html | 578af715757a2e195c000003 |
DLAP questions | life11e_ch11_30_dlap.xml | 578af715757a2e195c000003 |
Cancer cells differ from normal cells in important ways
| life11e_ch11_31.html | 578af715757a2e195c000003 |
DLAP questions | life11e_ch11_31_dlap.xml | 578af715757a2e195c000003 |
Cancer cells lose control over the cell cycle and apoptosis
| life11e_ch11_32.html | 578af715757a2e195c000003 |
DLAP questions | life11e_ch11_32_dlap.xml | 578af715757a2e195c000003 |
Cancer treatments target the cell cycle
| life11e_ch11_33.html | 578af715757a2e195c000003 |
DLAP questions | life11e_ch11_33_dlap.xml | 578af715757a2e195c000003 |
recap | life11e_ch11_34.html | 578af715757a2e195c000003 |
DLAP questions | life11e_ch11_34_dlap.xml | 578af715757a2e195c000003 |
Investigating Life | life11e_ch11_35.html | 578af715757a2e195c000003 |
DLAP questions | life11e_ch11_35_dlap.xml | 578af715757a2e195c000003 |
Chapter Summary
| life11e_ch11_36.html | 578af715757a2e195c000003 |
DLAP questions | life11e_ch11_36_dlap.xml | 578af715757a2e195c000003 |
Apply What Youâve Learned
| life11e_ch11_37.html | 578af715757a2e195c000003 |
DLAP questions | life11e_ch11_37_dlap.xml | 578af715757a2e195c000003 |
Chapter Introduction | life11e_ch12_1.html | 578d1f64757a2efc64000000 |
DLAP questions | life11e_ch12_1_dlap.xml | 578d1f64757a2efc64000000 |
key concept 12.1 Inheritance of Genes Follows Mendelian Laws
| life11e_ch12_2.html | 578d1f64757a2efc64000000 |
DLAP questions | life11e_ch12_2_dlap.xml | 578d1f64757a2efc64000000 |
Mendelâs laws arose from controlled crosses of pea plants
| life11e_ch12_3.html | 578d1f64757a2efc64000000 |
DLAP questions | life11e_ch12_3_dlap.xml | 578d1f64757a2efc64000000 |
Mendelâs first experiments involved monohybrid crosses
| life11e_ch12_4.html | 578d1f64757a2efc64000000 |
DLAP questions | life11e_ch12_4_dlap.xml | 578d1f64757a2efc64000000 |
Mendelâs first law states that the two copies of a gene segregate
| life11e_ch12_5.html | 578d1f64757a2efc64000000 |
DLAP questions | life11e_ch12_5_dlap.xml | 578d1f64757a2efc64000000 |
Mendel verified his hypotheses by performing test crosses
| life11e_ch12_6.html | 578d1f64757a2efc64000000 |
DLAP questions | life11e_ch12_6_dlap.xml | 578d1f64757a2efc64000000 |
Mendelâs second law states that copies of different genes assort independently
| life11e_ch12_7.html | 578d1f64757a2efc64000000 |
DLAP questions | life11e_ch12_7_dlap.xml | 578d1f64757a2efc64000000 |
Probability can be used to predict inheritance
| life11e_ch12_8.html | 578d1f64757a2efc64000000 |
DLAP questions | life11e_ch12_8_dlap.xml | 578d1f64757a2efc64000000 |
Mendelâs laws can be observed in human pedigrees
| life11e_ch12_9.html | 578d1f64757a2efc64000000 |
DLAP questions | life11e_ch12_9_dlap.xml | 578d1f64757a2efc64000000 |
recap | life11e_ch12_10.html | 578d1f64757a2efc64000000 |
DLAP questions | life11e_ch12_10_dlap.xml | 578d1f64757a2efc64000000 |
key concept 12.2 Alleles Can Produce Multiple Phenotypes
| life11e_ch12_11.html | 578d1f64757a2efc64000000 |
DLAP questions | life11e_ch12_11_dlap.xml | 578d1f64757a2efc64000000 |
New alleles arise by mutation
| life11e_ch12_12.html | 578d1f64757a2efc64000000 |
DLAP questions | life11e_ch12_12_dlap.xml | 578d1f64757a2efc64000000 |
Many genes have multiple alleles
| life11e_ch12_13.html | 578d1f64757a2efc64000000 |
DLAP questions | life11e_ch12_13_dlap.xml | 578d1f64757a2efc64000000 |
Dominance is not always complete
| life11e_ch12_14.html | 578d1f64757a2efc64000000 |
DLAP questions | life11e_ch12_14_dlap.xml | 578d1f64757a2efc64000000 |
In codominance, both alleles at a locus are expressed
| life11e_ch12_15.html | 578d1f64757a2efc64000000 |
DLAP questions | life11e_ch12_15_dlap.xml | 578d1f64757a2efc64000000 |
Some alleles have multiple phenotypic effects
| life11e_ch12_16.html | 578d1f64757a2efc64000000 |
DLAP questions | life11e_ch12_16_dlap.xml | 578d1f64757a2efc64000000 |
recap | life11e_ch12_17.html | 578d1f64757a2efc64000000 |
DLAP questions | life11e_ch12_17_dlap.xml | 578d1f64757a2efc64000000 |
key concept 12.3 Genes Can Interact to Produce a Phenotype
| life11e_ch12_18.html | 578d1f64757a2efc64000000 |
DLAP questions | life11e_ch12_18_dlap.xml | 578d1f64757a2efc64000000 |
Hybrid vigor results from new gene combinations and interactions
| life11e_ch12_19.html | 578d1f64757a2efc64000000 |
DLAP questions | life11e_ch12_19_dlap.xml | 578d1f64757a2efc64000000 |
The environment affects gene action
| life11e_ch12_20.html | 578d1f64757a2efc64000000 |
DLAP questions | life11e_ch12_20_dlap.xml | 578d1f64757a2efc64000000 |
Most complex phenotypes are determined by multiple genes and the environment
| life11e_ch12_21.html | 578d1f64757a2efc64000000 |
DLAP questions | life11e_ch12_21_dlap.xml | 578d1f64757a2efc64000000 |
recap | life11e_ch12_22.html | 578d1f64757a2efc64000000 |
DLAP questions | life11e_ch12_22_dlap.xml | 578d1f64757a2efc64000000 |
key concept 12.4 Genes Are Carried on Chromosomes
| life11e_ch12_23.html | 578d1f64757a2efc64000000 |
DLAP questions | life11e_ch12_23_dlap.xml | 578d1f64757a2efc64000000 |
Linked genes are inherited together
| life11e_ch12_24.html | 578d1f64757a2efc64000000 |
DLAP questions | life11e_ch12_24_dlap.xml | 578d1f64757a2efc64000000 |
Genes can be exchanged between chromatids and mapped
| life11e_ch12_25.html | 578d1f64757a2efc64000000 |
DLAP questions | life11e_ch12_25_dlap.xml | 578d1f64757a2efc64000000 |
Linkage is revealed by studies of the sex chromosomes
| life11e_ch12_26.html | 578d1f64757a2efc64000000 |
DLAP questions | life11e_ch12_26_dlap.xml | 578d1f64757a2efc64000000 |
recap | life11e_ch12_27.html | 578d1f64757a2efc64000000 |
DLAP questions | life11e_ch12_27_dlap.xml | 578d1f64757a2efc64000000 |
key concept 12.5 Some Eukaryotic Genes Are Outside the Nucleus
| life11e_ch12_28.html | 578d1f64757a2efc64000000 |
DLAP questions | life11e_ch12_28_dlap.xml | 578d1f64757a2efc64000000 |
recap | life11e_ch12_29.html | 578d1f64757a2efc64000000 |
DLAP questions | life11e_ch12_29_dlap.xml | 578d1f64757a2efc64000000 |
key concept 12.6 Prokaryotes Can Transmit Genes by Mating
| life11e_ch12_30.html | 578d1f64757a2efc64000000 |
DLAP questions | life11e_ch12_30_dlap.xml | 578d1f64757a2efc64000000 |
Bacteria exchange genes by conjugation
| life11e_ch12_31.html | 578d1f64757a2efc64000000 |
DLAP questions | life11e_ch12_31_dlap.xml | 578d1f64757a2efc64000000 |
Bacterial conjugation is controlled by plasmids
| life11e_ch12_32.html | 578d1f64757a2efc64000000 |
DLAP questions | life11e_ch12_32_dlap.xml | 578d1f64757a2efc64000000 |
recap | life11e_ch12_33.html | 578d1f64757a2efc64000000 |
DLAP questions | life11e_ch12_33_dlap.xml | 578d1f64757a2efc64000000 |
Investigating Life | life11e_ch12_34.html | 578d1f64757a2efc64000000 |
DLAP questions | life11e_ch12_34_dlap.xml | 578d1f64757a2efc64000000 |
Chapter Summary
| life11e_ch12_35.html | 578d1f64757a2efc64000000 |
DLAP questions | life11e_ch12_35_dlap.xml | 578d1f64757a2efc64000000 |
Apply What Youâve Learned
| life11e_ch12_36.html | 578d1f64757a2efc64000000 |
DLAP questions | life11e_ch12_36_dlap.xml | 578d1f64757a2efc64000000 |
Chapter Introduction | life11e_ch13_1.html | 578e19b2757a2ed968000000 |
DLAP questions | life11e_ch13_1_dlap.xml | 578e19b2757a2ed968000000 |
key concept 13.1 Experiments Revealed the Function of DNA as Genetic Material
| life11e_ch13_2.html | 578e19b2757a2ed968000000 |
DLAP questions | life11e_ch13_2_dlap.xml | 578e19b2757a2ed968000000 |
Circumstantial evidence indicates that the genetic material is DNA
| life11e_ch13_3.html | 578e19b2757a2ed968000000 |
DLAP questions | life11e_ch13_3_dlap.xml | 578e19b2757a2ed968000000 |
DNA from one type of bacterium genetically transforms another type
| life11e_ch13_4.html | 578e19b2757a2ed968000000 |
DLAP questions | life11e_ch13_4_dlap.xml | 578e19b2757a2ed968000000 |
Viral infection experiments confirmed that DNA is the genetic material
| life11e_ch13_5.html | 578e19b2757a2ed968000000 |
DLAP questions | life11e_ch13_5_dlap.xml | 578e19b2757a2ed968000000 |
Eukaryotic cells can also be genetically transformed by DNA
| life11e_ch13_6.html | 578e19b2757a2ed968000000 |
DLAP questions | life11e_ch13_6_dlap.xml | 578e19b2757a2ed968000000 |
recap | life11e_ch13_7.html | 578e19b2757a2ed968000000 |
DLAP questions | life11e_ch13_7_dlap.xml | 578e19b2757a2ed968000000 |
key concept 13.2 DNA Has a Structure That Suits Its Function
| life11e_ch13_8.html | 578e19b2757a2ed968000000 |
DLAP questions | life11e_ch13_8_dlap.xml | 578e19b2757a2ed968000000 |
How did Watson and Crick deduce the structure of DNA?
| life11e_ch13_9.html | 578e19b2757a2ed968000000 |
DLAP questions | life11e_ch13_9_dlap.xml | 578e19b2757a2ed968000000 |
Four key features define DNA structure
| life11e_ch13_10.html | 578e19b2757a2ed968000000 |
DLAP questions | life11e_ch13_10_dlap.xml | 578e19b2757a2ed968000000 |
The double-helical structure of DNA is essential to its function
| life11e_ch13_11.html | 578e19b2757a2ed968000000 |
DLAP questions | life11e_ch13_11_dlap.xml | 578e19b2757a2ed968000000 |
recap | life11e_ch13_12.html | 578e19b2757a2ed968000000 |
DLAP questions | life11e_ch13_12_dlap.xml | 578e19b2757a2ed968000000 |
key concept 13.3 DNA Is Replicated Semiconservatively
| life11e_ch13_13.html | 578e19b2757a2ed968000000 |
DLAP questions | life11e_ch13_13_dlap.xml | 578e19b2757a2ed968000000 |
An elegant experiment demonstrated that DNA replication is semiconservative
| life11e_ch13_14.html | 578e19b2757a2ed968000000 |
DLAP questions | life11e_ch13_14_dlap.xml | 578e19b2757a2ed968000000 |
There are two steps in DNA replication
| life11e_ch13_15.html | 578e19b2757a2ed968000000 |
DLAP questions | life11e_ch13_15_dlap.xml | 578e19b2757a2ed968000000 |
DNA polymerases add nucleotides to the growing chain
| life11e_ch13_16.html | 578e19b2757a2ed968000000 |
DLAP questions | life11e_ch13_16_dlap.xml | 578e19b2757a2ed968000000 |
Many other proteins assist with DNA polymerization
| life11e_ch13_17.html | 578e19b2757a2ed968000000 |
DLAP questions | life11e_ch13_17_dlap.xml | 578e19b2757a2ed968000000 |
The two DNA strands grow differently at the replication fork
| life11e_ch13_18.html | 578e19b2757a2ed968000000 |
DLAP questions | life11e_ch13_18_dlap.xml | 578e19b2757a2ed968000000 |
Telomeres are not fully replicated and are prone to repair
| life11e_ch13_19.html | 578e19b2757a2ed968000000 |
DLAP questions | life11e_ch13_19_dlap.xml | 578e19b2757a2ed968000000 |
recap | life11e_ch13_20.html | 578e19b2757a2ed968000000 |
DLAP questions | life11e_ch13_20_dlap.xml | 578e19b2757a2ed968000000 |
key concept 13.4 Errors in DNA Can Be Repaired
| life11e_ch13_21.html | 578e19b2757a2ed968000000 |
DLAP questions | life11e_ch13_21_dlap.xml | 578e19b2757a2ed968000000 |
Repair mechanisms preserve DNA
| life11e_ch13_22.html | 578e19b2757a2ed968000000 |
DLAP questions | life11e_ch13_22_dlap.xml | 578e19b2757a2ed968000000 |
recap | life11e_ch13_23.html | 578e19b2757a2ed968000000 |
DLAP questions | life11e_ch13_23_dlap.xml | 578e19b2757a2ed968000000 |
key concept 13.5 The Polymerase Chain Reaction Amplifies DNA
| life11e_ch13_24.html | 578e19b2757a2ed968000000 |
DLAP questions | life11e_ch13_24_dlap.xml | 578e19b2757a2ed968000000 |
The polymerase chain reaction can make multiple copies of a DNA sequence
| life11e_ch13_25.html | 578e19b2757a2ed968000000 |
DLAP questions | life11e_ch13_25_dlap.xml | 578e19b2757a2ed968000000 |
recap | life11e_ch13_26.html | 578e19b2757a2ed968000000 |
DLAP questions | life11e_ch13_26_dlap.xml | 578e19b2757a2ed968000000 |
Investigating Life | life11e_ch13_27.html | 578e19b2757a2ed968000000 |
DLAP questions | life11e_ch13_27_dlap.xml | 578e19b2757a2ed968000000 |
Chapter Summary
| life11e_ch13_28.html | 578e19b2757a2ed968000000 |
DLAP questions | life11e_ch13_28_dlap.xml | 578e19b2757a2ed968000000 |
Apply What Youâve Learned
| life11e_ch13_29.html | 578e19b2757a2ed968000000 |
DLAP questions | life11e_ch13_29_dlap.xml | 578e19b2757a2ed968000000 |
Chapter Introduction | life11e_ch14_1.html | 573348ac757a2e3a7d000000 |
DLAP questions | life11e_ch14_1_dlap.xml | 573348ac757a2e3a7d000000 |
key concept 14.1 Genes Code for Proteins
| life11e_ch14_2.html | 573348ac757a2e3a7d000000 |
DLAP questions | life11e_ch14_2_dlap.xml | 573348ac757a2e3a7d000000 |
Observations in humans led to the proposal that genes determine enzymes
| life11e_ch14_3.html | 573348ac757a2e3a7d000000 |
DLAP questions | life11e_ch14_3_dlap.xml | 573348ac757a2e3a7d000000 |
Experiments on bread mold established that genes determine enzymes
| life11e_ch14_4.html | 573348ac757a2e3a7d000000 |
DLAP questions | life11e_ch14_4_dlap.xml | 573348ac757a2e3a7d000000 |
One gene determines one polypeptide
| life11e_ch14_5.html | 573348ac757a2e3a7d000000 |
DLAP questions | life11e_ch14_5_dlap.xml | 573348ac757a2e3a7d000000 |
recap | life11e_ch14_6.html | 573348ac757a2e3a7d000000 |
DLAP questions | life11e_ch14_6_dlap.xml | 573348ac757a2e3a7d000000 |
key concept 14.2 Information Flows from Genes to Proteins
| life11e_ch14_7.html | 573348ac757a2e3a7d000000 |
DLAP questions | life11e_ch14_7_dlap.xml | 573348ac757a2e3a7d000000 |
Three types of RNA have roles in the information flow from DNA to protein
| life11e_ch14_8.html | 573348ac757a2e3a7d000000 |
DLAP questions | life11e_ch14_8_dlap.xml | 573348ac757a2e3a7d000000 |
In some cases, RNA determines the sequence of DNA
| life11e_ch14_9.html | 573348ac757a2e3a7d000000 |
DLAP questions | life11e_ch14_9_dlap.xml | 573348ac757a2e3a7d000000 |
recap | life11e_ch14_10.html | 573348ac757a2e3a7d000000 |
DLAP questions | life11e_ch14_10_dlap.xml | 573348ac757a2e3a7d000000 |
key concept 14.3 DNA Is Transcribed to Produce RNA
| life11e_ch14_11.html | 573348ac757a2e3a7d000000 |
DLAP questions | life11e_ch14_11_dlap.xml | 573348ac757a2e3a7d000000 |
RNA polymerases share common features
| life11e_ch14_12.html | 573348ac757a2e3a7d000000 |
DLAP questions | life11e_ch14_12_dlap.xml | 573348ac757a2e3a7d000000 |
Transcription occurs in three steps
| life11e_ch14_13.html | 573348ac757a2e3a7d000000 |
DLAP questions | life11e_ch14_13_dlap.xml | 573348ac757a2e3a7d000000 |
The genetic code specifies which amino acids will be included in the polypeptide
| life11e_ch14_14.html | 573348ac757a2e3a7d000000 |
DLAP questions | life11e_ch14_14_dlap.xml | 573348ac757a2e3a7d000000 |
recap | life11e_ch14_15.html | 573348ac757a2e3a7d000000 |
DLAP questions | life11e_ch14_15_dlap.xml | 573348ac757a2e3a7d000000 |
key concept 14.4 Eukaryotic Pre-mRNA Transcripts Are Processed prior to Translation
| life11e_ch14_16.html | 573348ac757a2e3a7d000000 |
DLAP questions | life11e_ch14_16_dlap.xml | 573348ac757a2e3a7d000000 |
Noncoding sequences called introns often appear between genes in eukaryotic chromosomes
| life11e_ch14_17.html | 573348ac757a2e3a7d000000 |
DLAP questions | life11e_ch14_17_dlap.xml | 573348ac757a2e3a7d000000 |
Pre-mRNA processing prepares the mRNA transcript for translation
| life11e_ch14_18.html | 573348ac757a2e3a7d000000 |
DLAP questions | life11e_ch14_18_dlap.xml | 573348ac757a2e3a7d000000 |
recap | life11e_ch14_19.html | 573348ac757a2e3a7d000000 |
DLAP questions | life11e_ch14_19_dlap.xml | 573348ac757a2e3a7d000000 |
key concept 14.5 The Information in mRNA Is Translated into Proteins
| life11e_ch14_20.html | 573348ac757a2e3a7d000000 |
DLAP questions | life11e_ch14_20_dlap.xml | 573348ac757a2e3a7d000000 |
A transfer RNA carries a specific amino acid and binds to a specific mRNA codon
| life11e_ch14_21.html | 573348ac757a2e3a7d000000 |
DLAP questions | life11e_ch14_21_dlap.xml | 573348ac757a2e3a7d000000 |
Each tRNA is specifically attached to an amino acid
| life11e_ch14_22.html | 573348ac757a2e3a7d000000 |
DLAP questions | life11e_ch14_22_dlap.xml | 573348ac757a2e3a7d000000 |
The ribosome is the workbench for translation
| life11e_ch14_23.html | 573348ac757a2e3a7d000000 |
DLAP questions | life11e_ch14_23_dlap.xml | 573348ac757a2e3a7d000000 |
Translation takes place in three steps
| life11e_ch14_24.html | 573348ac757a2e3a7d000000 |
DLAP questions | life11e_ch14_24_dlap.xml | 573348ac757a2e3a7d000000 |
Polysome formation increases the rate of protein synthesis
| life11e_ch14_25.html | 573348ac757a2e3a7d000000 |
DLAP questions | life11e_ch14_25_dlap.xml | 573348ac757a2e3a7d000000 |
recap | life11e_ch14_26.html | 573348ac757a2e3a7d000000 |
DLAP questions | life11e_ch14_26_dlap.xml | 573348ac757a2e3a7d000000 |
key concept 14.6 Polypeptides Can Be Modified and Transported during or after Translation
| life11e_ch14_27.html | 573348ac757a2e3a7d000000 |
DLAP questions | life11e_ch14_27_dlap.xml | 573348ac757a2e3a7d000000 |
How are proteins directed to their cellular destinations?
| life11e_ch14_28.html | 573348ac757a2e3a7d000000 |
DLAP questions | life11e_ch14_28_dlap.xml | 573348ac757a2e3a7d000000 |
Mitochondria and chloroplasts make some of their own proteins and import others
| life11e_ch14_29.html | 573348ac757a2e3a7d000000 |
DLAP questions | life11e_ch14_29_dlap.xml | 573348ac757a2e3a7d000000 |
Many proteins are modified after translation
| life11e_ch14_30.html | 573348ac757a2e3a7d000000 |
DLAP questions | life11e_ch14_30_dlap.xml | 573348ac757a2e3a7d000000 |
recap | life11e_ch14_31.html | 573348ac757a2e3a7d000000 |
DLAP questions | life11e_ch14_31_dlap.xml | 573348ac757a2e3a7d000000 |
Investigating Life | life11e_ch14_32.html | 573348ac757a2e3a7d000000 |
DLAP questions | life11e_ch14_32_dlap.xml | 573348ac757a2e3a7d000000 |
Chapter 14 Summary
| life11e_ch14_33.html | 573348ac757a2e3a7d000000 |
DLAP questions | life11e_ch14_33_dlap.xml | 573348ac757a2e3a7d000000 |
Apply What You've Learned
| life11e_ch14_34.html | 573348ac757a2e3a7d000000 |
DLAP questions | life11e_ch14_34_dlap.xml | 573348ac757a2e3a7d000000 |
Chapter Introduction | life11e_ch15_1.html | 578e58d3757a2eac76000000 |
DLAP questions | life11e_ch15_1_dlap.xml | 578e58d3757a2eac76000000 |
key concept 15.1 Mutations Are Heritable Changes in DNA
| life11e_ch15_2.html | 578e58d3757a2eac76000000 |
DLAP questions | life11e_ch15_2_dlap.xml | 578e58d3757a2eac76000000 |
Mutations have different phenotypic effects
| life11e_ch15_3.html | 578e58d3757a2eac76000000 |
DLAP questions | life11e_ch15_3_dlap.xml | 578e58d3757a2eac76000000 |
Point mutations are changes in single nucleotides
| life11e_ch15_4.html | 578e58d3757a2eac76000000 |
DLAP questions | life11e_ch15_4_dlap.xml | 578e58d3757a2eac76000000 |
Chromosomal mutations are extensive changes in the genetic material
| life11e_ch15_5.html | 578e58d3757a2eac76000000 |
DLAP questions | life11e_ch15_5_dlap.xml | 578e58d3757a2eac76000000 |
Retroviruses and transposons can cause loss-of-function mutations or duplications
| life11e_ch15_6.html | 578e58d3757a2eac76000000 |
DLAP questions | life11e_ch15_6_dlap.xml | 578e58d3757a2eac76000000 |
Mutations can be spontaneous or induced
| life11e_ch15_7.html | 578e58d3757a2eac76000000 |
DLAP questions | life11e_ch15_7_dlap.xml | 578e58d3757a2eac76000000 |
Mutagens can be natural or artificial
| life11e_ch15_8.html | 578e58d3757a2eac76000000 |
DLAP questions | life11e_ch15_8_dlap.xml | 578e58d3757a2eac76000000 |
Some base pairs are more vulnerable than others to mutation
| life11e_ch15_9.html | 578e58d3757a2eac76000000 |
DLAP questions | life11e_ch15_9_dlap.xml | 578e58d3757a2eac76000000 |
Mutations have both benefits and costs
| life11e_ch15_10.html | 578e58d3757a2eac76000000 |
DLAP questions | life11e_ch15_10_dlap.xml | 578e58d3757a2eac76000000 |
recap | life11e_ch15_11.html | 578e58d3757a2eac76000000 |
DLAP questions | life11e_ch15_11_dlap.xml | 578e58d3757a2eac76000000 |
key concept 15.2 Mutations in Humans Can Lead to Diseases
| life11e_ch15_12.html | 578e58d3757a2eac76000000 |
DLAP questions | life11e_ch15_12_dlap.xml | 578e58d3757a2eac76000000 |
Disease-causing mutations may make proteins dysfunctional
| life11e_ch15_13.html | 578e58d3757a2eac76000000 |
DLAP questions | life11e_ch15_13_dlap.xml | 578e58d3757a2eac76000000 |
Disease-causing mutations may involve any number of base pairs
| life11e_ch15_14.html | 578e58d3757a2eac76000000 |
DLAP questions | life11e_ch15_14_dlap.xml | 578e58d3757a2eac76000000 |
Expanding triplet repeats demonstrate the fragility of some human genes
| life11e_ch15_15.html | 578e58d3757a2eac76000000 |
DLAP questions | life11e_ch15_15_dlap.xml | 578e58d3757a2eac76000000 |
Cancer often involves somatic mutations
| life11e_ch15_16.html | 578e58d3757a2eac76000000 |
DLAP questions | life11e_ch15_16_dlap.xml | 578e58d3757a2eac76000000 |
Most diseases are caused by multiple genes and environment
| life11e_ch15_17.html | 578e58d3757a2eac76000000 |
DLAP questions | life11e_ch15_17_dlap.xml | 578e58d3757a2eac76000000 |
recap | life11e_ch15_18.html | 578e58d3757a2eac76000000 |
DLAP questions | life11e_ch15_18_dlap.xml | 578e58d3757a2eac76000000 |
key concept 15.3 Mutations Can Be Detected and Analyzed
| life11e_ch15_19.html | 578e58d3757a2eac76000000 |
DLAP questions | life11e_ch15_19_dlap.xml | 578e58d3757a2eac76000000 |
Cleavage of DNA by restriction enzymes can be used to rapidly detect mutations
| life11e_ch15_20.html | 578e58d3757a2eac76000000 |
DLAP questions | life11e_ch15_20_dlap.xml | 578e58d3757a2eac76000000 |
Gel electrophoresis separates DNA fragments
| life11e_ch15_21.html | 578e58d3757a2eac76000000 |
DLAP questions | life11e_ch15_21_dlap.xml | 578e58d3757a2eac76000000 |
DNA fingerprinting combines PCR with restriction analysis and electrophoresis
| life11e_ch15_22.html | 578e58d3757a2eac76000000 |
DLAP questions | life11e_ch15_22_dlap.xml | 578e58d3757a2eac76000000 |
DNA analysis can be used to identify mutations that lead to disease
| life11e_ch15_23.html | 578e58d3757a2eac76000000 |
DLAP questions | life11e_ch15_23_dlap.xml | 578e58d3757a2eac76000000 |
Genetic markers can be used to find disease-causing genes
| life11e_ch15_24.html | 578e58d3757a2eac76000000 |
DLAP questions | life11e_ch15_24_dlap.xml | 578e58d3757a2eac76000000 |
recap | life11e_ch15_25.html | 578e58d3757a2eac76000000 |
DLAP questions | life11e_ch15_25_dlap.xml | 578e58d3757a2eac76000000 |
key concept 15.4 Genetic Screening Is Used to Detect Diseases
| life11e_ch15_26.html | 578e58d3757a2eac76000000 |
DLAP questions | life11e_ch15_26_dlap.xml | 578e58d3757a2eac76000000 |
Genetic screening can be done by examining the phenotype
| life11e_ch15_27.html | 578e58d3757a2eac76000000 |
DLAP questions | life11e_ch15_27_dlap.xml | 578e58d3757a2eac76000000 |
DNA testing is the most accurate way to detect abnormal genes
| life11e_ch15_28.html | 578e58d3757a2eac76000000 |
DLAP questions | life11e_ch15_28_dlap.xml | 578e58d3757a2eac76000000 |
Allele-specific oligonucleotide hybridization can detect mutations
| life11e_ch15_29.html | 578e58d3757a2eac76000000 |
DLAP questions | life11e_ch15_29_dlap.xml | 578e58d3757a2eac76000000 |
recap | life11e_ch15_30.html | 578e58d3757a2eac76000000 |
DLAP questions | life11e_ch15_30_dlap.xml | 578e58d3757a2eac76000000 |
key concept 15.5 Genetic Diseases Can Be Treated
| life11e_ch15_31.html | 578e58d3757a2eac76000000 |
DLAP questions | life11e_ch15_31_dlap.xml | 578e58d3757a2eac76000000 |
Genetic diseases can be treated by modifying the phenotype
| life11e_ch15_32.html | 578e58d3757a2eac76000000 |
DLAP questions | life11e_ch15_32_dlap.xml | 578e58d3757a2eac76000000 |
Gene therapy offers the hope of specific treatments
| life11e_ch15_33.html | 578e58d3757a2eac76000000 |
DLAP questions | life11e_ch15_33_dlap.xml | 578e58d3757a2eac76000000 |
recap | life11e_ch15_34.html | 578e58d3757a2eac76000000 |
DLAP questions | life11e_ch15_34_dlap.xml | 578e58d3757a2eac76000000 |
Investigating Life | life11e_ch15_35.html | 578e58d3757a2eac76000000 |
DLAP questions | life11e_ch15_35_dlap.xml | 578e58d3757a2eac76000000 |
Chapter Summary
| life11e_ch15_36.html | 578e58d3757a2eac76000000 |
DLAP questions | life11e_ch15_36_dlap.xml | 578e58d3757a2eac76000000 |
Apply What Youâve Learned
| life11e_ch15_37.html | 578e58d3757a2eac76000000 |
DLAP questions | life11e_ch15_37_dlap.xml | 578e58d3757a2eac76000000 |
Chapter Introduction | life11e_ch16_1.html | 5791323c757a2ecc23000003 |
DLAP questions | life11e_ch16_1_dlap.xml | 5791323c757a2ecc23000003 |
key concept 16.1 Prokaryotic Gene Expression Is Regulated in Operons
| life11e_ch16_2.html | 5791323c757a2ecc23000003 |
DLAP questions | life11e_ch16_2_dlap.xml | 5791323c757a2ecc23000003 |
Regulating gene transcription conserves energy
| life11e_ch16_3.html | 5791323c757a2ecc23000003 |
DLAP questions | life11e_ch16_3_dlap.xml | 5791323c757a2ecc23000003 |
Operons are units of transcriptional regulation in prokaryotes
| life11e_ch16_4.html | 5791323c757a2ecc23000003 |
DLAP questions | life11e_ch16_4_dlap.xml | 5791323c757a2ecc23000003 |
Operatorârepressor interactions control transcription in the lac and trp operons
| life11e_ch16_5.html | 5791323c757a2ecc23000003 |
DLAP questions | life11e_ch16_5_dlap.xml | 5791323c757a2ecc23000003 |
Protein synthesis can be controlled by increasing promoter efficiency
| life11e_ch16_6.html | 5791323c757a2ecc23000003 |
DLAP questions | life11e_ch16_6_dlap.xml | 5791323c757a2ecc23000003 |
RNA polymerases can be directed to particular classes of promoters
| life11e_ch16_7.html | 5791323c757a2ecc23000003 |
DLAP questions | life11e_ch16_7_dlap.xml | 5791323c757a2ecc23000003 |
recap | life11e_ch16_8.html | 5791323c757a2ecc23000003 |
DLAP questions | life11e_ch16_8_dlap.xml | 5791323c757a2ecc23000003 |
key concept 16.2 Eukaryotic Gene Expression Is Regulated by Transcription Factors
| life11e_ch16_9.html | 5791323c757a2ecc23000003 |
DLAP questions | life11e_ch16_9_dlap.xml | 5791323c757a2ecc23000003 |
General transcription factors act at eukaryotic promoters
| life11e_ch16_10.html | 5791323c757a2ecc23000003 |
DLAP questions | life11e_ch16_10_dlap.xml | 5791323c757a2ecc23000003 |
Specific proteins can recognize and bind to DNA sequences and regulate transcription
| life11e_ch16_11.html | 5791323c757a2ecc23000003 |
DLAP questions | life11e_ch16_11_dlap.xml | 5791323c757a2ecc23000003 |
Specific proteinâDNA interactions underlie binding
| life11e_ch16_12.html | 5791323c757a2ecc23000003 |
DLAP questions | life11e_ch16_12_dlap.xml | 5791323c757a2ecc23000003 |
Transcription factors underlie cell differentiation
| life11e_ch16_13.html | 5791323c757a2ecc23000003 |
DLAP questions | life11e_ch16_13_dlap.xml | 5791323c757a2ecc23000003 |
The expression of sets of genes can be coordinately regulated by transcription factors
| life11e_ch16_14.html | 5791323c757a2ecc23000003 |
DLAP questions | life11e_ch16_14_dlap.xml | 5791323c757a2ecc23000003 |
recap | life11e_ch16_15.html | 5791323c757a2ecc23000003 |
DLAP questions | life11e_ch16_15_dlap.xml | 5791323c757a2ecc23000003 |
key concept 16.3 Viruses Regulate Their Gene Expression during the Reproductive Cycle
| life11e_ch16_16.html | 5791323c757a2ecc23000003 |
DLAP questions | life11e_ch16_16_dlap.xml | 5791323c757a2ecc23000003 |
Viruses undertake two kinds of reproductive cycles
| life11e_ch16_17.html | 5791323c757a2ecc23000003 |
DLAP questions | life11e_ch16_17_dlap.xml | 5791323c757a2ecc23000003 |
Eukaryotic viruses can have complex life cycles
| life11e_ch16_18.html | 5791323c757a2ecc23000003 |
DLAP questions | life11e_ch16_18_dlap.xml | 5791323c757a2ecc23000003 |
HIV gene regulation occurs at the level of transcription elongation
| life11e_ch16_19.html | 5791323c757a2ecc23000003 |
DLAP questions | life11e_ch16_19_dlap.xml | 5791323c757a2ecc23000003 |
recap | life11e_ch16_20.html | 5791323c757a2ecc23000003 |
DLAP questions | life11e_ch16_20_dlap.xml | 5791323c757a2ecc23000003 |
key concept 16.4 Epigenetic Changes Regulate Gene Expression
| life11e_ch16_21.html | 5791323c757a2ecc23000003 |
DLAP questions | life11e_ch16_21_dlap.xml | 5791323c757a2ecc23000003 |
DNA methylation occurs at the promoter and silences transcription
| life11e_ch16_22.html | 5791323c757a2ecc23000003 |
DLAP questions | life11e_ch16_22_dlap.xml | 5791323c757a2ecc23000003 |
Histone protein modifications affect transcription
| life11e_ch16_23.html | 5791323c757a2ecc23000003 |
DLAP questions | life11e_ch16_23_dlap.xml | 5791323c757a2ecc23000003 |
Epigenetic changes can be induced by the environment
| life11e_ch16_24.html | 5791323c757a2ecc23000003 |
DLAP questions | life11e_ch16_24_dlap.xml | 5791323c757a2ecc23000003 |
Global chromosome changes involve DNA methylation
| life11e_ch16_25.html | 5791323c757a2ecc23000003 |
DLAP questions | life11e_ch16_25_dlap.xml | 5791323c757a2ecc23000003 |
recap | life11e_ch16_26.html | 5791323c757a2ecc23000003 |
DLAP questions | life11e_ch16_26_dlap.xml | 5791323c757a2ecc23000003 |
key concept 16.5 Eukaryotic Gene Expression Can Be Regulated after Transcription
| life11e_ch16_27.html | 5791323c757a2ecc23000003 |
DLAP questions | life11e_ch16_27_dlap.xml | 5791323c757a2ecc23000003 |
RNA splicing can result in different mRNAs being made from the same gene
| life11e_ch16_28.html | 5791323c757a2ecc23000003 |
DLAP questions | life11e_ch16_28_dlap.xml | 5791323c757a2ecc23000003 |
Small RNAs are important regulators of gene expression
| life11e_ch16_29.html | 5791323c757a2ecc23000003 |
DLAP questions | life11e_ch16_29_dlap.xml | 5791323c757a2ecc23000003 |
Translation of mRNA can be regulated by proteins
| life11e_ch16_30.html | 5791323c757a2ecc23000003 |
DLAP questions | life11e_ch16_30_dlap.xml | 5791323c757a2ecc23000003 |
recap | life11e_ch16_31.html | 5791323c757a2ecc23000003 |
DLAP questions | life11e_ch16_31_dlap.xml | 5791323c757a2ecc23000003 |
Investigating Life | life11e_ch16_32.html | 5791323c757a2ecc23000003 |
DLAP questions | life11e_ch16_32_dlap.xml | 5791323c757a2ecc23000003 |
Chapter Summary
| life11e_ch16_33.html | 5791323c757a2ecc23000003 |
DLAP questions | life11e_ch16_33_dlap.xml | 5791323c757a2ecc23000003 |
Apply What Youâve Learned
| life11e_ch16_34.html | 5791323c757a2ecc23000003 |
DLAP questions | life11e_ch16_34_dlap.xml | 5791323c757a2ecc23000003 |
Chapter Introduction | life11e_ch17_1.html | 57925fc4757a2ef931000001 |
DLAP questions | life11e_ch17_1_dlap.xml | 57925fc4757a2ef931000001 |
key concept 17.1 Genomes Can Be Sequenced Rapidly
| life11e_ch17_2.html | 57925fc4757a2ef931000001 |
DLAP questions | life11e_ch17_2_dlap.xml | 57925fc4757a2ef931000001 |
The base sequence of a short DNA fragment can be determined quickly
| life11e_ch17_3.html | 57925fc4757a2ef931000001 |
DLAP questions | life11e_ch17_3_dlap.xml | 57925fc4757a2ef931000001 |
Genome sequences yield several kinds of information
| life11e_ch17_4.html | 57925fc4757a2ef931000001 |
DLAP questions | life11e_ch17_4_dlap.xml | 57925fc4757a2ef931000001 |
recap | life11e_ch17_5.html | 57925fc4757a2ef931000001 |
DLAP questions | life11e_ch17_5_dlap.xml | 57925fc4757a2ef931000001 |
key concept 17.2 Prokaryotic Genomes Are Compact
| life11e_ch17_6.html | 57925fc4757a2ef931000001 |
DLAP questions | life11e_ch17_6_dlap.xml | 57925fc4757a2ef931000001 |
Prokaryotic genomes have distinctive features
| life11e_ch17_7.html | 57925fc4757a2ef931000001 |
DLAP questions | life11e_ch17_7_dlap.xml | 57925fc4757a2ef931000001 |
The sequencing of prokaryotic and viral genomes has many potential benefits
| life11e_ch17_8.html | 57925fc4757a2ef931000001 |
DLAP questions | life11e_ch17_8_dlap.xml | 57925fc4757a2ef931000001 |
Metagenomics allows us to describe new organisms and ecosystems
| life11e_ch17_9.html | 57925fc4757a2ef931000001 |
DLAP questions | life11e_ch17_9_dlap.xml | 57925fc4757a2ef931000001 |
Some sequences of DNA can move about the genome
| life11e_ch17_10.html | 57925fc4757a2ef931000001 |
DLAP questions | life11e_ch17_10_dlap.xml | 57925fc4757a2ef931000001 |
Will defining the genes required for cellular life lead to artificial life?
| life11e_ch17_11.html | 57925fc4757a2ef931000001 |
DLAP questions | life11e_ch17_11_dlap.xml | 57925fc4757a2ef931000001 |
recap | life11e_ch17_12.html | 57925fc4757a2ef931000001 |
DLAP questions | life11e_ch17_12_dlap.xml | 57925fc4757a2ef931000001 |
key concept 17.3 Eukaryotic Genomes Contain Many Types of Sequences
| life11e_ch17_13.html | 57925fc4757a2ef931000001 |
DLAP questions | life11e_ch17_13_dlap.xml | 57925fc4757a2ef931000001 |
Genome sequences of model organisms provide important information
| life11e_ch17_14.html | 57925fc4757a2ef931000001 |
DLAP questions | life11e_ch17_14_dlap.xml | 57925fc4757a2ef931000001 |
Eukaryotes have gene families
| life11e_ch17_15.html | 57925fc4757a2ef931000001 |
DLAP questions | life11e_ch17_15_dlap.xml | 57925fc4757a2ef931000001 |
Eukaryotic genomes contain repetitive sequences
| life11e_ch17_16.html | 57925fc4757a2ef931000001 |
DLAP questions | life11e_ch17_16_dlap.xml | 57925fc4757a2ef931000001 |
recap | life11e_ch17_17.html | 57925fc4757a2ef931000001 |
DLAP questions | life11e_ch17_17_dlap.xml | 57925fc4757a2ef931000001 |
key concept 17.4 Human Biology Is Revealed through the Genome
| life11e_ch17_18.html | 57925fc4757a2ef931000001 |
DLAP questions | life11e_ch17_18_dlap.xml | 57925fc4757a2ef931000001 |
Comparative genomics reveals the evolution of the human genome
| life11e_ch17_19.html | 57925fc4757a2ef931000001 |
DLAP questions | life11e_ch17_19_dlap.xml | 57925fc4757a2ef931000001 |
Human genomics has potential benefits in medicine
| life11e_ch17_20.html | 57925fc4757a2ef931000001 |
DLAP questions | life11e_ch17_20_dlap.xml | 57925fc4757a2ef931000001 |
recap | life11e_ch17_21.html | 57925fc4757a2ef931000001 |
DLAP questions | life11e_ch17_21_dlap.xml | 57925fc4757a2ef931000001 |
key concept 17.5 Proteomics and Metabolomics Can Provide Insights beyond the Genome
| life11e_ch17_22.html | 57925fc4757a2ef931000001 |
DLAP questions | life11e_ch17_22_dlap.xml | 57925fc4757a2ef931000001 |
The proteome is the complete set of proteins in a cell, tissue, or organism at a given time
| life11e_ch17_23.html | 57925fc4757a2ef931000001 |
DLAP questions | life11e_ch17_23_dlap.xml | 57925fc4757a2ef931000001 |
Metabolomics is the study of chemical phenotype
| life11e_ch17_24.html | 57925fc4757a2ef931000001 |
DLAP questions | life11e_ch17_24_dlap.xml | 57925fc4757a2ef931000001 |
recap | life11e_ch17_25.html | 57925fc4757a2ef931000001 |
DLAP questions | life11e_ch17_25_dlap.xml | 57925fc4757a2ef931000001 |
Investigating Life | life11e_ch17_26.html | 57925fc4757a2ef931000001 |
DLAP questions | life11e_ch17_26_dlap.xml | 57925fc4757a2ef931000001 |
Chapter Summary
| life11e_ch17_27.html | 57925fc4757a2ef931000001 |
DLAP questions | life11e_ch17_27_dlap.xml | 57925fc4757a2ef931000001 |
Apply What Youâve Learned
| life11e_ch17_28.html | 57925fc4757a2ef931000001 |
DLAP questions | life11e_ch17_28_dlap.xml | 57925fc4757a2ef931000001 |
Chapter Introduction | life11e_ch18_1.html | 57965dee757a2e4941000000 |
DLAP questions | life11e_ch18_1_dlap.xml | 57965dee757a2e4941000000 |
key concept 18.1 DNA from Different Sources Forms Recombinant DNA
| life11e_ch18_2.html | 57965dee757a2e4941000000 |
DLAP questions | life11e_ch18_2_dlap.xml | 57965dee757a2e4941000000 |
recap | life11e_ch18_3.html | 57965dee757a2e4941000000 |
DLAP questions | life11e_ch18_3_dlap.xml | 57965dee757a2e4941000000 |
key concept 18.2 There Are Several Ways to Insert DNA into Cells
| life11e_ch18_4.html | 57965dee757a2e4941000000 |
DLAP questions | life11e_ch18_4_dlap.xml | 57965dee757a2e4941000000 |
Selectable genetic markers are used to identify host cells containing recombinant DNA
| life11e_ch18_5.html | 57965dee757a2e4941000000 |
DLAP questions | life11e_ch18_5_dlap.xml | 57965dee757a2e4941000000 |
Genes can be inserted into prokaryotic or eukaryotic cells
| life11e_ch18_6.html | 57965dee757a2e4941000000 |
DLAP questions | life11e_ch18_6_dlap.xml | 57965dee757a2e4941000000 |
Inserted DNA is usually integrated into the host chromosome
| life11e_ch18_7.html | 57965dee757a2e4941000000 |
DLAP questions | life11e_ch18_7_dlap.xml | 57965dee757a2e4941000000 |
Reporter genes help select or identify host cells containing recombinant DNA
| life11e_ch18_8.html | 57965dee757a2e4941000000 |
DLAP questions | life11e_ch18_8_dlap.xml | 57965dee757a2e4941000000 |
recap | life11e_ch18_9.html | 57965dee757a2e4941000000 |
DLAP questions | life11e_ch18_9_dlap.xml | 57965dee757a2e4941000000 |
key concept 18.3 Any Sequence of DNA Can Be Used for Cloning
| life11e_ch18_10.html | 57965dee757a2e4941000000 |
DLAP questions | life11e_ch18_10_dlap.xml | 57965dee757a2e4941000000 |
DNA for cloning can come from a library
| life11e_ch18_11.html | 57965dee757a2e4941000000 |
DLAP questions | life11e_ch18_11_dlap.xml | 57965dee757a2e4941000000 |
cDNA is made from mRNA transcripts
| life11e_ch18_12.html | 57965dee757a2e4941000000 |
DLAP questions | life11e_ch18_12_dlap.xml | 57965dee757a2e4941000000 |
Synthetic DNA can be made by PCR or by organic chemistry
| life11e_ch18_13.html | 57965dee757a2e4941000000 |
DLAP questions | life11e_ch18_13_dlap.xml | 57965dee757a2e4941000000 |
recap | life11e_ch18_14.html | 57965dee757a2e4941000000 |
DLAP questions | life11e_ch18_14_dlap.xml | 57965dee757a2e4941000000 |
key concept 18.4 Several Tools Are Used to Modify DNA and Study Its Function
| life11e_ch18_15.html | 57965dee757a2e4941000000 |
DLAP questions | life11e_ch18_15_dlap.xml | 57965dee757a2e4941000000 |
Gene expression can be modulated by DNA technology
| life11e_ch18_16.html | 57965dee757a2e4941000000 |
DLAP questions | life11e_ch18_16_dlap.xml | 57965dee757a2e4941000000 |
DNA mutations can be created in the laboratory
| life11e_ch18_17.html | 57965dee757a2e4941000000 |
DLAP questions | life11e_ch18_17_dlap.xml | 57965dee757a2e4941000000 |
Genes can be inactivated and changed by CRISPR technology
| life11e_ch18_18.html | 57965dee757a2e4941000000 |
DLAP questions | life11e_ch18_18_dlap.xml | 57965dee757a2e4941000000 |
Complementary RNA can prevent the expression of specific genes
| life11e_ch18_19.html | 57965dee757a2e4941000000 |
DLAP questions | life11e_ch18_19_dlap.xml | 57965dee757a2e4941000000 |
DNA microarrays reveal RNA expression patterns
| life11e_ch18_20.html | 57965dee757a2e4941000000 |
DLAP questions | life11e_ch18_20_dlap.xml | 57965dee757a2e4941000000 |
recap | life11e_ch18_21.html | 57965dee757a2e4941000000 |
DLAP questions | life11e_ch18_21_dlap.xml | 57965dee757a2e4941000000 |
key concept 18.5 DNA Can Be Manipulated for Human Benefit
| life11e_ch18_22.html | 57965dee757a2e4941000000 |
DLAP questions | life11e_ch18_22_dlap.xml | 57965dee757a2e4941000000 |
Cells can be turned into factories for a desired protein
| life11e_ch18_23.html | 57965dee757a2e4941000000 |
DLAP questions | life11e_ch18_23_dlap.xml | 57965dee757a2e4941000000 |
Medically useful proteins can be made using biotechnology
| life11e_ch18_24.html | 57965dee757a2e4941000000 |
DLAP questions | life11e_ch18_24_dlap.xml | 57965dee757a2e4941000000 |
DNA manipulation is changing agriculture
| life11e_ch18_25.html | 57965dee757a2e4941000000 |
DLAP questions | life11e_ch18_25_dlap.xml | 57965dee757a2e4941000000 |
Synthetic biology can create living factories for new products
| life11e_ch18_26.html | 57965dee757a2e4941000000 |
DLAP questions | life11e_ch18_26_dlap.xml | 57965dee757a2e4941000000 |
There is public concern about biotechnology
| life11e_ch18_27.html | 57965dee757a2e4941000000 |
DLAP questions | life11e_ch18_27_dlap.xml | 57965dee757a2e4941000000 |
recap | life11e_ch18_28.html | 57965dee757a2e4941000000 |
DLAP questions | life11e_ch18_28_dlap.xml | 57965dee757a2e4941000000 |
Investigating Life | life11e_ch18_29.html | 57965dee757a2e4941000000 |
DLAP questions | life11e_ch18_29_dlap.xml | 57965dee757a2e4941000000 |
Chapter Summary
| life11e_ch18_30.html | 57965dee757a2e4941000000 |
DLAP questions | life11e_ch18_30_dlap.xml | 57965dee757a2e4941000000 |
Apply What Youâve Learned
| life11e_ch18_31.html | 57965dee757a2e4941000000 |
DLAP questions | life11e_ch18_31_dlap.xml | 57965dee757a2e4941000000 |
Chapter Introduction | life11e_ch19_1.html | 5797549a757a2e3a4e000000 |
DLAP questions | life11e_ch19_1_dlap.xml | 5797549a757a2e3a4e000000 |
key concept 19.1 The Four Major Processes of Development Are Determination, Differentiation, Morphogenesis, and Growth
| life11e_ch19_2.html | 5797549a757a2e3a4e000000 |
DLAP questions | life11e_ch19_2_dlap.xml | 5797549a757a2e3a4e000000 |
Development involves four distinct but overlapping processes
| life11e_ch19_3.html | 5797549a757a2e3a4e000000 |
DLAP questions | life11e_ch19_3_dlap.xml | 5797549a757a2e3a4e000000 |
As development proceeds, cell fates become restricted
| life11e_ch19_4.html | 5797549a757a2e3a4e000000 |
DLAP questions | life11e_ch19_4_dlap.xml | 5797549a757a2e3a4e000000 |
Cell differentiation is sometimes reversible
| life11e_ch19_5.html | 5797549a757a2e3a4e000000 |
DLAP questions | life11e_ch19_5_dlap.xml | 5797549a757a2e3a4e000000 |
Multipotent stem cells differentiate in response to environmental signals
| life11e_ch19_6.html | 5797549a757a2e3a4e000000 |
DLAP questions | life11e_ch19_6_dlap.xml | 5797549a757a2e3a4e000000 |
Pluripotent stem cells can be obtained in two ways
| life11e_ch19_7.html | 5797549a757a2e3a4e000000 |
DLAP questions | life11e_ch19_7_dlap.xml | 5797549a757a2e3a4e000000 |
recap | life11e_ch19_8.html | 5797549a757a2e3a4e000000 |
DLAP questions | life11e_ch19_8_dlap.xml | 5797549a757a2e3a4e000000 |
key concept 19.2 Gene Expression Differences Determine Cell Fate and Cell Differentiation
| life11e_ch19_9.html | 5797549a757a2e3a4e000000 |
DLAP questions | life11e_ch19_9_dlap.xml | 5797549a757a2e3a4e000000 |
Cytoplasmic segregation can determine cell fate
| life11e_ch19_10.html | 5797549a757a2e3a4e000000 |
DLAP questions | life11e_ch19_10_dlap.xml | 5797549a757a2e3a4e000000 |
Inducers passing from one cell to another can determine cell fate
| life11e_ch19_11.html | 5797549a757a2e3a4e000000 |
DLAP questions | life11e_ch19_11_dlap.xml | 5797549a757a2e3a4e000000 |
Differential gene transcription is a hallmark of cell differentiation
| life11e_ch19_12.html | 5797549a757a2e3a4e000000 |
DLAP questions | life11e_ch19_12_dlap.xml | 5797549a757a2e3a4e000000 |
recap | life11e_ch19_13.html | 5797549a757a2e3a4e000000 |
DLAP questions | life11e_ch19_13_dlap.xml | 5797549a757a2e3a4e000000 |
key concept 19.3 Gene Expression Determines Morphogenesis and Pattern Formation
| life11e_ch19_14.html | 5797549a757a2e3a4e000000 |
DLAP questions | life11e_ch19_14_dlap.xml | 5797549a757a2e3a4e000000 |
Morphogen gradients provide positional information
| life11e_ch19_15.html | 5797549a757a2e3a4e000000 |
DLAP questions | life11e_ch19_15_dlap.xml | 5797549a757a2e3a4e000000 |
Expression of transcription factor genes determines organ differentiation in plants
| life11e_ch19_16.html | 5797549a757a2e3a4e000000 |
DLAP questions | life11e_ch19_16_dlap.xml | 5797549a757a2e3a4e000000 |
A cascade of transcription factors establishes body segmentation in the fruit fly
| life11e_ch19_17.html | 5797549a757a2e3a4e000000 |
DLAP questions | life11e_ch19_17_dlap.xml | 5797549a757a2e3a4e000000 |
recap | life11e_ch19_18.html | 5797549a757a2e3a4e000000 |
DLAP questions | life11e_ch19_18_dlap.xml | 5797549a757a2e3a4e000000 |
key concept 19.4 Changes in Gene Expression Underlie the Evolution of Development
| life11e_ch19_19.html | 5797549a757a2e3a4e000000 |
DLAP questions | life11e_ch19_19_dlap.xml | 5797549a757a2e3a4e000000 |
What is evo-devo?
| life11e_ch19_20.html | 5797549a757a2e3a4e000000 |
DLAP questions | life11e_ch19_20_dlap.xml | 5797549a757a2e3a4e000000 |
Developmental genes in distantly related organisms are similar
| life11e_ch19_21.html | 5797549a757a2e3a4e000000 |
DLAP questions | life11e_ch19_21_dlap.xml | 5797549a757a2e3a4e000000 |
Genetic switches govern how the genetic toolkit is used
| life11e_ch19_22.html | 5797549a757a2e3a4e000000 |
DLAP questions | life11e_ch19_22_dlap.xml | 5797549a757a2e3a4e000000 |
Modularity allows for differences in the patterns of gene expression
| life11e_ch19_23.html | 5797549a757a2e3a4e000000 |
DLAP questions | life11e_ch19_23_dlap.xml | 5797549a757a2e3a4e000000 |
recap | life11e_ch19_24.html | 5797549a757a2e3a4e000000 |
DLAP questions | life11e_ch19_24_dlap.xml | 5797549a757a2e3a4e000000 |
key concept 19.5 Developmental Gene Changes Can Shape Evolution
| life11e_ch19_25.html | 5797549a757a2e3a4e000000 |
DLAP questions | life11e_ch19_25_dlap.xml | 5797549a757a2e3a4e000000 |
Mutations in developmental genes can cause major morphological changes
| life11e_ch19_26.html | 5797549a757a2e3a4e000000 |
DLAP questions | life11e_ch19_26_dlap.xml | 5797549a757a2e3a4e000000 |
Conserved developmental genes can lead to parallel evolution
| life11e_ch19_27.html | 5797549a757a2e3a4e000000 |
DLAP questions | life11e_ch19_27_dlap.xml | 5797549a757a2e3a4e000000 |
recap | life11e_ch19_28.html | 5797549a757a2e3a4e000000 |
DLAP questions | life11e_ch19_28_dlap.xml | 5797549a757a2e3a4e000000 |
Investigating Life | life11e_ch19_29.html | 5797549a757a2e3a4e000000 |
DLAP questions | life11e_ch19_29_dlap.xml | 5797549a757a2e3a4e000000 |
Chapter Summary
| life11e_ch19_30.html | 5797549a757a2e3a4e000000 |
DLAP questions | life11e_ch19_30_dlap.xml | 5797549a757a2e3a4e000000 |
Apply What Youâve Learned
| life11e_ch19_31.html | 5797549a757a2e3a4e000000 |
DLAP questions | life11e_ch19_31_dlap.xml | 5797549a757a2e3a4e000000 |
Chapter Introduction | life11e_ch20_1.html | 57977605757a2ea850000000 |
DLAP questions | life11e_ch20_1_dlap.xml | 57977605757a2ea850000000 |
key concept 20.1 Evolution Is Both Factual and the Basis of Broader Theory
| life11e_ch20_2.html | 57977605757a2ea850000000 |
DLAP questions | life11e_ch20_2_dlap.xml | 57977605757a2ea850000000 |
Darwin and Wallace introduced the idea of evolution by natural selection
| life11e_ch20_3.html | 57977605757a2ea850000000 |
DLAP questions | life11e_ch20_3_dlap.xml | 57977605757a2ea850000000 |
recap | life11e_ch20_4.html | 57977605757a2ea850000000 |
DLAP questions | life11e_ch20_4_dlap.xml | 57977605757a2ea850000000 |
key concept 20.2 Mutation, Selection, Gene Flow, Genetic Drift, and Nonrandom Mating Result in Evolution
| life11e_ch20_5.html | 57977605757a2ea850000000 |
DLAP questions | life11e_ch20_5_dlap.xml | 57977605757a2ea850000000 |
Mutation generates genetic variation
| life11e_ch20_6.html | 57977605757a2ea850000000 |
DLAP questions | life11e_ch20_6_dlap.xml | 57977605757a2ea850000000 |
Selection acting on genetic variation leads to new phenotypes
| life11e_ch20_7.html | 57977605757a2ea850000000 |
DLAP questions | life11e_ch20_7_dlap.xml | 57977605757a2ea850000000 |
Natural selection increases the frequency of beneficial mutations in populations
| life11e_ch20_8.html | 57977605757a2ea850000000 |
DLAP questions | life11e_ch20_8_dlap.xml | 57977605757a2ea850000000 |
Gene flow may change allele frequencies
| life11e_ch20_9.html | 57977605757a2ea850000000 |
DLAP questions | life11e_ch20_9_dlap.xml | 57977605757a2ea850000000 |
Genetic drift may cause large changes in small populations
| life11e_ch20_10.html | 57977605757a2ea850000000 |
DLAP questions | life11e_ch20_10_dlap.xml | 57977605757a2ea850000000 |
Nonrandom mating can change genotype or allele frequencies
| life11e_ch20_11.html | 57977605757a2ea850000000 |
DLAP questions | life11e_ch20_11_dlap.xml | 57977605757a2ea850000000 |
recap | life11e_ch20_12.html | 57977605757a2ea850000000 |
DLAP questions | life11e_ch20_12_dlap.xml | 57977605757a2ea850000000 |
key concept 20.3 Evolution Can Be Measured by Changes in Allele Frequencies
| life11e_ch20_13.html | 57977605757a2ea850000000 |
DLAP questions | life11e_ch20_13_dlap.xml | 57977605757a2ea850000000 |
Evolution will occur unless certain restrictive conditions exist
| life11e_ch20_14.html | 57977605757a2ea850000000 |
DLAP questions | life11e_ch20_14_dlap.xml | 57977605757a2ea850000000 |
Deviations from HardyâWeinberg equilibrium show that evolution is occurring
| life11e_ch20_15.html | 57977605757a2ea850000000 |
DLAP questions | life11e_ch20_15_dlap.xml | 57977605757a2ea850000000 |
recap | life11e_ch20_16.html | 57977605757a2ea850000000 |
DLAP questions | life11e_ch20_16_dlap.xml | 57977605757a2ea850000000 |
key concept 20.4 Selection Can Be Stabilizing, Directional, or Disruptive
| life11e_ch20_17.html | 57977605757a2ea850000000 |
DLAP questions | life11e_ch20_17_dlap.xml | 57977605757a2ea850000000 |
Stabilizing selection reduces variation in populations
| life11e_ch20_18.html | 57977605757a2ea850000000 |
DLAP questions | life11e_ch20_18_dlap.xml | 57977605757a2ea850000000 |
Directional selection favors one extreme
| life11e_ch20_19.html | 57977605757a2ea850000000 |
DLAP questions | life11e_ch20_19_dlap.xml | 57977605757a2ea850000000 |
Disruptive selection favors extremes over the mean
| life11e_ch20_20.html | 57977605757a2ea850000000 |
DLAP questions | life11e_ch20_20_dlap.xml | 57977605757a2ea850000000 |
recap | life11e_ch20_21.html | 57977605757a2ea850000000 |
DLAP questions | life11e_ch20_21_dlap.xml | 57977605757a2ea850000000 |
key concept 20.5 Multiple Factors Account for the Maintenance of Variation in Populations
| life11e_ch20_22.html | 57977605757a2ea850000000 |
DLAP questions | life11e_ch20_22_dlap.xml | 57977605757a2ea850000000 |
Neutral mutations accumulate in populations
| life11e_ch20_23.html | 57977605757a2ea850000000 |
DLAP questions | life11e_ch20_23_dlap.xml | 57977605757a2ea850000000 |
Sexual recombination amplifies the number of possible genotypes
| life11e_ch20_24.html | 57977605757a2ea850000000 |
DLAP questions | life11e_ch20_24_dlap.xml | 57977605757a2ea850000000 |
Frequency-dependent selection maintains genetic variation within populations
| life11e_ch20_25.html | 57977605757a2ea850000000 |
DLAP questions | life11e_ch20_25_dlap.xml | 57977605757a2ea850000000 |
Heterozygote advantage maintains polymorphic loci
| life11e_ch20_26.html | 57977605757a2ea850000000 |
DLAP questions | life11e_ch20_26_dlap.xml | 57977605757a2ea850000000 |
Genetic variation within species is maintained in geographically distinct populations
| life11e_ch20_27.html | 57977605757a2ea850000000 |
DLAP questions | life11e_ch20_27_dlap.xml | 57977605757a2ea850000000 |
recap | life11e_ch20_28.html | 57977605757a2ea850000000 |
DLAP questions | life11e_ch20_28_dlap.xml | 57977605757a2ea850000000 |
key concept 20.6 Evolution Is Constrained by History and Trade-Offs
| life11e_ch20_29.html | 57977605757a2ea850000000 |
DLAP questions | life11e_ch20_29_dlap.xml | 57977605757a2ea850000000 |
Developmental processes constrain evolution
| life11e_ch20_30.html | 57977605757a2ea850000000 |
DLAP questions | life11e_ch20_30_dlap.xml | 57977605757a2ea850000000 |
Trade-offs constrain evolution
| life11e_ch20_31.html | 57977605757a2ea850000000 |
DLAP questions | life11e_ch20_31_dlap.xml | 57977605757a2ea850000000 |
Short-term and long-term evolutionary outcomes sometimes differ
| life11e_ch20_32.html | 57977605757a2ea850000000 |
DLAP questions | life11e_ch20_32_dlap.xml | 57977605757a2ea850000000 |
recap | life11e_ch20_33.html | 57977605757a2ea850000000 |
DLAP questions | life11e_ch20_33_dlap.xml | 57977605757a2ea850000000 |
Investigating Life | life11e_ch20_34.html | 57977605757a2ea850000000 |
DLAP questions | life11e_ch20_34_dlap.xml | 57977605757a2ea850000000 |
Chapter Summary
| life11e_ch20_35.html | 57977605757a2ea850000000 |
DLAP questions | life11e_ch20_35_dlap.xml | 57977605757a2ea850000000 |
Apply What Youâve Learned
| life11e_ch20_36.html | 57977605757a2ea850000000 |
DLAP questions | life11e_ch20_36_dlap.xml | 57977605757a2ea850000000 |
Chapter Introduction | life11e_ch21_1.html | 57a9eade757a2ecb03000000 |
DLAP questions | life11e_ch21_1_dlap.xml | 57a9eade757a2ecb03000000 |
key concept 21.1 All of Life Is Connected through Its Evolutionary History
| life11e_ch21_2.html | 57a9eade757a2ecb03000000 |
DLAP questions | life11e_ch21_2_dlap.xml | 57a9eade757a2ecb03000000 |
Phylogenetic trees are the basis of comparative biology
| life11e_ch21_3.html | 57a9eade757a2ecb03000000 |
DLAP questions | life11e_ch21_3_dlap.xml | 57a9eade757a2ecb03000000 |
Derived traits provide evidence of evolutionary relationships
| life11e_ch21_4.html | 57a9eade757a2ecb03000000 |
DLAP questions | life11e_ch21_4_dlap.xml | 57a9eade757a2ecb03000000 |
recap | life11e_ch21_5.html | 57a9eade757a2ecb03000000 |
DLAP questions | life11e_ch21_5_dlap.xml | 57a9eade757a2ecb03000000 |
key concept 21.2 Phylogeny Can Be Reconstructed from Traits of Organisms
| life11e_ch21_6.html | 57a9eade757a2ecb03000000 |
DLAP questions | life11e_ch21_6_dlap.xml | 57a9eade757a2ecb03000000 |
Parsimony provides the simplest explanation for phylogenetic data
| life11e_ch21_7.html | 57a9eade757a2ecb03000000 |
DLAP questions | life11e_ch21_7_dlap.xml | 57a9eade757a2ecb03000000 |
Phylogenies are reconstructed from many sources of data
| life11e_ch21_8.html | 57a9eade757a2ecb03000000 |
DLAP questions | life11e_ch21_8_dlap.xml | 57a9eade757a2ecb03000000 |
Mathematical models expand the power of phylogenetic reconstruction
| life11e_ch21_9.html | 57a9eade757a2ecb03000000 |
DLAP questions | life11e_ch21_9_dlap.xml | 57a9eade757a2ecb03000000 |
The accuracy of phylogenetic methods can be tested
| life11e_ch21_10.html | 57a9eade757a2ecb03000000 |
DLAP questions | life11e_ch21_10_dlap.xml | 57a9eade757a2ecb03000000 |
recap | life11e_ch21_11.html | 57a9eade757a2ecb03000000 |
DLAP questions | life11e_ch21_11_dlap.xml | 57a9eade757a2ecb03000000 |
key concept 21.3 Phylogeny Makes Biology Comparative and Predictive
| life11e_ch21_12.html | 57a9eade757a2ecb03000000 |
DLAP questions | life11e_ch21_12_dlap.xml | 57a9eade757a2ecb03000000 |
Phylogenetic trees can be used to reconstruct past events
| life11e_ch21_13.html | 57a9eade757a2ecb03000000 |
DLAP questions | life11e_ch21_13_dlap.xml | 57a9eade757a2ecb03000000 |
Phylogenies allow us to compare and contrast living organisms
| life11e_ch21_14.html | 57a9eade757a2ecb03000000 |
DLAP questions | life11e_ch21_14_dlap.xml | 57a9eade757a2ecb03000000 |
Phylogenies can reveal convergent evolution
| life11e_ch21_15.html | 57a9eade757a2ecb03000000 |
DLAP questions | life11e_ch21_15_dlap.xml | 57a9eade757a2ecb03000000 |
Ancestral states can be reconstructed
| life11e_ch21_16.html | 57a9eade757a2ecb03000000 |
DLAP questions | life11e_ch21_16_dlap.xml | 57a9eade757a2ecb03000000 |
Molecular clocks help date evolutionary events
| life11e_ch21_17.html | 57a9eade757a2ecb03000000 |
DLAP questions | life11e_ch21_17_dlap.xml | 57a9eade757a2ecb03000000 |
recap | life11e_ch21_18.html | 57a9eade757a2ecb03000000 |
DLAP questions | life11e_ch21_18_dlap.xml | 57a9eade757a2ecb03000000 |
key concept 21.4 Phylogeny Is the Basis of Biological Classification
| life11e_ch21_19.html | 57a9eade757a2ecb03000000 |
DLAP questions | life11e_ch21_19_dlap.xml | 57a9eade757a2ecb03000000 |
Evolutionary history is the basis for modern biological classification
| life11e_ch21_20.html | 57a9eade757a2ecb03000000 |
DLAP questions | life11e_ch21_20_dlap.xml | 57a9eade757a2ecb03000000 |
Several codes of biological nomenclature govern the use of scientific names
| life11e_ch21_21.html | 57a9eade757a2ecb03000000 |
DLAP questions | life11e_ch21_21_dlap.xml | 57a9eade757a2ecb03000000 |
recap | life11e_ch21_22.html | 57a9eade757a2ecb03000000 |
DLAP questions | life11e_ch21_22_dlap.xml | 57a9eade757a2ecb03000000 |
Investigating Life | life11e_ch21_23.html | 57a9eade757a2ecb03000000 |
DLAP questions | life11e_ch21_23_dlap.xml | 57a9eade757a2ecb03000000 |
Chapter Summary
| life11e_ch21_24.html | 57a9eade757a2ecb03000000 |
DLAP questions | life11e_ch21_24_dlap.xml | 57a9eade757a2ecb03000000 |
Apply What Youâve Learned
| life11e_ch21_25.html | 57a9eade757a2ecb03000000 |
DLAP questions | life11e_ch21_25_dlap.xml | 57a9eade757a2ecb03000000 |
Chapter Introduction | life11e_ch22_1.html | 57ab2024757a2ea91a000000 |
DLAP questions | life11e_ch22_1_dlap.xml | 57ab2024757a2ea91a000000 |
key concept 22.1 Species Are Reproductively Isolated Lineages on the Tree of Life
| life11e_ch22_2.html | 57ab2024757a2ea91a000000 |
DLAP questions | life11e_ch22_2_dlap.xml | 57ab2024757a2ea91a000000 |
We can recognize many species by their appearance
| life11e_ch22_3.html | 57ab2024757a2ea91a000000 |
DLAP questions | life11e_ch22_3_dlap.xml | 57ab2024757a2ea91a000000 |
Reproductive isolation is key
| life11e_ch22_4.html | 57ab2024757a2ea91a000000 |
DLAP questions | life11e_ch22_4_dlap.xml | 57ab2024757a2ea91a000000 |
The lineage approach takes a long-term view
| life11e_ch22_5.html | 57ab2024757a2ea91a000000 |
DLAP questions | life11e_ch22_5_dlap.xml | 57ab2024757a2ea91a000000 |
The different species concepts are not mutually exclusive
| life11e_ch22_6.html | 57ab2024757a2ea91a000000 |
DLAP questions | life11e_ch22_6_dlap.xml | 57ab2024757a2ea91a000000 |
recap | life11e_ch22_7.html | 57ab2024757a2ea91a000000 |
DLAP questions | life11e_ch22_7_dlap.xml | 57ab2024757a2ea91a000000 |
key concept 22.2 Speciation Is a Natural Consequence of Population Subdivision
| life11e_ch22_8.html | 57ab2024757a2ea91a000000 |
DLAP questions | life11e_ch22_8_dlap.xml | 57ab2024757a2ea91a000000 |
Incompatibilities between genes can produce reproductive isolation
| life11e_ch22_9.html | 57ab2024757a2ea91a000000 |
DLAP questions | life11e_ch22_9_dlap.xml | 57ab2024757a2ea91a000000 |
Reproductive isolation develops with increasing genetic divergence
| life11e_ch22_10.html | 57ab2024757a2ea91a000000 |
DLAP questions | life11e_ch22_10_dlap.xml | 57ab2024757a2ea91a000000 |
recap | life11e_ch22_11.html | 57ab2024757a2ea91a000000 |
DLAP questions | life11e_ch22_11_dlap.xml | 57ab2024757a2ea91a000000 |
key concept 22.3 Speciation May Occur through Geographic Isolation or in Sympatry
| life11e_ch22_12.html | 57ab2024757a2ea91a000000 |
DLAP questions | life11e_ch22_12_dlap.xml | 57ab2024757a2ea91a000000 |
Physical barriers give rise to allopatric speciation
| life11e_ch22_13.html | 57ab2024757a2ea91a000000 |
DLAP questions | life11e_ch22_13_dlap.xml | 57ab2024757a2ea91a000000 |
Sympatric speciation occurs without physical barriers
| life11e_ch22_14.html | 57ab2024757a2ea91a000000 |
DLAP questions | life11e_ch22_14_dlap.xml | 57ab2024757a2ea91a000000 |
recap | life11e_ch22_15.html | 57ab2024757a2ea91a000000 |
DLAP questions | life11e_ch22_15_dlap.xml | 57ab2024757a2ea91a000000 |
key concept 22.4 Reproductive Isolation Is Reinforced When Diverging Species Come into Contact
| life11e_ch22_16.html | 57ab2024757a2ea91a000000 |
DLAP questions | life11e_ch22_16_dlap.xml | 57ab2024757a2ea91a000000 |
Prezygotic isolating mechanisms prevent hybridization
| life11e_ch22_17.html | 57ab2024757a2ea91a000000 |
DLAP questions | life11e_ch22_17_dlap.xml | 57ab2024757a2ea91a000000 |
Postzygotic isolating mechanisms result in selection against hybridization
| life11e_ch22_18.html | 57ab2024757a2ea91a000000 |
DLAP questions | life11e_ch22_18_dlap.xml | 57ab2024757a2ea91a000000 |
Hybrid zones may form if reproductive isolation is incomplete
| life11e_ch22_19.html | 57ab2024757a2ea91a000000 |
DLAP questions | life11e_ch22_19_dlap.xml | 57ab2024757a2ea91a000000 |
recap | life11e_ch22_20.html | 57ab2024757a2ea91a000000 |
DLAP questions | life11e_ch22_20_dlap.xml | 57ab2024757a2ea91a000000 |
key concept 22.5 Speciation Rates Are Highly Variable across Life
| life11e_ch22_21.html | 57ab2024757a2ea91a000000 |
DLAP questions | life11e_ch22_21_dlap.xml | 57ab2024757a2ea91a000000 |
Several ecological and behavioral factors influence speciation rates
| life11e_ch22_22.html | 57ab2024757a2ea91a000000 |
DLAP questions | life11e_ch22_22_dlap.xml | 57ab2024757a2ea91a000000 |
Rapid speciation can lead to adaptive radiation
| life11e_ch22_23.html | 57ab2024757a2ea91a000000 |
DLAP questions | life11e_ch22_23_dlap.xml | 57ab2024757a2ea91a000000 |
recap | life11e_ch22_24.html | 57ab2024757a2ea91a000000 |
DLAP questions | life11e_ch22_24_dlap.xml | 57ab2024757a2ea91a000000 |
Investigating Life | life11e_ch22_25.html | 57ab2024757a2ea91a000000 |
DLAP questions | life11e_ch22_25_dlap.xml | 57ab2024757a2ea91a000000 |
Chapter Summary
| life11e_ch22_26.html | 57ab2024757a2ea91a000000 |
DLAP questions | life11e_ch22_26_dlap.xml | 57ab2024757a2ea91a000000 |
Apply What Youâve Learned
| life11e_ch22_27.html | 57ab2024757a2ea91a000000 |
DLAP questions | life11e_ch22_27_dlap.xml | 57ab2024757a2ea91a000000 |
Chapter Introduction | life11e_ch23_1.html | 57ac6cfb757a2e352a000000 |
DLAP questions | life11e_ch23_1_dlap.xml | 57ac6cfb757a2e352a000000 |
key concept 23.1 DNA Sequences Record the History of Gene Evolution
| life11e_ch23_2.html | 57ac6cfb757a2e352a000000 |
DLAP questions | life11e_ch23_2_dlap.xml | 57ac6cfb757a2e352a000000 |
Evolution of genomes results in biological diversity
| life11e_ch23_3.html | 57ac6cfb757a2e352a000000 |
DLAP questions | life11e_ch23_3_dlap.xml | 57ac6cfb757a2e352a000000 |
Genes and proteins are compared through sequence alignment
| life11e_ch23_4.html | 57ac6cfb757a2e352a000000 |
DLAP questions | life11e_ch23_4_dlap.xml | 57ac6cfb757a2e352a000000 |
Models of sequence evolution are used to calculate evolutionary divergence
| life11e_ch23_5.html | 57ac6cfb757a2e352a000000 |
DLAP questions | life11e_ch23_5_dlap.xml | 57ac6cfb757a2e352a000000 |
Experimental studies examine molecular evolution directly
| life11e_ch23_6.html | 57ac6cfb757a2e352a000000 |
DLAP questions | life11e_ch23_6_dlap.xml | 57ac6cfb757a2e352a000000 |
recap | life11e_ch23_7.html | 57ac6cfb757a2e352a000000 |
DLAP questions | life11e_ch23_7_dlap.xml | 57ac6cfb757a2e352a000000 |
key concept 23.2 Genomes Reveal Both Neutral and Selective Processes of Evolution
| life11e_ch23_8.html | 57ac6cfb757a2e352a000000 |
DLAP questions | life11e_ch23_8_dlap.xml | 57ac6cfb757a2e352a000000 |
Much of evolution is neutral
| life11e_ch23_9.html | 57ac6cfb757a2e352a000000 |
DLAP questions | life11e_ch23_9_dlap.xml | 57ac6cfb757a2e352a000000 |
Positive and purifying selection can be detected in the genome
| life11e_ch23_10.html | 57ac6cfb757a2e352a000000 |
DLAP questions | life11e_ch23_10_dlap.xml | 57ac6cfb757a2e352a000000 |
Genome size also evolves
| life11e_ch23_11.html | 57ac6cfb757a2e352a000000 |
DLAP questions | life11e_ch23_11_dlap.xml | 57ac6cfb757a2e352a000000 |
recap | life11e_ch23_12.html | 57ac6cfb757a2e352a000000 |
DLAP questions | life11e_ch23_12_dlap.xml | 57ac6cfb757a2e352a000000 |
key concept 23.3 Lateral Gene Transfer and Gene Duplication Can Produce Major Changes
| life11e_ch23_13.html | 57ac6cfb757a2e352a000000 |
DLAP questions | life11e_ch23_13_dlap.xml | 57ac6cfb757a2e352a000000 |
Lateral gene transfer can result in the gain of new functions
| life11e_ch23_14.html | 57ac6cfb757a2e352a000000 |
DLAP questions | life11e_ch23_14_dlap.xml | 57ac6cfb757a2e352a000000 |
Most new functions arise following gene duplication
| life11e_ch23_15.html | 57ac6cfb757a2e352a000000 |
DLAP questions | life11e_ch23_15_dlap.xml | 57ac6cfb757a2e352a000000 |
Some gene families evolve through concerted evolution
| life11e_ch23_16.html | 57ac6cfb757a2e352a000000 |
DLAP questions | life11e_ch23_16_dlap.xml | 57ac6cfb757a2e352a000000 |
recap | life11e_ch23_17.html | 57ac6cfb757a2e352a000000 |
DLAP questions | life11e_ch23_17_dlap.xml | 57ac6cfb757a2e352a000000 |
key concept 23.4 Molecular Evolution Has Many Practical Applications
| life11e_ch23_18.html | 57ac6cfb757a2e352a000000 |
DLAP questions | life11e_ch23_18_dlap.xml | 57ac6cfb757a2e352a000000 |
Molecular sequence data are used to determine the evolutionary history of genes
| life11e_ch23_19.html | 57ac6cfb757a2e352a000000 |
DLAP questions | life11e_ch23_19_dlap.xml | 57ac6cfb757a2e352a000000 |
Gene evolution is used to study protein function
| life11e_ch23_20.html | 57ac6cfb757a2e352a000000 |
DLAP questions | life11e_ch23_20_dlap.xml | 57ac6cfb757a2e352a000000 |
In vitro evolution is used to produce new molecules
| life11e_ch23_21.html | 57ac6cfb757a2e352a000000 |
DLAP questions | life11e_ch23_21_dlap.xml | 57ac6cfb757a2e352a000000 |
Molecular evolution is used to study and combat diseases
| life11e_ch23_22.html | 57ac6cfb757a2e352a000000 |
DLAP questions | life11e_ch23_22_dlap.xml | 57ac6cfb757a2e352a000000 |
recap | life11e_ch23_23.html | 57ac6cfb757a2e352a000000 |
DLAP questions | life11e_ch23_23_dlap.xml | 57ac6cfb757a2e352a000000 |
Investigating Life | life11e_ch23_24.html | 57ac6cfb757a2e352a000000 |
DLAP questions | life11e_ch23_24_dlap.xml | 57ac6cfb757a2e352a000000 |
Chapter Summary
| life11e_ch23_25.html | 57ac6cfb757a2e352a000000 |
DLAP questions | life11e_ch23_25_dlap.xml | 57ac6cfb757a2e352a000000 |
Apply What Youâve Learned
| life11e_ch23_26.html | 57ac6cfb757a2e352a000000 |
DLAP questions | life11e_ch23_26_dlap.xml | 57ac6cfb757a2e352a000000 |
Chapter Introduction | life11e_ch24_1.html | 57ae383e757a2eff46000001 |
DLAP questions | life11e_ch24_1_dlap.xml | 57ae383e757a2eff46000001 |
key concept 24.1 Events in Earthâs History Can Be Dated
| life11e_ch24_2.html | 57ae383e757a2eff46000001 |
DLAP questions | life11e_ch24_2_dlap.xml | 57ae383e757a2eff46000001 |
Radioisotopes provide a way to date fossils and rocks
| life11e_ch24_3.html | 57ae383e757a2eff46000001 |
DLAP questions | life11e_ch24_3_dlap.xml | 57ae383e757a2eff46000001 |
Radiometric dating methods have been expanded and refined
| life11e_ch24_4.html | 57ae383e757a2eff46000001 |
DLAP questions | life11e_ch24_4_dlap.xml | 57ae383e757a2eff46000001 |
Scientists have used several methods to construct a geological time scale
| life11e_ch24_5.html | 57ae383e757a2eff46000001 |
DLAP questions | life11e_ch24_5_dlap.xml | 57ae383e757a2eff46000001 |
recap | life11e_ch24_6.html | 57ae383e757a2eff46000001 |
DLAP questions | life11e_ch24_6_dlap.xml | 57ae383e757a2eff46000001 |
key concept 24.2 Changes in Earthâs Physical Environment Have Affected the Evolution of Life
| life11e_ch24_7.html | 57ae383e757a2eff46000001 |
DLAP questions | life11e_ch24_7_dlap.xml | 57ae383e757a2eff46000001 |
Earthâs continents and climates have changed over time
| life11e_ch24_8.html | 57ae383e757a2eff46000001 |
DLAP questions | life11e_ch24_8_dlap.xml | 57ae383e757a2eff46000001 |
Earthâs climate has shifted between hot and cold conditions
| life11e_ch24_9.html | 57ae383e757a2eff46000001 |
DLAP questions | life11e_ch24_9_dlap.xml | 57ae383e757a2eff46000001 |
Volcanoes have occasionally changed the history of life
| life11e_ch24_10.html | 57ae383e757a2eff46000001 |
DLAP questions | life11e_ch24_10_dlap.xml | 57ae383e757a2eff46000001 |
Extraterrestrial events have triggered changes on Earth
| life11e_ch24_11.html | 57ae383e757a2eff46000001 |
DLAP questions | life11e_ch24_11_dlap.xml | 57ae383e757a2eff46000001 |
Oxygen concentrations in Earthâs atmosphere have changed over time
| life11e_ch24_12.html | 57ae383e757a2eff46000001 |
DLAP questions | life11e_ch24_12_dlap.xml | 57ae383e757a2eff46000001 |
Extinction happens continuously, but mass extinctions result from sudden environmental changes
| life11e_ch24_13.html | 57ae383e757a2eff46000001 |
DLAP questions | life11e_ch24_13_dlap.xml | 57ae383e757a2eff46000001 |
recap | life11e_ch24_14.html | 57ae383e757a2eff46000001 |
DLAP questions | life11e_ch24_14_dlap.xml | 57ae383e757a2eff46000001 |
key concept 24.3 Major Events in the Evolution of Life Can Be Read in the Fossil Record
| life11e_ch24_15.html | 57ae383e757a2eff46000001 |
DLAP questions | life11e_ch24_15_dlap.xml | 57ae383e757a2eff46000001 |
Several processes contribute to the paucity of fossils
| life11e_ch24_16.html | 57ae383e757a2eff46000001 |
DLAP questions | life11e_ch24_16_dlap.xml | 57ae383e757a2eff46000001 |
Precambrian life was small and aquatic
| life11e_ch24_17.html | 57ae383e757a2eff46000001 |
DLAP questions | life11e_ch24_17_dlap.xml | 57ae383e757a2eff46000001 |
Life expanded rapidly during the Cambrian period
| life11e_ch24_18.html | 57ae383e757a2eff46000001 |
DLAP questions | life11e_ch24_18_dlap.xml | 57ae383e757a2eff46000001 |
Many groups of organisms that arose during the Cambrian later diversified
| life11e_ch24_19.html | 57ae383e757a2eff46000001 |
DLAP questions | life11e_ch24_19_dlap.xml | 57ae383e757a2eff46000001 |
Geographic differentiation increased during the Mesozoic era
| life11e_ch24_20.html | 57ae383e757a2eff46000001 |
DLAP questions | life11e_ch24_20_dlap.xml | 57ae383e757a2eff46000001 |
Modern biotas evolved during the Cenozoic era
| life11e_ch24_21.html | 57ae383e757a2eff46000001 |
DLAP questions | life11e_ch24_21_dlap.xml | 57ae383e757a2eff46000001 |
The tree of life is used to reconstruct evolutionary events
| life11e_ch24_22.html | 57ae383e757a2eff46000001 |
DLAP questions | life11e_ch24_22_dlap.xml | 57ae383e757a2eff46000001 |
recap | life11e_ch24_23.html | 57ae383e757a2eff46000001 |
DLAP questions | life11e_ch24_23_dlap.xml | 57ae383e757a2eff46000001 |
Investigating Life | life11e_ch24_24.html | 57ae383e757a2eff46000001 |
DLAP questions | life11e_ch24_24_dlap.xml | 57ae383e757a2eff46000001 |
Chapter Summary
| life11e_ch24_25.html | 57ae383e757a2eff46000001 |
DLAP questions | life11e_ch24_25_dlap.xml | 57ae383e757a2eff46000001 |
Apply What Youâve Learned
| life11e_ch24_26.html | 57ae383e757a2eff46000001 |
DLAP questions | life11e_ch24_26_dlap.xml | 57ae383e757a2eff46000001 |
Chapter Introduction | life11e_ch25_1.html | 57b205b6757a2e5c55000002 |
DLAP questions | life11e_ch25_1_dlap.xml | 57b205b6757a2e5c55000002 |
key concept 25.1 Bacteria and Archaea Are the Two Primary Divisions of Life
| life11e_ch25_2.html | 57b205b6757a2e5c55000002 |
DLAP questions | life11e_ch25_2_dlap.xml | 57b205b6757a2e5c55000002 |
The two prokaryotic domains differ in significant ways
| life11e_ch25_3.html | 57b205b6757a2e5c55000002 |
DLAP questions | life11e_ch25_3_dlap.xml | 57b205b6757a2e5c55000002 |
The small size of prokaryotes has hindered our study of their evolutionary relationships
| life11e_ch25_4.html | 57b205b6757a2e5c55000002 |
DLAP questions | life11e_ch25_4_dlap.xml | 57b205b6757a2e5c55000002 |
The nucleotide sequences of prokaryotes reveal their evolutionary relationships
| life11e_ch25_5.html | 57b205b6757a2e5c55000002 |
DLAP questions | life11e_ch25_5_dlap.xml | 57b205b6757a2e5c55000002 |
Lateral gene transfer can lead to discordant gene trees
| life11e_ch25_6.html | 57b205b6757a2e5c55000002 |
DLAP questions | life11e_ch25_6_dlap.xml | 57b205b6757a2e5c55000002 |
The great majority of prokaryote species have never been studied
| life11e_ch25_7.html | 57b205b6757a2e5c55000002 |
DLAP questions | life11e_ch25_7_dlap.xml | 57b205b6757a2e5c55000002 |
recap | life11e_ch25_8.html | 57b205b6757a2e5c55000002 |
DLAP questions | life11e_ch25_8_dlap.xml | 57b205b6757a2e5c55000002 |
key concept 25.2 Prokaryote Diversity Reflects the Ancient Origins of Life
| life11e_ch25_9.html | 57b205b6757a2e5c55000002 |
DLAP questions | life11e_ch25_9_dlap.xml | 57b205b6757a2e5c55000002 |
Two early-branching lineages of bacteria live at very high temperatures
| life11e_ch25_10.html | 57b205b6757a2e5c55000002 |
DLAP questions | life11e_ch25_10_dlap.xml | 57b205b6757a2e5c55000002 |
Firmicutes include some of the smallest cellular organisms
| life11e_ch25_11.html | 57b205b6757a2e5c55000002 |
DLAP questions | life11e_ch25_11_dlap.xml | 57b205b6757a2e5c55000002 |
Actinobacteria include major pathogens as well as valuable sources of antibiotics
| life11e_ch25_12.html | 57b205b6757a2e5c55000002 |
DLAP questions | life11e_ch25_12_dlap.xml | 57b205b6757a2e5c55000002 |
Cyanobacteria were the first photosynthesizers
| life11e_ch25_13.html | 57b205b6757a2e5c55000002 |
DLAP questions | life11e_ch25_13_dlap.xml | 57b205b6757a2e5c55000002 |
Spirochetes move by means of axial filaments
| life11e_ch25_14.html | 57b205b6757a2e5c55000002 |
DLAP questions | life11e_ch25_14_dlap.xml | 57b205b6757a2e5c55000002 |
Chlamydias are extremely small parasites
| life11e_ch25_15.html | 57b205b6757a2e5c55000002 |
DLAP questions | life11e_ch25_15_dlap.xml | 57b205b6757a2e5c55000002 |
The proteobacteria are a large and diverse group
| life11e_ch25_16.html | 57b205b6757a2e5c55000002 |
DLAP questions | life11e_ch25_16_dlap.xml | 57b205b6757a2e5c55000002 |
Gene sequencing enabled biologists to differentiate Archaea from Bacteria
| life11e_ch25_17.html | 57b205b6757a2e5c55000002 |
DLAP questions | life11e_ch25_17_dlap.xml | 57b205b6757a2e5c55000002 |
Prokaryotic archaea live in extremely diverse environments
| life11e_ch25_18.html | 57b205b6757a2e5c55000002 |
DLAP questions | life11e_ch25_18_dlap.xml | 57b205b6757a2e5c55000002 |
recap | life11e_ch25_19.html | 57b205b6757a2e5c55000002 |
DLAP questions | life11e_ch25_19_dlap.xml | 57b205b6757a2e5c55000002 |
key concept 25.3 Ecological Communities Depend on Prokaryotes
| life11e_ch25_20.html | 57b205b6757a2e5c55000002 |
DLAP questions | life11e_ch25_20_dlap.xml | 57b205b6757a2e5c55000002 |
Many prokaryotes form complex communities
| life11e_ch25_21.html | 57b205b6757a2e5c55000002 |
DLAP questions | life11e_ch25_21_dlap.xml | 57b205b6757a2e5c55000002 |
Microbiomes are critical to the health of many eukaryotes
| life11e_ch25_22.html | 57b205b6757a2e5c55000002 |
DLAP questions | life11e_ch25_22_dlap.xml | 57b205b6757a2e5c55000002 |
A small minority of bacteria are pathogens
| life11e_ch25_23.html | 57b205b6757a2e5c55000002 |
DLAP questions | life11e_ch25_23_dlap.xml | 57b205b6757a2e5c55000002 |
Prokaryotes have amazingly diverse metabolic pathways
| life11e_ch25_24.html | 57b205b6757a2e5c55000002 |
DLAP questions | life11e_ch25_24_dlap.xml | 57b205b6757a2e5c55000002 |
Prokaryotes play important roles in element cycling
| life11e_ch25_25.html | 57b205b6757a2e5c55000002 |
DLAP questions | life11e_ch25_25_dlap.xml | 57b205b6757a2e5c55000002 |
recap | life11e_ch25_26.html | 57b205b6757a2e5c55000002 |
DLAP questions | life11e_ch25_26_dlap.xml | 57b205b6757a2e5c55000002 |
key concept 25.4 Viruses Have Evolved Many Times
| life11e_ch25_27.html | 57b205b6757a2e5c55000002 |
DLAP questions | life11e_ch25_27_dlap.xml | 57b205b6757a2e5c55000002 |
Many RNA viruses probably represent escaped genomic components of cellular life
| life11e_ch25_28.html | 57b205b6757a2e5c55000002 |
DLAP questions | life11e_ch25_28_dlap.xml | 57b205b6757a2e5c55000002 |
Some DNA viruses may have evolved from reduced cellular organisms
| life11e_ch25_29.html | 57b205b6757a2e5c55000002 |
DLAP questions | life11e_ch25_29_dlap.xml | 57b205b6757a2e5c55000002 |
Viruses can be used to fight bacterial infections
| life11e_ch25_30.html | 57b205b6757a2e5c55000002 |
DLAP questions | life11e_ch25_30_dlap.xml | 57b205b6757a2e5c55000002 |
recap | life11e_ch25_31.html | 57b205b6757a2e5c55000002 |
DLAP questions | life11e_ch25_31_dlap.xml | 57b205b6757a2e5c55000002 |
Investigating Life | life11e_ch25_32.html | 57b205b6757a2e5c55000002 |
DLAP questions | life11e_ch25_32_dlap.xml | 57b205b6757a2e5c55000002 |
Chapter Summary
| life11e_ch25_33.html | 57b205b6757a2e5c55000002 |
DLAP questions | life11e_ch25_33_dlap.xml | 57b205b6757a2e5c55000002 |
Apply What Youâve Learned
| life11e_ch25_34.html | 57b205b6757a2e5c55000002 |
DLAP questions | life11e_ch25_34_dlap.xml | 57b205b6757a2e5c55000002 |
Chapter Introduction | life11e_ch26_1.html | 57b45e0b757a2e3477000000 |
DLAP questions | life11e_ch26_1_dlap.xml | 57b45e0b757a2e3477000000 |
key concept 26.1 Eukaryotes Acquired Features from Both Archaea and Bacteria
| life11e_ch26_2.html | 57b45e0b757a2e3477000000 |
DLAP questions | life11e_ch26_2_dlap.xml | 57b45e0b757a2e3477000000 |
The modern eukaryotic cell arose in several steps
| life11e_ch26_3.html | 57b45e0b757a2e3477000000 |
DLAP questions | life11e_ch26_3_dlap.xml | 57b45e0b757a2e3477000000 |
Chloroplasts have been transferred among eukaryotes several times
| life11e_ch26_4.html | 57b45e0b757a2e3477000000 |
DLAP questions | life11e_ch26_4_dlap.xml | 57b45e0b757a2e3477000000 |
recap | life11e_ch26_5.html | 57b45e0b757a2e3477000000 |
DLAP questions | life11e_ch26_5_dlap.xml | 57b45e0b757a2e3477000000 |
key concept 26.2 Major Lineages of Eukaryotes Diversified in the Precambrian
| life11e_ch26_6.html | 57b45e0b757a2e3477000000 |
DLAP questions | life11e_ch26_6_dlap.xml | 57b45e0b757a2e3477000000 |
Alveolates have sacs under their cell membranes
| life11e_ch26_7.html | 57b45e0b757a2e3477000000 |
DLAP questions | life11e_ch26_7_dlap.xml | 57b45e0b757a2e3477000000 |
Stramenopiles typically have two unequal flagella, one with hairs
| life11e_ch26_8.html | 57b45e0b757a2e3477000000 |
DLAP questions | life11e_ch26_8_dlap.xml | 57b45e0b757a2e3477000000 |
Rhizarians typically have long, thin pseudopods
| life11e_ch26_9.html | 57b45e0b757a2e3477000000 |
DLAP questions | life11e_ch26_9_dlap.xml | 57b45e0b757a2e3477000000 |
Excavates began to diversify about 1.5 billion years ago
| life11e_ch26_10.html | 57b45e0b757a2e3477000000 |
DLAP questions | life11e_ch26_10_dlap.xml | 57b45e0b757a2e3477000000 |
Amoebozoans use lobe-shaped pseudopods for locomotion
| life11e_ch26_11.html | 57b45e0b757a2e3477000000 |
DLAP questions | life11e_ch26_11_dlap.xml | 57b45e0b757a2e3477000000 |
recap | life11e_ch26_12.html | 57b45e0b757a2e3477000000 |
DLAP questions | life11e_ch26_12_dlap.xml | 57b45e0b757a2e3477000000 |
key concept 26.3 Protists Reproduce Sexually and Asexually
| life11e_ch26_13.html | 57b45e0b757a2e3477000000 |
DLAP questions | life11e_ch26_13_dlap.xml | 57b45e0b757a2e3477000000 |
Some protists reproduce without sex and have sex without reproduction
| life11e_ch26_14.html | 57b45e0b757a2e3477000000 |
DLAP questions | life11e_ch26_14_dlap.xml | 57b45e0b757a2e3477000000 |
Some protist life cycles feature alternation of generations
| life11e_ch26_15.html | 57b45e0b757a2e3477000000 |
DLAP questions | life11e_ch26_15_dlap.xml | 57b45e0b757a2e3477000000 |
recap | life11e_ch26_16.html | 57b45e0b757a2e3477000000 |
DLAP questions | life11e_ch26_16_dlap.xml | 57b45e0b757a2e3477000000 |
key concept 26.4 Protists Are Critical Components of Many Ecosystems
| life11e_ch26_17.html | 57b45e0b757a2e3477000000 |
DLAP questions | life11e_ch26_17_dlap.xml | 57b45e0b757a2e3477000000 |
Phytoplankton are primary producers
| life11e_ch26_18.html | 57b45e0b757a2e3477000000 |
DLAP questions | life11e_ch26_18_dlap.xml | 57b45e0b757a2e3477000000 |
Some microbial eukaryotes are deadly
| life11e_ch26_19.html | 57b45e0b757a2e3477000000 |
DLAP questions | life11e_ch26_19_dlap.xml | 57b45e0b757a2e3477000000 |
Some microbial eukaryotes are endosymbionts
| life11e_ch26_20.html | 57b45e0b757a2e3477000000 |
DLAP questions | life11e_ch26_20_dlap.xml | 57b45e0b757a2e3477000000 |
We rely on the remains of ancient marine protists
| life11e_ch26_21.html | 57b45e0b757a2e3477000000 |
DLAP questions | life11e_ch26_21_dlap.xml | 57b45e0b757a2e3477000000 |
recap | life11e_ch26_22.html | 57b45e0b757a2e3477000000 |
DLAP questions | life11e_ch26_22_dlap.xml | 57b45e0b757a2e3477000000 |
Investigating Life | life11e_ch26_23.html | 57b45e0b757a2e3477000000 |
DLAP questions | life11e_ch26_23_dlap.xml | 57b45e0b757a2e3477000000 |
Chapter Summary
| life11e_ch26_24.html | 57b45e0b757a2e3477000000 |
DLAP questions | life11e_ch26_24_dlap.xml | 57b45e0b757a2e3477000000 |
Apply What Youâve Learned
| life11e_ch26_25.html | 57b45e0b757a2e3477000000 |
DLAP questions | life11e_ch26_25_dlap.xml | 57b45e0b757a2e3477000000 |
Chapter Introduction | life11e_ch27_1.html | 57b4a952757a2e877b000002 |
DLAP questions | life11e_ch27_1_dlap.xml | 57b4a952757a2e877b000002 |
key concept 27.1 Primary Endosymbiosis Produced the First Photosynthetic Eukaryotes
| life11e_ch27_2.html | 57b4a952757a2e877b000002 |
DLAP questions | life11e_ch27_2_dlap.xml | 57b4a952757a2e877b000002 |
Several distinct clades of algae were among the first photosynthetic eukaryotes
| life11e_ch27_3.html | 57b4a952757a2e877b000002 |
DLAP questions | life11e_ch27_3_dlap.xml | 57b4a952757a2e877b000002 |
Two groups of green algae are the closest relatives of land plants
| life11e_ch27_4.html | 57b4a952757a2e877b000002 |
DLAP questions | life11e_ch27_4_dlap.xml | 57b4a952757a2e877b000002 |
There are ten major groups of land plants
| life11e_ch27_5.html | 57b4a952757a2e877b000002 |
DLAP questions | life11e_ch27_5_dlap.xml | 57b4a952757a2e877b000002 |
recap | life11e_ch27_6.html | 57b4a952757a2e877b000002 |
DLAP questions | life11e_ch27_6_dlap.xml | 57b4a952757a2e877b000002 |
key concept 27.2 Key Adaptations Permitted Plants to Colonize Land
| life11e_ch27_7.html | 57b4a952757a2e877b000002 |
DLAP questions | life11e_ch27_7_dlap.xml | 57b4a952757a2e877b000002 |
Adaptations to life on land distinguish land plants from green algae
| life11e_ch27_8.html | 57b4a952757a2e877b000002 |
DLAP questions | life11e_ch27_8_dlap.xml | 57b4a952757a2e877b000002 |
Life cycles of land plants feature alternation of generations
| life11e_ch27_9.html | 57b4a952757a2e877b000002 |
DLAP questions | life11e_ch27_9_dlap.xml | 57b4a952757a2e877b000002 |
Nonvascular land plants live where water is readily available
| life11e_ch27_10.html | 57b4a952757a2e877b000002 |
DLAP questions | life11e_ch27_10_dlap.xml | 57b4a952757a2e877b000002 |
The sporophytes of nonvascular land plants are dependent on the gametophytes
| life11e_ch27_11.html | 57b4a952757a2e877b000002 |
DLAP questions | life11e_ch27_11_dlap.xml | 57b4a952757a2e877b000002 |
Liverworts are the sister clade of the remaining land plants
| life11e_ch27_12.html | 57b4a952757a2e877b000002 |
DLAP questions | life11e_ch27_12_dlap.xml | 57b4a952757a2e877b000002 |
Water and sugar transport mechanisms emerged in the mosses
| life11e_ch27_13.html | 57b4a952757a2e877b000002 |
DLAP questions | life11e_ch27_13_dlap.xml | 57b4a952757a2e877b000002 |
Hornworts have distinctive chloroplasts and stalkless sporophytes
| life11e_ch27_14.html | 57b4a952757a2e877b000002 |
DLAP questions | life11e_ch27_14_dlap.xml | 57b4a952757a2e877b000002 |
recap | life11e_ch27_15.html | 57b4a952757a2e877b000002 |
DLAP questions | life11e_ch27_15_dlap.xml | 57b4a952757a2e877b000002 |
key concept 27.3 Vascular Tissues Led to Rapid Diversification of Land Plants
| life11e_ch27_16.html | 57b4a952757a2e877b000002 |
DLAP questions | life11e_ch27_16_dlap.xml | 57b4a952757a2e877b000002 |
Vascular tissues transport water and dissolved materials
| life11e_ch27_17.html | 57b4a952757a2e877b000002 |
DLAP questions | life11e_ch27_17_dlap.xml | 57b4a952757a2e877b000002 |
Vascular plants allowed herbivores to colonize the land
| life11e_ch27_18.html | 57b4a952757a2e877b000002 |
DLAP questions | life11e_ch27_18_dlap.xml | 57b4a952757a2e877b000002 |
The closest relatives of vascular plants lacked roots
| life11e_ch27_19.html | 57b4a952757a2e877b000002 |
DLAP questions | life11e_ch27_19_dlap.xml | 57b4a952757a2e877b000002 |
The lycophytes are sister to the other vascular plants
| life11e_ch27_20.html | 57b4a952757a2e877b000002 |
DLAP questions | life11e_ch27_20_dlap.xml | 57b4a952757a2e877b000002 |
Horsetails and ferns constitute a clade
| life11e_ch27_21.html | 57b4a952757a2e877b000002 |
DLAP questions | life11e_ch27_21_dlap.xml | 57b4a952757a2e877b000002 |
The vascular plants branched out
| life11e_ch27_22.html | 57b4a952757a2e877b000002 |
DLAP questions | life11e_ch27_22_dlap.xml | 57b4a952757a2e877b000002 |
Heterospory appeared among the vascular plants
| life11e_ch27_23.html | 57b4a952757a2e877b000002 |
DLAP questions | life11e_ch27_23_dlap.xml | 57b4a952757a2e877b000002 |
recap | life11e_ch27_24.html | 57b4a952757a2e877b000002 |
DLAP questions | life11e_ch27_24_dlap.xml | 57b4a952757a2e877b000002 |
Investigating Life | life11e_ch27_25.html | 57b4a952757a2e877b000002 |
DLAP questions | life11e_ch27_25_dlap.xml | 57b4a952757a2e877b000002 |
Chapter Summary
| life11e_ch27_26.html | 57b4a952757a2e877b000002 |
DLAP questions | life11e_ch27_26_dlap.xml | 57b4a952757a2e877b000002 |
Apply What Youâve Learned
| life11e_ch27_27.html | 57b4a952757a2e877b000002 |
DLAP questions | life11e_ch27_27_dlap.xml | 57b4a952757a2e877b000002 |
Chapter Introduction | life11e_ch28_1.html | 57b5e656757a2e3c0f000000 |
DLAP questions | life11e_ch28_1_dlap.xml | 57b5e656757a2e3c0f000000 |
key concept 28.1 Pollen, Seeds, and Wood Contributed to the Success of Seed Plants
| life11e_ch28_2.html | 57b5e656757a2e3c0f000000 |
DLAP questions | life11e_ch28_2_dlap.xml | 57b5e656757a2e3c0f000000 |
Features of the seed plant life cycle protect gametes and embryos
| life11e_ch28_3.html | 57b5e656757a2e3c0f000000 |
DLAP questions | life11e_ch28_3_dlap.xml | 57b5e656757a2e3c0f000000 |
The seed is a complex, well-protected package
| life11e_ch28_4.html | 57b5e656757a2e3c0f000000 |
DLAP questions | life11e_ch28_4_dlap.xml | 57b5e656757a2e3c0f000000 |
A change in stem anatomy enabled seed plants to grow to great heights
| life11e_ch28_5.html | 57b5e656757a2e3c0f000000 |
DLAP questions | life11e_ch28_5_dlap.xml | 57b5e656757a2e3c0f000000 |
recap | life11e_ch28_6.html | 57b5e656757a2e3c0f000000 |
DLAP questions | life11e_ch28_6_dlap.xml | 57b5e656757a2e3c0f000000 |
key concept 28.2 Once Dominant Gymnosperms Still Thrive in Some Environments
| life11e_ch28_7.html | 57b5e656757a2e3c0f000000 |
DLAP questions | life11e_ch28_7_dlap.xml | 57b5e656757a2e3c0f000000 |
There are four major groups of living gymnosperms
| life11e_ch28_8.html | 57b5e656757a2e3c0f000000 |
DLAP questions | life11e_ch28_8_dlap.xml | 57b5e656757a2e3c0f000000 |
Conifers have cones and lack swimming sperm
| life11e_ch28_9.html | 57b5e656757a2e3c0f000000 |
DLAP questions | life11e_ch28_9_dlap.xml | 57b5e656757a2e3c0f000000 |
recap | life11e_ch28_10.html | 57b5e656757a2e3c0f000000 |
DLAP questions | life11e_ch28_10_dlap.xml | 57b5e656757a2e3c0f000000 |
key concept 28.3 Flowers and Fruits Led to Increased Diversification of Angiosperms
| life11e_ch28_11.html | 57b5e656757a2e3c0f000000 |
DLAP questions | life11e_ch28_11_dlap.xml | 57b5e656757a2e3c0f000000 |
Angiosperms have many shared derived traits
| life11e_ch28_12.html | 57b5e656757a2e3c0f000000 |
DLAP questions | life11e_ch28_12_dlap.xml | 57b5e656757a2e3c0f000000 |
The sexual structures of angiosperms are flowers
| life11e_ch28_13.html | 57b5e656757a2e3c0f000000 |
DLAP questions | life11e_ch28_13_dlap.xml | 57b5e656757a2e3c0f000000 |
Flower structure has evolved over time
| life11e_ch28_14.html | 57b5e656757a2e3c0f000000 |
DLAP questions | life11e_ch28_14_dlap.xml | 57b5e656757a2e3c0f000000 |
Angiosperms have coevolved with animals
| life11e_ch28_15.html | 57b5e656757a2e3c0f000000 |
DLAP questions | life11e_ch28_15_dlap.xml | 57b5e656757a2e3c0f000000 |
The angiosperm life cycle produces diploid zygotes nourished by triploid endosperms
| life11e_ch28_16.html | 57b5e656757a2e3c0f000000 |
DLAP questions | life11e_ch28_16_dlap.xml | 57b5e656757a2e3c0f000000 |
Fruits aid angiosperm seed dispersal
| life11e_ch28_17.html | 57b5e656757a2e3c0f000000 |
DLAP questions | life11e_ch28_17_dlap.xml | 57b5e656757a2e3c0f000000 |
Recent analyses have revealed the phylogenetic relationships of angiosperms
| life11e_ch28_18.html | 57b5e656757a2e3c0f000000 |
DLAP questions | life11e_ch28_18_dlap.xml | 57b5e656757a2e3c0f000000 |
recap | life11e_ch28_19.html | 57b5e656757a2e3c0f000000 |
DLAP questions | life11e_ch28_19_dlap.xml | 57b5e656757a2e3c0f000000 |
key concept 28.4 Plants Play Critical Roles in Terrestrial Ecosystems
| life11e_ch28_20.html | 57b5e656757a2e3c0f000000 |
DLAP questions | life11e_ch28_20_dlap.xml | 57b5e656757a2e3c0f000000 |
Seed plants have been sources of medicine since ancient times
| life11e_ch28_21.html | 57b5e656757a2e3c0f000000 |
DLAP questions | life11e_ch28_21_dlap.xml | 57b5e656757a2e3c0f000000 |
Seed plants are our primary food source
| life11e_ch28_22.html | 57b5e656757a2e3c0f000000 |
DLAP questions | life11e_ch28_22_dlap.xml | 57b5e656757a2e3c0f000000 |
recap | life11e_ch28_23.html | 57b5e656757a2e3c0f000000 |
DLAP questions | life11e_ch28_23_dlap.xml | 57b5e656757a2e3c0f000000 |
Investigating Life | life11e_ch28_24.html | 57b5e656757a2e3c0f000000 |
DLAP questions | life11e_ch28_24_dlap.xml | 57b5e656757a2e3c0f000000 |
Chapter Summary
| life11e_ch28_25.html | 57b5e656757a2e3c0f000000 |
DLAP questions | life11e_ch28_25_dlap.xml | 57b5e656757a2e3c0f000000 |
Apply What Youâve Learned
| life11e_ch28_26.html | 57b5e656757a2e3c0f000000 |
DLAP questions | life11e_ch28_26_dlap.xml | 57b5e656757a2e3c0f000000 |
Chapter Introduction | life11e_ch29_1.html | 57b72689757a2e2025000004 |
DLAP questions | life11e_ch29_1_dlap.xml | 57b72689757a2e2025000004 |
key concept 29.1 Fungi Digest Food Outside Their Bodies
| life11e_ch29_2.html | 57b72689757a2e2025000004 |
DLAP questions | life11e_ch29_2_dlap.xml | 57b72689757a2e2025000004 |
Yeasts are unicellular, free-living fungi
| life11e_ch29_3.html | 57b72689757a2e2025000004 |
DLAP questions | life11e_ch29_3_dlap.xml | 57b72689757a2e2025000004 |
Multicellular fungi use hyphae to absorb nutrients
| life11e_ch29_4.html | 57b72689757a2e2025000004 |
DLAP questions | life11e_ch29_4_dlap.xml | 57b72689757a2e2025000004 |
Fungi are in intimate contact with their environment
| life11e_ch29_5.html | 57b72689757a2e2025000004 |
DLAP questions | life11e_ch29_5_dlap.xml | 57b72689757a2e2025000004 |
recap | life11e_ch29_6.html | 57b72689757a2e2025000004 |
DLAP questions | life11e_ch29_6_dlap.xml | 57b72689757a2e2025000004 |
key concept 29.2 Fungi Are Decomposers, Parasites, Predators, or Mutualists
| life11e_ch29_7.html | 57b72689757a2e2025000004 |
DLAP questions | life11e_ch29_7_dlap.xml | 57b72689757a2e2025000004 |
Saprobic fungi are critical to the planetary carbon cycle
| life11e_ch29_8.html | 57b72689757a2e2025000004 |
DLAP questions | life11e_ch29_8_dlap.xml | 57b72689757a2e2025000004 |
Some fungi engage in parasitic or predatory interactions
| life11e_ch29_9.html | 57b72689757a2e2025000004 |
DLAP questions | life11e_ch29_9_dlap.xml | 57b72689757a2e2025000004 |
Mutualistic fungi engage in relationships that benefit both partners
| life11e_ch29_10.html | 57b72689757a2e2025000004 |
DLAP questions | life11e_ch29_10_dlap.xml | 57b72689757a2e2025000004 |
Endophytic fungi protect some plants from pathogens, herbivores, and stress
| life11e_ch29_11.html | 57b72689757a2e2025000004 |
DLAP questions | life11e_ch29_11_dlap.xml | 57b72689757a2e2025000004 |
recap | life11e_ch29_12.html | 57b72689757a2e2025000004 |
DLAP questions | life11e_ch29_12_dlap.xml | 57b72689757a2e2025000004 |
key concept 29.3 Sex in Fungi Involves Multiple Mating Types
| life11e_ch29_13.html | 57b72689757a2e2025000004 |
DLAP questions | life11e_ch29_13_dlap.xml | 57b72689757a2e2025000004 |
Fungi reproduce both sexually and asexually
| life11e_ch29_14.html | 57b72689757a2e2025000004 |
DLAP questions | life11e_ch29_14_dlap.xml | 57b72689757a2e2025000004 |
Microsporidia are highly reduced, parasitic fungi
| life11e_ch29_15.html | 57b72689757a2e2025000004 |
DLAP questions | life11e_ch29_15_dlap.xml | 57b72689757a2e2025000004 |
Most chytrids are aquatic
| life11e_ch29_16.html | 57b72689757a2e2025000004 |
DLAP questions | life11e_ch29_16_dlap.xml | 57b72689757a2e2025000004 |
Some fungal life cycles feature separate fusion of cytoplasms and nuclei
| life11e_ch29_17.html | 57b72689757a2e2025000004 |
DLAP questions | life11e_ch29_17_dlap.xml | 57b72689757a2e2025000004 |
Arbuscular mycorrhizal fungi form symbioses with plants
| life11e_ch29_18.html | 57b72689757a2e2025000004 |
DLAP questions | life11e_ch29_18_dlap.xml | 57b72689757a2e2025000004 |
The dikaryotic condition is a synapomorphy of sac fungi and club fungi
| life11e_ch29_19.html | 57b72689757a2e2025000004 |
DLAP questions | life11e_ch29_19_dlap.xml | 57b72689757a2e2025000004 |
The sexual reproductive structure of sac fungi is the ascus
| life11e_ch29_20.html | 57b72689757a2e2025000004 |
DLAP questions | life11e_ch29_20_dlap.xml | 57b72689757a2e2025000004 |
The basidium is the sexual reproductive structure of club fungi
| life11e_ch29_21.html | 57b72689757a2e2025000004 |
DLAP questions | life11e_ch29_21_dlap.xml | 57b72689757a2e2025000004 |
recap | life11e_ch29_22.html | 57b72689757a2e2025000004 |
DLAP questions | life11e_ch29_22_dlap.xml | 57b72689757a2e2025000004 |
key concept 29.4 Fungi Have Many Practical Uses
| life11e_ch29_23.html | 57b72689757a2e2025000004 |
DLAP questions | life11e_ch29_23_dlap.xml | 57b72689757a2e2025000004 |
Fungi are important in producing food and drink
| life11e_ch29_24.html | 57b72689757a2e2025000004 |
DLAP questions | life11e_ch29_24_dlap.xml | 57b72689757a2e2025000004 |
Fungi provide important weapons against diseases and pests
| life11e_ch29_25.html | 57b72689757a2e2025000004 |
DLAP questions | life11e_ch29_25_dlap.xml | 57b72689757a2e2025000004 |
Lichen diversity and abundance are indicators of air quality
| life11e_ch29_26.html | 57b72689757a2e2025000004 |
DLAP questions | life11e_ch29_26_dlap.xml | 57b72689757a2e2025000004 |
Fungi record and help remediate environmental pollution
| life11e_ch29_27.html | 57b72689757a2e2025000004 |
DLAP questions | life11e_ch29_27_dlap.xml | 57b72689757a2e2025000004 |
Reforestation may depend on mycorrhizal fungi
| life11e_ch29_28.html | 57b72689757a2e2025000004 |
DLAP questions | life11e_ch29_28_dlap.xml | 57b72689757a2e2025000004 |
Fungi are used as model organisms in laboratory studies
| life11e_ch29_29.html | 57b72689757a2e2025000004 |
DLAP questions | life11e_ch29_29_dlap.xml | 57b72689757a2e2025000004 |
recap | life11e_ch29_30.html | 57b72689757a2e2025000004 |
DLAP questions | life11e_ch29_30_dlap.xml | 57b72689757a2e2025000004 |
Investigating Life | life11e_ch29_31.html | 57b72689757a2e2025000004 |
DLAP questions | life11e_ch29_31_dlap.xml | 57b72689757a2e2025000004 |
Chapter Summary
| life11e_ch29_32.html | 57b72689757a2e2025000004 |
DLAP questions | life11e_ch29_32_dlap.xml | 57b72689757a2e2025000004 |
Apply What Youâve Learned
| life11e_ch29_33.html | 57b72689757a2e2025000004 |
DLAP questions | life11e_ch29_33_dlap.xml | 57b72689757a2e2025000004 |
Chapter Introduction | life11e_ch30_1.html | 57b7be37757a2e0629000003 |
DLAP questions | life11e_ch30_1_dlap.xml | 57b7be37757a2e0629000003 |
key concept 30.1 Some Animal Characteristics Evolved More Than Once
| life11e_ch30_2.html | 57b7be37757a2e0629000003 |
DLAP questions | life11e_ch30_2_dlap.xml | 57b7be37757a2e0629000003 |
Animal monophyly is supported by gene sequences and morphology
| life11e_ch30_3.html | 57b7be37757a2e0629000003 |
DLAP questions | life11e_ch30_3_dlap.xml | 57b7be37757a2e0629000003 |
A few basic developmental patterns differentiate major animal groups
| life11e_ch30_4.html | 57b7be37757a2e0629000003 |
DLAP questions | life11e_ch30_4_dlap.xml | 57b7be37757a2e0629000003 |
recap | life11e_ch30_5.html | 57b7be37757a2e0629000003 |
DLAP questions | life11e_ch30_5_dlap.xml | 57b7be37757a2e0629000003 |
key concept 30.2 Animals Diverged with Distinct Body Plans
| life11e_ch30_6.html | 57b7be37757a2e0629000003 |
DLAP questions | life11e_ch30_6_dlap.xml | 57b7be37757a2e0629000003 |
Most animals are symmetrical
| life11e_ch30_7.html | 57b7be37757a2e0629000003 |
DLAP questions | life11e_ch30_7_dlap.xml | 57b7be37757a2e0629000003 |
The structure of the body cavity influences movement
| life11e_ch30_8.html | 57b7be37757a2e0629000003 |
DLAP questions | life11e_ch30_8_dlap.xml | 57b7be37757a2e0629000003 |
Segmentation improves control of movement
| life11e_ch30_9.html | 57b7be37757a2e0629000003 |
DLAP questions | life11e_ch30_9_dlap.xml | 57b7be37757a2e0629000003 |
Appendages have many uses
| life11e_ch30_10.html | 57b7be37757a2e0629000003 |
DLAP questions | life11e_ch30_10_dlap.xml | 57b7be37757a2e0629000003 |
Nervous systems coordinate movement and allow sensory processing
| life11e_ch30_11.html | 57b7be37757a2e0629000003 |
DLAP questions | life11e_ch30_11_dlap.xml | 57b7be37757a2e0629000003 |
recap | life11e_ch30_12.html | 57b7be37757a2e0629000003 |
DLAP questions | life11e_ch30_12_dlap.xml | 57b7be37757a2e0629000003 |
key concept 30.3 Animals Use Diverse Forms of Movement to Feed
| life11e_ch30_13.html | 57b7be37757a2e0629000003 |
DLAP questions | life11e_ch30_13_dlap.xml | 57b7be37757a2e0629000003 |
Filter feeders capture small prey
| life11e_ch30_14.html | 57b7be37757a2e0629000003 |
DLAP questions | life11e_ch30_14_dlap.xml | 57b7be37757a2e0629000003 |
Herbivores eat plants
| life11e_ch30_15.html | 57b7be37757a2e0629000003 |
DLAP questions | life11e_ch30_15_dlap.xml | 57b7be37757a2e0629000003 |
Predators and omnivores capture and subdue prey
| life11e_ch30_16.html | 57b7be37757a2e0629000003 |
DLAP questions | life11e_ch30_16_dlap.xml | 57b7be37757a2e0629000003 |
Parasites live in or on other organisms
| life11e_ch30_17.html | 57b7be37757a2e0629000003 |
DLAP questions | life11e_ch30_17_dlap.xml | 57b7be37757a2e0629000003 |
Detritivores live on the remains of other organisms
| life11e_ch30_18.html | 57b7be37757a2e0629000003 |
DLAP questions | life11e_ch30_18_dlap.xml | 57b7be37757a2e0629000003 |
recap | life11e_ch30_19.html | 57b7be37757a2e0629000003 |
DLAP questions | life11e_ch30_19_dlap.xml | 57b7be37757a2e0629000003 |
key concept 30.4 Animal Life Cycles Involve Trade-Offs
| life11e_ch30_20.html | 57b7be37757a2e0629000003 |
DLAP questions | life11e_ch30_20_dlap.xml | 57b7be37757a2e0629000003 |
Many animal life cycles feature specialized life stages
| life11e_ch30_21.html | 57b7be37757a2e0629000003 |
DLAP questions | life11e_ch30_21_dlap.xml | 57b7be37757a2e0629000003 |
Most animal life cycles have at least one dispersal stage
| life11e_ch30_22.html | 57b7be37757a2e0629000003 |
DLAP questions | life11e_ch30_22_dlap.xml | 57b7be37757a2e0629000003 |
Parasite life cycles facilitate dispersal and overcome host defenses
| life11e_ch30_23.html | 57b7be37757a2e0629000003 |
DLAP questions | life11e_ch30_23_dlap.xml | 57b7be37757a2e0629000003 |
Some animals form colonies of genetically identical, physiologically integrated individuals
| life11e_ch30_24.html | 57b7be37757a2e0629000003 |
DLAP questions | life11e_ch30_24_dlap.xml | 57b7be37757a2e0629000003 |
No life cycle can maximize all benefits
| life11e_ch30_25.html | 57b7be37757a2e0629000003 |
DLAP questions | life11e_ch30_25_dlap.xml | 57b7be37757a2e0629000003 |
recap | life11e_ch30_26.html | 57b7be37757a2e0629000003 |
DLAP questions | life11e_ch30_26_dlap.xml | 57b7be37757a2e0629000003 |
key concept 30.5 The Root of the Animal Tree Provides Clues to Early Animal Diversification
| life11e_ch30_27.html | 57b7be37757a2e0629000003 |
DLAP questions | life11e_ch30_27_dlap.xml | 57b7be37757a2e0629000003 |
Ctenophores are the sister group of all other animals
| life11e_ch30_28.html | 57b7be37757a2e0629000003 |
DLAP questions | life11e_ch30_28_dlap.xml | 57b7be37757a2e0629000003 |
Sponges are loosely organized animals
| life11e_ch30_29.html | 57b7be37757a2e0629000003 |
DLAP questions | life11e_ch30_29_dlap.xml | 57b7be37757a2e0629000003 |
Placozoans are abundant but rarely observed
| life11e_ch30_30.html | 57b7be37757a2e0629000003 |
DLAP questions | life11e_ch30_30_dlap.xml | 57b7be37757a2e0629000003 |
Cnidarians are specialized predators
| life11e_ch30_31.html | 57b7be37757a2e0629000003 |
DLAP questions | life11e_ch30_31_dlap.xml | 57b7be37757a2e0629000003 |
Some small groups of parasitic animals may be the closest relatives of bilaterians
| life11e_ch30_32.html | 57b7be37757a2e0629000003 |
DLAP questions | life11e_ch30_32_dlap.xml | 57b7be37757a2e0629000003 |
recap | life11e_ch30_33.html | 57b7be37757a2e0629000003 |
DLAP questions | life11e_ch30_33_dlap.xml | 57b7be37757a2e0629000003 |
Investigating Life | life11e_ch30_34.html | 57b7be37757a2e0629000003 |
DLAP questions | life11e_ch30_34_dlap.xml | 57b7be37757a2e0629000003 |
Chapter Summary
| life11e_ch30_35.html | 57b7be37757a2e0629000003 |
DLAP questions | life11e_ch30_35_dlap.xml | 57b7be37757a2e0629000003 |
Apply What Youâve Learned
| life11e_ch30_36.html | 57b7be37757a2e0629000003 |
DLAP questions | life11e_ch30_36_dlap.xml | 57b7be37757a2e0629000003 |
Chapter Introduction | life11e_ch31_1.html | 57bc610b757a2efa44000000 |
DLAP questions | life11e_ch31_1_dlap.xml | 57bc610b757a2efa44000000 |
key concept 31.1 Protostomes Account for More Than Half of All Described Species
| life11e_ch31_2.html | 57bc610b757a2efa44000000 |
DLAP questions | life11e_ch31_2_dlap.xml | 57bc610b757a2efa44000000 |
Cilia-bearing lophophores and trochophores evolved among the lophotrochozoans
| life11e_ch31_3.html | 57bc610b757a2efa44000000 |
DLAP questions | life11e_ch31_3_dlap.xml | 57bc610b757a2efa44000000 |
Ecdysozoans must shed their cuticles
| life11e_ch31_4.html | 57bc610b757a2efa44000000 |
DLAP questions | life11e_ch31_4_dlap.xml | 57bc610b757a2efa44000000 |
Arrow worms retain some ancestral developmental features
| life11e_ch31_5.html | 57bc610b757a2efa44000000 |
DLAP questions | life11e_ch31_5_dlap.xml | 57bc610b757a2efa44000000 |
recap | life11e_ch31_6.html | 57bc610b757a2efa44000000 |
DLAP questions | life11e_ch31_6_dlap.xml | 57bc610b757a2efa44000000 |
key concept 31.2 Many Lophotrochozoans Have Ciliated Feeding Structures or Life Stages
| life11e_ch31_7.html | 57bc610b757a2efa44000000 |
DLAP questions | life11e_ch31_7_dlap.xml | 57bc610b757a2efa44000000 |
Most bryozoans and entoprocts live in colonies
| life11e_ch31_8.html | 57bc610b757a2efa44000000 |
DLAP questions | life11e_ch31_8_dlap.xml | 57bc610b757a2efa44000000 |
Flatworms, rotifers, and gastrotrichs are structurally diverse relatives
| life11e_ch31_9.html | 57bc610b757a2efa44000000 |
DLAP questions | life11e_ch31_9_dlap.xml | 57bc610b757a2efa44000000 |
Ribbon worms have a long, protrusible feeding organ
| life11e_ch31_10.html | 57bc610b757a2efa44000000 |
DLAP questions | life11e_ch31_10_dlap.xml | 57bc610b757a2efa44000000 |
Brachiopods and phoronids use lophophores to extract food from the water
| life11e_ch31_11.html | 57bc610b757a2efa44000000 |
DLAP questions | life11e_ch31_11_dlap.xml | 57bc610b757a2efa44000000 |
Annelids have segmented bodies
| life11e_ch31_12.html | 57bc610b757a2efa44000000 |
DLAP questions | life11e_ch31_12_dlap.xml | 57bc610b757a2efa44000000 |
Mollusks have undergone a dramatic evolutionary radiation
| life11e_ch31_13.html | 57bc610b757a2efa44000000 |
DLAP questions | life11e_ch31_13_dlap.xml | 57bc610b757a2efa44000000 |
recap | life11e_ch31_14.html | 57bc610b757a2efa44000000 |
DLAP questions | life11e_ch31_14_dlap.xml | 57bc610b757a2efa44000000 |
key concept 31.3 Ecdysozoans Grow by Shedding Their Cuticles
| life11e_ch31_15.html | 57bc610b757a2efa44000000 |
DLAP questions | life11e_ch31_15_dlap.xml | 57bc610b757a2efa44000000 |
Several marine ecdysozoan groups have relatively few species
| life11e_ch31_16.html | 57bc610b757a2efa44000000 |
DLAP questions | life11e_ch31_16_dlap.xml | 57bc610b757a2efa44000000 |
Nematodes and their relatives are abundant and diverse
| life11e_ch31_17.html | 57bc610b757a2efa44000000 |
DLAP questions | life11e_ch31_17_dlap.xml | 57bc610b757a2efa44000000 |
recap | life11e_ch31_18.html | 57bc610b757a2efa44000000 |
DLAP questions | life11e_ch31_18_dlap.xml | 57bc610b757a2efa44000000 |
key concept 31.4 Arthropods Are the Most Abundant and Diverse Group of Animals
| life11e_ch31_19.html | 57bc610b757a2efa44000000 |
DLAP questions | life11e_ch31_19_dlap.xml | 57bc610b757a2efa44000000 |
Arthropod relatives have fleshy, unjointed appendages
| life11e_ch31_20.html | 57bc610b757a2efa44000000 |
DLAP questions | life11e_ch31_20_dlap.xml | 57bc610b757a2efa44000000 |
Jointed appendages appeared in the trilobites
| life11e_ch31_21.html | 57bc610b757a2efa44000000 |
DLAP questions | life11e_ch31_21_dlap.xml | 57bc610b757a2efa44000000 |
Chelicerates have pointed, nonchewing mouthparts
| life11e_ch31_22.html | 57bc610b757a2efa44000000 |
DLAP questions | life11e_ch31_22_dlap.xml | 57bc610b757a2efa44000000 |
Mandibles and antennae characterize the remaining arthropod groups
| life11e_ch31_23.html | 57bc610b757a2efa44000000 |
DLAP questions | life11e_ch31_23_dlap.xml | 57bc610b757a2efa44000000 |
More than half of all described species are insects
| life11e_ch31_24.html | 57bc610b757a2efa44000000 |
DLAP questions | life11e_ch31_24_dlap.xml | 57bc610b757a2efa44000000 |
recap | life11e_ch31_25.html | 57bc610b757a2efa44000000 |
DLAP questions | life11e_ch31_25_dlap.xml | 57bc610b757a2efa44000000 |
Key Features of Protostome Evolution
| life11e_ch31_26.html | 57bc610b757a2efa44000000 |
DLAP questions | life11e_ch31_26_dlap.xml | 57bc610b757a2efa44000000 |
Investigating Life | life11e_ch31_27.html | 57bc610b757a2efa44000000 |
DLAP questions | life11e_ch31_27_dlap.xml | 57bc610b757a2efa44000000 |
Chapter Summary
| life11e_ch31_28.html | 57bc610b757a2efa44000000 |
DLAP questions | life11e_ch31_28_dlap.xml | 57bc610b757a2efa44000000 |
Apply What Youâve Learned
| life11e_ch31_29.html | 57bc610b757a2efa44000000 |
DLAP questions | life11e_ch31_29_dlap.xml | 57bc610b757a2efa44000000 |
Chapter Introduction | life11e_ch32_1.html | 57bca950757a2e6d4a000000 |
DLAP questions | life11e_ch32_1_dlap.xml | 57bca950757a2e6d4a000000 |
key concept 32.1 Deuterostomes Include Echinoderms, Hemichordates, and Chordates
| life11e_ch32_2.html | 57bca950757a2e6d4a000000 |
DLAP questions | life11e_ch32_2_dlap.xml | 57bca950757a2e6d4a000000 |
Deuterostomes share early developmental patterns
| life11e_ch32_3.html | 57bca950757a2e6d4a000000 |
DLAP questions | life11e_ch32_3_dlap.xml | 57bca950757a2e6d4a000000 |
There are three major deuterostome clades
| life11e_ch32_4.html | 57bca950757a2e6d4a000000 |
DLAP questions | life11e_ch32_4_dlap.xml | 57bca950757a2e6d4a000000 |
Fossils shed light on deuterostome ancestors
| life11e_ch32_5.html | 57bca950757a2e6d4a000000 |
DLAP questions | life11e_ch32_5_dlap.xml | 57bca950757a2e6d4a000000 |
recap | life11e_ch32_6.html | 57bca950757a2e6d4a000000 |
DLAP questions | life11e_ch32_6_dlap.xml | 57bca950757a2e6d4a000000 |
key concept 32.2 Echinoderms and Hemichordates Are Restricted to Marine Environments
| life11e_ch32_7.html | 57bca950757a2e6d4a000000 |
DLAP questions | life11e_ch32_7_dlap.xml | 57bca950757a2e6d4a000000 |
Echinoderms have unique structural features
| life11e_ch32_8.html | 57bca950757a2e6d4a000000 |
DLAP questions | life11e_ch32_8_dlap.xml | 57bca950757a2e6d4a000000 |
Hemichordates are wormlike marine deuterostomes
| life11e_ch32_9.html | 57bca950757a2e6d4a000000 |
DLAP questions | life11e_ch32_9_dlap.xml | 57bca950757a2e6d4a000000 |
recap | life11e_ch32_10.html | 57bca950757a2e6d4a000000 |
DLAP questions | life11e_ch32_10_dlap.xml | 57bca950757a2e6d4a000000 |
key concept 32.3 Chordates Have a Dorsal Nerve Cord and a Notochord
| life11e_ch32_11.html | 57bca950757a2e6d4a000000 |
DLAP questions | life11e_ch32_11_dlap.xml | 57bca950757a2e6d4a000000 |
Adults of most lancelets and tunicates are sedentary
| life11e_ch32_12.html | 57bca950757a2e6d4a000000 |
DLAP questions | life11e_ch32_12_dlap.xml | 57bca950757a2e6d4a000000 |
A dorsal supporting structure replaces the notochord in vertebrates
| life11e_ch32_13.html | 57bca950757a2e6d4a000000 |
DLAP questions | life11e_ch32_13_dlap.xml | 57bca950757a2e6d4a000000 |
The phylogenetic relationships of jawless fishes are uncertain
| life11e_ch32_14.html | 57bca950757a2e6d4a000000 |
DLAP questions | life11e_ch32_14_dlap.xml | 57bca950757a2e6d4a000000 |
Jaws and teeth improved feeding efficiency
| life11e_ch32_15.html | 57bca950757a2e6d4a000000 |
DLAP questions | life11e_ch32_15_dlap.xml | 57bca950757a2e6d4a000000 |
Fins and swim bladders improved stability and control over locomotion
| life11e_ch32_16.html | 57bca950757a2e6d4a000000 |
DLAP questions | life11e_ch32_16_dlap.xml | 57bca950757a2e6d4a000000 |
recap | life11e_ch32_17.html | 57bca950757a2e6d4a000000 |
DLAP questions | life11e_ch32_17_dlap.xml | 57bca950757a2e6d4a000000 |
key concept 32.4 Life on Land Contributed to Vertebrate Diversification
| life11e_ch32_18.html | 57bca950757a2e6d4a000000 |
DLAP questions | life11e_ch32_18_dlap.xml | 57bca950757a2e6d4a000000 |
Jointed limbs enhanced support and locomotion on land
| life11e_ch32_19.html | 57bca950757a2e6d4a000000 |
DLAP questions | life11e_ch32_19_dlap.xml | 57bca950757a2e6d4a000000 |
Amphibians usually require moist environments
| life11e_ch32_20.html | 57bca950757a2e6d4a000000 |
DLAP questions | life11e_ch32_20_dlap.xml | 57bca950757a2e6d4a000000 |
Amniotes colonized dry environments
| life11e_ch32_21.html | 57bca950757a2e6d4a000000 |
DLAP questions | life11e_ch32_21_dlap.xml | 57bca950757a2e6d4a000000 |
Reptiles adapted to life in many habitats
| life11e_ch32_22.html | 57bca950757a2e6d4a000000 |
DLAP questions | life11e_ch32_22_dlap.xml | 57bca950757a2e6d4a000000 |
Crocodilians and birds share their ancestry with the dinosaurs
| life11e_ch32_23.html | 57bca950757a2e6d4a000000 |
DLAP questions | life11e_ch32_23_dlap.xml | 57bca950757a2e6d4a000000 |
Feathers allowed birds to fly
| life11e_ch32_24.html | 57bca950757a2e6d4a000000 |
DLAP questions | life11e_ch32_24_dlap.xml | 57bca950757a2e6d4a000000 |
Mammals radiated after the extinction of non-avian dinosaurs
| life11e_ch32_25.html | 57bca950757a2e6d4a000000 |
DLAP questions | life11e_ch32_25_dlap.xml | 57bca950757a2e6d4a000000 |
recap | life11e_ch32_26.html | 57bca950757a2e6d4a000000 |
DLAP questions | life11e_ch32_26_dlap.xml | 57bca950757a2e6d4a000000 |
key concept 32.5 Humans Evolved among the Primates
| life11e_ch32_27.html | 57bca950757a2e6d4a000000 |
DLAP questions | life11e_ch32_27_dlap.xml | 57bca950757a2e6d4a000000 |
Two major lineages of primates split late in the Cretaceous
| life11e_ch32_28.html | 57bca950757a2e6d4a000000 |
DLAP questions | life11e_ch32_28_dlap.xml | 57bca950757a2e6d4a000000 |
Bipedal locomotion evolved in human ancestors
| life11e_ch32_29.html | 57bca950757a2e6d4a000000 |
DLAP questions | life11e_ch32_29_dlap.xml | 57bca950757a2e6d4a000000 |
Human brains became larger as jaws became smaller
| life11e_ch32_30.html | 57bca950757a2e6d4a000000 |
DLAP questions | life11e_ch32_30_dlap.xml | 57bca950757a2e6d4a000000 |
Humans developed complex language and culture
| life11e_ch32_31.html | 57bca950757a2e6d4a000000 |
DLAP questions | life11e_ch32_31_dlap.xml | 57bca950757a2e6d4a000000 |
recap | life11e_ch32_32.html | 57bca950757a2e6d4a000000 |
DLAP questions | life11e_ch32_32_dlap.xml | 57bca950757a2e6d4a000000 |
Investigating Life | life11e_ch32_33.html | 57bca950757a2e6d4a000000 |
DLAP questions | life11e_ch32_33_dlap.xml | 57bca950757a2e6d4a000000 |
Chapter Summary
| life11e_ch32_34.html | 57bca950757a2e6d4a000000 |
DLAP questions | life11e_ch32_34_dlap.xml | 57bca950757a2e6d4a000000 |
Apply What Youâve Learned
| life11e_ch32_35.html | 57bca950757a2e6d4a000000 |
DLAP questions | life11e_ch32_35_dlap.xml | 57bca950757a2e6d4a000000 |
Chapter Introduction | life11e_ch33_1.html | 57bde21b757a2ee15b000000 |
DLAP questions | life11e_ch33_1_dlap.xml | 57bde21b757a2ee15b000000 |
key concept 33.1 The Plant Body Is Organized in a Distinctive Way
| life11e_ch33_2.html | 57bde21b757a2ee15b000000 |
DLAP questions | life11e_ch33_2_dlap.xml | 57bde21b757a2ee15b000000 |
Most angiosperms are either monocots or eudicots
| life11e_ch33_3.html | 57bde21b757a2ee15b000000 |
DLAP questions | life11e_ch33_3_dlap.xml | 57bde21b757a2ee15b000000 |
Plants develop differently than animals
| life11e_ch33_4.html | 57bde21b757a2ee15b000000 |
DLAP questions | life11e_ch33_4_dlap.xml | 57bde21b757a2ee15b000000 |
Apicalâbasal polarity and radial symmetry are characteristics of the plant body
| life11e_ch33_5.html | 57bde21b757a2ee15b000000 |
DLAP questions | life11e_ch33_5_dlap.xml | 57bde21b757a2ee15b000000 |
33.1 recap
| life11e_ch33_6.html | 57bde21b757a2ee15b000000 |
DLAP questions | life11e_ch33_6_dlap.xml | 57bde21b757a2ee15b000000 |
key concept 33.2 Plant Organs Are Made Up of Three Tissue Systems
| life11e_ch33_7.html | 57bde21b757a2ee15b000000 |
DLAP questions | life11e_ch33_7_dlap.xml | 57bde21b757a2ee15b000000 |
The dermal tissue system forms the outer covering of a plant
| life11e_ch33_8.html | 57bde21b757a2ee15b000000 |
DLAP questions | life11e_ch33_8_dlap.xml | 57bde21b757a2ee15b000000 |
The ground tissue system makes up most of the plant body
| life11e_ch33_9.html | 57bde21b757a2ee15b000000 |
DLAP questions | life11e_ch33_9_dlap.xml | 57bde21b757a2ee15b000000 |
The vascular tissue system develops into the plantâs transport system
| life11e_ch33_10.html | 57bde21b757a2ee15b000000 |
DLAP questions | life11e_ch33_10_dlap.xml | 57bde21b757a2ee15b000000 |
33.2 recap
| life11e_ch33_11.html | 57bde21b757a2ee15b000000 |
DLAP questions | life11e_ch33_11_dlap.xml | 57bde21b757a2ee15b000000 |
key concept 33.3 Meristems Build a Continuously Growing Plant
| life11e_ch33_12.html | 57bde21b757a2ee15b000000 |
DLAP questions | life11e_ch33_12_dlap.xml | 57bde21b757a2ee15b000000 |
How do plants increase in size?
| life11e_ch33_13.html | 57bde21b757a2ee15b000000 |
DLAP questions | life11e_ch33_13_dlap.xml | 57bde21b757a2ee15b000000 |
Meristems generate the plant body
| life11e_ch33_14.html | 57bde21b757a2ee15b000000 |
DLAP questions | life11e_ch33_14_dlap.xml | 57bde21b757a2ee15b000000 |
Indeterminate primary growth originates in apical meristems
| life11e_ch33_15.html | 57bde21b757a2ee15b000000 |
DLAP questions | life11e_ch33_15_dlap.xml | 57bde21b757a2ee15b000000 |
The root apical meristem gives rise to the root cap and the root primary meristems
| life11e_ch33_16.html | 57bde21b757a2ee15b000000 |
DLAP questions | life11e_ch33_16_dlap.xml | 57bde21b757a2ee15b000000 |
The products of the rootâs primary meristems become root tissues
| life11e_ch33_17.html | 57bde21b757a2ee15b000000 |
DLAP questions | life11e_ch33_17_dlap.xml | 57bde21b757a2ee15b000000 |
The root system anchors the plant and takes up water and dissolved minerals
| life11e_ch33_18.html | 57bde21b757a2ee15b000000 |
DLAP questions | life11e_ch33_18_dlap.xml | 57bde21b757a2ee15b000000 |
The products of the stemâs primary meristems become stem tissues
| life11e_ch33_19.html | 57bde21b757a2ee15b000000 |
DLAP questions | life11e_ch33_19_dlap.xml | 57bde21b757a2ee15b000000 |
The stem supports leaves and flowers but can have other roles
| life11e_ch33_20.html | 57bde21b757a2ee15b000000 |
DLAP questions | life11e_ch33_20_dlap.xml | 57bde21b757a2ee15b000000 |
Leaves are determinate organs produced by shoot apical meristems
| life11e_ch33_21.html | 57bde21b757a2ee15b000000 |
DLAP questions | life11e_ch33_21_dlap.xml | 57bde21b757a2ee15b000000 |
Many stems and roots undergo secondary growth
| life11e_ch33_22.html | 57bde21b757a2ee15b000000 |
DLAP questions | life11e_ch33_22_dlap.xml | 57bde21b757a2ee15b000000 |
33.3 recap
| life11e_ch33_23.html | 57bde21b757a2ee15b000000 |
DLAP questions | life11e_ch33_23_dlap.xml | 57bde21b757a2ee15b000000 |
key concept 33.4 Domestication Has Altered Plant Form
| life11e_ch33_24.html | 57bde21b757a2ee15b000000 |
DLAP questions | life11e_ch33_24_dlap.xml | 57bde21b757a2ee15b000000 |
33.4 recap
| life11e_ch33_25.html | 57bde21b757a2ee15b000000 |
DLAP questions | life11e_ch33_25_dlap.xml | 57bde21b757a2ee15b000000 |
Investigating Life | life11e_ch33_26.html | 57bde21b757a2ee15b000000 |
DLAP questions | life11e_ch33_26_dlap.xml | 57bde21b757a2ee15b000000 |
Chapter Summary
| life11e_ch33_27.html | 57bde21b757a2ee15b000000 |
DLAP questions | life11e_ch33_27_dlap.xml | 57bde21b757a2ee15b000000 |
Apply What Youâve Learned
| life11e_ch33_28.html | 57bde21b757a2ee15b000000 |
DLAP questions | life11e_ch33_28_dlap.xml | 57bde21b757a2ee15b000000 |
Chapter Introduction | life11e_ch34_1.html | 57be5291757a2e6a63000000 |
DLAP questions | life11e_ch34_1_dlap.xml | 57be5291757a2e6a63000000 |
key concept 34.1 Plants Acquire Water and Minerals from the Soil
| life11e_ch34_2.html | 57be5291757a2e6a63000000 |
DLAP questions | life11e_ch34_2_dlap.xml | 57be5291757a2e6a63000000 |
Water potential differences govern the direction of water movement
| life11e_ch34_3.html | 57be5291757a2e6a63000000 |
DLAP questions | life11e_ch34_3_dlap.xml | 57be5291757a2e6a63000000 |
Water and ions move across the root cellâs cell membrane
| life11e_ch34_4.html | 57be5291757a2e6a63000000 |
DLAP questions | life11e_ch34_4_dlap.xml | 57be5291757a2e6a63000000 |
Water and ions pass to the xylem by way of the apoplast and symplast
| life11e_ch34_5.html | 57be5291757a2e6a63000000 |
DLAP questions | life11e_ch34_5_dlap.xml | 57be5291757a2e6a63000000 |
recap
| life11e_ch34_6.html | 57be5291757a2e6a63000000 |
DLAP questions | life11e_ch34_6_dlap.xml | 57be5291757a2e6a63000000 |
key concept 34.2 Water and Minerals Are Transported in the Xylem
| life11e_ch34_7.html | 57be5291757a2e6a63000000 |
DLAP questions | life11e_ch34_7_dlap.xml | 57be5291757a2e6a63000000 |
Various hypotheses have proposed how water moves in the xylem
| life11e_ch34_8.html | 57be5291757a2e6a63000000 |
DLAP questions | life11e_ch34_8_dlap.xml | 57be5291757a2e6a63000000 |
The transpirationâcohesionâtension mechanism accounts for xylem transport
| life11e_ch34_9.html | 57be5291757a2e6a63000000 |
DLAP questions | life11e_ch34_9_dlap.xml | 57be5291757a2e6a63000000 |
recap
| life11e_ch34_10.html | 57be5291757a2e6a63000000 |
DLAP questions | life11e_ch34_10_dlap.xml | 57be5291757a2e6a63000000 |
key concept 34.3 Stomata Control the Loss of Water and the Uptake of CO2
| life11e_ch34_11.html | 57be5291757a2e6a63000000 |
DLAP questions | life11e_ch34_11_dlap.xml | 57be5291757a2e6a63000000 |
Stomata control water loss and gas exchange
| life11e_ch34_12.html | 57be5291757a2e6a63000000 |
DLAP questions | life11e_ch34_12_dlap.xml | 57be5291757a2e6a63000000 |
The guard cells control the size of the stomatal opening
| life11e_ch34_13.html | 57be5291757a2e6a63000000 |
DLAP questions | life11e_ch34_13_dlap.xml | 57be5291757a2e6a63000000 |
recap
| life11e_ch34_14.html | 57be5291757a2e6a63000000 |
DLAP questions | life11e_ch34_14_dlap.xml | 57be5291757a2e6a63000000 |
key concept 34.4 Solutes Are Transported in the Phloem
| life11e_ch34_15.html | 57be5291757a2e6a63000000 |
DLAP questions | life11e_ch34_15_dlap.xml | 57be5291757a2e6a63000000 |
Sucrose and other solutes are carried in the phloem
| life11e_ch34_16.html | 57be5291757a2e6a63000000 |
DLAP questions | life11e_ch34_16_dlap.xml | 57be5291757a2e6a63000000 |
The pressure flow model accounts for translocation in the phloem
| life11e_ch34_17.html | 57be5291757a2e6a63000000 |
DLAP questions | life11e_ch34_17_dlap.xml | 57be5291757a2e6a63000000 |
recap
| life11e_ch34_18.html | 57be5291757a2e6a63000000 |
DLAP questions | life11e_ch34_18_dlap.xml | 57be5291757a2e6a63000000 |
Investigating Life | life11e_ch34_19.html | 57be5291757a2e6a63000000 |
DLAP questions | life11e_ch34_19_dlap.xml | 57be5291757a2e6a63000000 |
Chapter Summary
| life11e_ch34_20.html | 57be5291757a2e6a63000000 |
DLAP questions | life11e_ch34_20_dlap.xml | 57be5291757a2e6a63000000 |
Apply What Youâve Learned
| life11e_ch34_21.html | 57be5291757a2e6a63000000 |
DLAP questions | life11e_ch34_21_dlap.xml | 57be5291757a2e6a63000000 |
Chapter Introduction | life11e_ch35_1.html | 57bf1677757a2e4b6f000000 |
DLAP questions | life11e_ch35_1_dlap.xml | 57bf1677757a2e4b6f000000 |
key concept 35.1 Plants Require Nutrients
| life11e_ch35_2.html | 57bf1677757a2e4b6f000000 |
DLAP questions | life11e_ch35_2_dlap.xml | 57bf1677757a2e4b6f000000 |
Plants require nutrients in different amounts
| life11e_ch35_3.html | 57bf1677757a2e4b6f000000 |
DLAP questions | life11e_ch35_3_dlap.xml | 57bf1677757a2e4b6f000000 |
Deficiency symptoms reveal inadequate nutrition
| life11e_ch35_4.html | 57bf1677757a2e4b6f000000 |
DLAP questions | life11e_ch35_4_dlap.xml | 57bf1677757a2e4b6f000000 |
Hydroponic experiments identified essential elements
| life11e_ch35_5.html | 57bf1677757a2e4b6f000000 |
DLAP questions | life11e_ch35_5_dlap.xml | 57bf1677757a2e4b6f000000 |
recap | life11e_ch35_6.html | 57bf1677757a2e4b6f000000 |
DLAP questions | life11e_ch35_6_dlap.xml | 57bf1677757a2e4b6f000000 |
key concept 35.2 Plants Acquire Nutrients from the Soil
| life11e_ch35_7.html | 57bf1677757a2e4b6f000000 |
DLAP questions | life11e_ch35_7_dlap.xml | 57bf1677757a2e4b6f000000 |
Plants rely on growth to find nutrients
| life11e_ch35_8.html | 57bf1677757a2e4b6f000000 |
DLAP questions | life11e_ch35_8_dlap.xml | 57bf1677757a2e4b6f000000 |
Nutrient uptake and assimilation are regulated
| life11e_ch35_9.html | 57bf1677757a2e4b6f000000 |
DLAP questions | life11e_ch35_9_dlap.xml | 57bf1677757a2e4b6f000000 |
recap | life11e_ch35_10.html | 57bf1677757a2e4b6f000000 |
DLAP questions | life11e_ch35_10_dlap.xml | 57bf1677757a2e4b6f000000 |
key concept 35.3 Soil Structure Affects Plant Nutrition
| life11e_ch35_11.html | 57bf1677757a2e4b6f000000 |
DLAP questions | life11e_ch35_11_dlap.xml | 57bf1677757a2e4b6f000000 |
Soil provides anchorage and nutrients for plants
| life11e_ch35_12.html | 57bf1677757a2e4b6f000000 |
DLAP questions | life11e_ch35_12_dlap.xml | 57bf1677757a2e4b6f000000 |
Soils form through the weathering of rock
| life11e_ch35_13.html | 57bf1677757a2e4b6f000000 |
DLAP questions | life11e_ch35_13_dlap.xml | 57bf1677757a2e4b6f000000 |
Soils are the source of plant nutrition
| life11e_ch35_14.html | 57bf1677757a2e4b6f000000 |
DLAP questions | life11e_ch35_14_dlap.xml | 57bf1677757a2e4b6f000000 |
Fertilizers add nutrients to soil
| life11e_ch35_15.html | 57bf1677757a2e4b6f000000 |
DLAP questions | life11e_ch35_15_dlap.xml | 57bf1677757a2e4b6f000000 |
recap | life11e_ch35_16.html | 57bf1677757a2e4b6f000000 |
DLAP questions | life11e_ch35_16_dlap.xml | 57bf1677757a2e4b6f000000 |
key concept 35.4 Soil Organisms Increase Nutrient Uptake by Plant Roots
| life11e_ch35_17.html | 57bf1677757a2e4b6f000000 |
DLAP questions | life11e_ch35_17_dlap.xml | 57bf1677757a2e4b6f000000 |
Plants send signals to soil organisms
| life11e_ch35_18.html | 57bf1677757a2e4b6f000000 |
DLAP questions | life11e_ch35_18_dlap.xml | 57bf1677757a2e4b6f000000 |
Mycorrhizae expand the root system
| life11e_ch35_19.html | 57bf1677757a2e4b6f000000 |
DLAP questions | life11e_ch35_19_dlap.xml | 57bf1677757a2e4b6f000000 |
Soil bacteria are essential in getting nitrogen from air to plant cells
| life11e_ch35_20.html | 57bf1677757a2e4b6f000000 |
DLAP questions | life11e_ch35_20_dlap.xml | 57bf1677757a2e4b6f000000 |
Nitrogenase catalyzes nitrogen fixation
| life11e_ch35_21.html | 57bf1677757a2e4b6f000000 |
DLAP questions | life11e_ch35_21_dlap.xml | 57bf1677757a2e4b6f000000 |
Biological nitrogen fixation does not always meet agricultural needs
| life11e_ch35_22.html | 57bf1677757a2e4b6f000000 |
DLAP questions | life11e_ch35_22_dlap.xml | 57bf1677757a2e4b6f000000 |
Ammonia formation is the first step in nitrogen assimilation by plants
| life11e_ch35_23.html | 57bf1677757a2e4b6f000000 |
DLAP questions | life11e_ch35_23_dlap.xml | 57bf1677757a2e4b6f000000 |
recap | life11e_ch35_24.html | 57bf1677757a2e4b6f000000 |
DLAP questions | life11e_ch35_24_dlap.xml | 57bf1677757a2e4b6f000000 |
key concept 35.5 Carnivorous and Parasitic Plants Obtain Nutrients in Unique Ways
| life11e_ch35_25.html | 57bf1677757a2e4b6f000000 |
DLAP questions | life11e_ch35_25_dlap.xml | 57bf1677757a2e4b6f000000 |
Carnivorous plants supplement their mineral nutrition
| life11e_ch35_26.html | 57bf1677757a2e4b6f000000 |
DLAP questions | life11e_ch35_26_dlap.xml | 57bf1677757a2e4b6f000000 |
Parasitic plants take advantage of other plants
| life11e_ch35_27.html | 57bf1677757a2e4b6f000000 |
DLAP questions | life11e_ch35_27_dlap.xml | 57bf1677757a2e4b6f000000 |
The plantâparasite relationship is similar to plantâfungus and plantâbacteria associations
| life11e_ch35_28.html | 57bf1677757a2e4b6f000000 |
DLAP questions | life11e_ch35_28_dlap.xml | 57bf1677757a2e4b6f000000 |
recap | life11e_ch35_29.html | 57bf1677757a2e4b6f000000 |
DLAP questions | life11e_ch35_29_dlap.xml | 57bf1677757a2e4b6f000000 |
Investigating Life | life11e_ch35_30.html | 57bf1677757a2e4b6f000000 |
DLAP questions | life11e_ch35_30_dlap.xml | 57bf1677757a2e4b6f000000 |
Chapter Summary
| life11e_ch35_31.html | 57bf1677757a2e4b6f000000 |
DLAP questions | life11e_ch35_31_dlap.xml | 57bf1677757a2e4b6f000000 |
Apply What Youâve Learned
| life11e_ch35_32.html | 57bf1677757a2e4b6f000000 |
DLAP questions | life11e_ch35_32_dlap.xml | 57bf1677757a2e4b6f000000 |
Chapter Introduction | life11e_ch36_1.html | 57c05862757a2e4502000000 |
DLAP questions | life11e_ch36_1_dlap.xml | 57c05862757a2e4502000000 |
key concept 36.1 Plants Develop in Response to the Environment
| life11e_ch36_2.html | 57c05862757a2e4502000000 |
DLAP questions | life11e_ch36_2_dlap.xml | 57c05862757a2e4502000000 |
Plant growth is regulated
| life11e_ch36_3.html | 57c05862757a2e4502000000 |
DLAP questions | life11e_ch36_3_dlap.xml | 57c05862757a2e4502000000 |
In early development, the seed germinates and forms a growing seedling
| life11e_ch36_4.html | 57c05862757a2e4502000000 |
DLAP questions | life11e_ch36_4_dlap.xml | 57c05862757a2e4502000000 |
Several hormones and photoreceptors help regulate plant growth
| life11e_ch36_5.html | 57c05862757a2e4502000000 |
DLAP questions | life11e_ch36_5_dlap.xml | 57c05862757a2e4502000000 |
Genetic screens have increased our understanding of plant signal transduction
| life11e_ch36_6.html | 57c05862757a2e4502000000 |
DLAP questions | life11e_ch36_6_dlap.xml | 57c05862757a2e4502000000 |
recap | life11e_ch36_7.html | 57c05862757a2e4502000000 |
DLAP questions | life11e_ch36_7_dlap.xml | 57c05862757a2e4502000000 |
key concept 36.2 Gibberellins and Auxin Have Diverse Effects but a Similar Mechanism of Action
| life11e_ch36_8.html | 57c05862757a2e4502000000 |
DLAP questions | life11e_ch36_8_dlap.xml | 57c05862757a2e4502000000 |
Gibberellins have many effects on plant growth and development
| life11e_ch36_9.html | 57c05862757a2e4502000000 |
DLAP questions | life11e_ch36_9_dlap.xml | 57c05862757a2e4502000000 |
Auxin plays a role in differential plant growth
| life11e_ch36_10.html | 57c05862757a2e4502000000 |
DLAP questions | life11e_ch36_10_dlap.xml | 57c05862757a2e4502000000 |
Auxin affects plant growth in several ways
| life11e_ch36_11.html | 57c05862757a2e4502000000 |
DLAP questions | life11e_ch36_11_dlap.xml | 57c05862757a2e4502000000 |
At the molecular level, auxin and gibberellins act similarly
| life11e_ch36_12.html | 57c05862757a2e4502000000 |
DLAP questions | life11e_ch36_12_dlap.xml | 57c05862757a2e4502000000 |
recap | life11e_ch36_13.html | 57c05862757a2e4502000000 |
DLAP questions | life11e_ch36_13_dlap.xml | 57c05862757a2e4502000000 |
key concept 36.3 Other Plant Hormones Have Diverse Effects
| life11e_ch36_14.html | 57c05862757a2e4502000000 |
DLAP questions | life11e_ch36_14_dlap.xml | 57c05862757a2e4502000000 |
Cytokinins are active from seed to senescence
| life11e_ch36_15.html | 57c05862757a2e4502000000 |
DLAP questions | life11e_ch36_15_dlap.xml | 57c05862757a2e4502000000 |
Ethylene is a gaseous hormone that hastens leaf senescence and fruit ripening
| life11e_ch36_16.html | 57c05862757a2e4502000000 |
DLAP questions | life11e_ch36_16_dlap.xml | 57c05862757a2e4502000000 |
Brassinosteroids are plant steroid hormones
| life11e_ch36_17.html | 57c05862757a2e4502000000 |
DLAP questions | life11e_ch36_17_dlap.xml | 57c05862757a2e4502000000 |
recap | life11e_ch36_18.html | 57c05862757a2e4502000000 |
DLAP questions | life11e_ch36_18_dlap.xml | 57c05862757a2e4502000000 |
key concept 36.4 Photoreceptors Initiate Developmental Responses to Light
| life11e_ch36_19.html | 57c05862757a2e4502000000 |
DLAP questions | life11e_ch36_19_dlap.xml | 57c05862757a2e4502000000 |
What are plant photoreceptors?
| life11e_ch36_20.html | 57c05862757a2e4502000000 |
DLAP questions | life11e_ch36_20_dlap.xml | 57c05862757a2e4502000000 |
Phototropins, cryptochromes, and zeaxanthin are blue-light receptors
| life11e_ch36_21.html | 57c05862757a2e4502000000 |
DLAP questions | life11e_ch36_21_dlap.xml | 57c05862757a2e4502000000 |
Phytochromes mediate the effects of red and far-red light
| life11e_ch36_22.html | 57c05862757a2e4502000000 |
DLAP questions | life11e_ch36_22_dlap.xml | 57c05862757a2e4502000000 |
Phytochrome stimulates gene transcription
| life11e_ch36_23.html | 57c05862757a2e4502000000 |
DLAP questions | life11e_ch36_23_dlap.xml | 57c05862757a2e4502000000 |
Circadian rhythms are entrained by light reception
| life11e_ch36_24.html | 57c05862757a2e4502000000 |
DLAP questions | life11e_ch36_24_dlap.xml | 57c05862757a2e4502000000 |
recap | life11e_ch36_25.html | 57c05862757a2e4502000000 |
DLAP questions | life11e_ch36_25_dlap.xml | 57c05862757a2e4502000000 |
Investigating Life | life11e_ch36_26.html | 57c05862757a2e4502000000 |
DLAP questions | life11e_ch36_26_dlap.xml | 57c05862757a2e4502000000 |
Chapter Summary
| life11e_ch36_27.html | 57c05862757a2e4502000000 |
DLAP questions | life11e_ch36_27_dlap.xml | 57c05862757a2e4502000000 |
Apply What Youâve Learned
| life11e_ch36_28.html | 57c05862757a2e4502000000 |
DLAP questions | life11e_ch36_28_dlap.xml | 57c05862757a2e4502000000 |
Chapter Introduction | life11e_ch37_1.html | 57c45a79757a2e4816000000 |
DLAP questions | life11e_ch37_1_dlap.xml | 57c45a79757a2e4816000000 |
key concept 37.1 Most Angiosperms Reproduce Sexually
| life11e_ch37_2.html | 57c45a79757a2e4816000000 |
DLAP questions | life11e_ch37_2_dlap.xml | 57c45a79757a2e4816000000 |
How does the flower function as a structure for sexual reproduction?
| life11e_ch37_3.html | 57c45a79757a2e4816000000 |
DLAP questions | life11e_ch37_3_dlap.xml | 57c45a79757a2e4816000000 |
Flowering plants have microscopic gametophytes
| life11e_ch37_4.html | 57c45a79757a2e4816000000 |
DLAP questions | life11e_ch37_4_dlap.xml | 57c45a79757a2e4816000000 |
A pollen tube delivers sperm cells to the embryo sac
| life11e_ch37_5.html | 57c45a79757a2e4816000000 |
DLAP questions | life11e_ch37_5_dlap.xml | 57c45a79757a2e4816000000 |
Many flowering plants control pollination or pollen tube growth to prevent inbreeding
| life11e_ch37_6.html | 57c45a79757a2e4816000000 |
DLAP questions | life11e_ch37_6_dlap.xml | 57c45a79757a2e4816000000 |
Angiosperms perform double fertilization
| life11e_ch37_7.html | 57c45a79757a2e4816000000 |
DLAP questions | life11e_ch37_7_dlap.xml | 57c45a79757a2e4816000000 |
Embryos develop within seeds contained in fruits
| life11e_ch37_8.html | 57c45a79757a2e4816000000 |
DLAP questions | life11e_ch37_8_dlap.xml | 57c45a79757a2e4816000000 |
Seed development is under hormonal control
| life11e_ch37_9.html | 57c45a79757a2e4816000000 |
DLAP questions | life11e_ch37_9_dlap.xml | 57c45a79757a2e4816000000 |
recap | life11e_ch37_10.html | 57c45a79757a2e4816000000 |
DLAP questions | life11e_ch37_10_dlap.xml | 57c45a79757a2e4816000000 |
key concept 37.2 Hormones and Signaling Determine the Transition from the Vegetative to the Reproductive State
| life11e_ch37_11.html | 57c45a79757a2e4816000000 |
DLAP questions | life11e_ch37_11_dlap.xml | 57c45a79757a2e4816000000 |
Flowering occurs at specific places and specific times
| life11e_ch37_12.html | 57c45a79757a2e4816000000 |
DLAP questions | life11e_ch37_12_dlap.xml | 57c45a79757a2e4816000000 |
A cascade of gene expression leads to flowering
| life11e_ch37_13.html | 57c45a79757a2e4816000000 |
DLAP questions | life11e_ch37_13_dlap.xml | 57c45a79757a2e4816000000 |
Photoperiodic cues can initiate flowering
| life11e_ch37_14.html | 57c45a79757a2e4816000000 |
DLAP questions | life11e_ch37_14_dlap.xml | 57c45a79757a2e4816000000 |
Plants vary in their responses to photoperiodic cues
| life11e_ch37_15.html | 57c45a79757a2e4816000000 |
DLAP questions | life11e_ch37_15_dlap.xml | 57c45a79757a2e4816000000 |
Night length is a key photoperiodic cue that determines flowering
| life11e_ch37_16.html | 57c45a79757a2e4816000000 |
DLAP questions | life11e_ch37_16_dlap.xml | 57c45a79757a2e4816000000 |
The flowering stimulus originates in a leaf
| life11e_ch37_17.html | 57c45a79757a2e4816000000 |
DLAP questions | life11e_ch37_17_dlap.xml | 57c45a79757a2e4816000000 |
Florigen is a small protein
| life11e_ch37_18.html | 57c45a79757a2e4816000000 |
DLAP questions | life11e_ch37_18_dlap.xml | 57c45a79757a2e4816000000 |
Flowering can be induced by temperature or gibberellin
| life11e_ch37_19.html | 57c45a79757a2e4816000000 |
DLAP questions | life11e_ch37_19_dlap.xml | 57c45a79757a2e4816000000 |
Some plants do not require an environmental cue to flower
| life11e_ch37_20.html | 57c45a79757a2e4816000000 |
DLAP questions | life11e_ch37_20_dlap.xml | 57c45a79757a2e4816000000 |
recap | life11e_ch37_21.html | 57c45a79757a2e4816000000 |
DLAP questions | life11e_ch37_21_dlap.xml | 57c45a79757a2e4816000000 |
key concept 37.3 Angiosperms Can Reproduce Asexually
| life11e_ch37_22.html | 57c45a79757a2e4816000000 |
DLAP questions | life11e_ch37_22_dlap.xml | 57c45a79757a2e4816000000 |
Plants reproduce asexually by several methods
| life11e_ch37_23.html | 57c45a79757a2e4816000000 |
DLAP questions | life11e_ch37_23_dlap.xml | 57c45a79757a2e4816000000 |
Vegetative reproduction has a disadvantage
| life11e_ch37_24.html | 57c45a79757a2e4816000000 |
DLAP questions | life11e_ch37_24_dlap.xml | 57c45a79757a2e4816000000 |
Vegetative reproduction is important in agriculture
| life11e_ch37_25.html | 57c45a79757a2e4816000000 |
DLAP questions | life11e_ch37_25_dlap.xml | 57c45a79757a2e4816000000 |
In apomixis, flowers are used in asexual reproduction
| life11e_ch37_26.html | 57c45a79757a2e4816000000 |
DLAP questions | life11e_ch37_26_dlap.xml | 57c45a79757a2e4816000000 |
recap | life11e_ch37_27.html | 57c45a79757a2e4816000000 |
DLAP questions | life11e_ch37_27_dlap.xml | 57c45a79757a2e4816000000 |
Investigating Life | life11e_ch37_28.html | 57c45a79757a2e4816000000 |
DLAP questions | life11e_ch37_28_dlap.xml | 57c45a79757a2e4816000000 |
Chapter Summary
| life11e_ch37_29.html | 57c45a79757a2e4816000000 |
DLAP questions | life11e_ch37_29_dlap.xml | 57c45a79757a2e4816000000 |
Apply What Youâve Learned
| life11e_ch37_30.html | 57c45a79757a2e4816000000 |
DLAP questions | life11e_ch37_30_dlap.xml | 57c45a79757a2e4816000000 |
Chapter Introduction | life11e_ch38_1.html | 57c5cd08757a2ed62e000000 |
DLAP questions | life11e_ch38_1_dlap.xml | 57c5cd08757a2ed62e000000 |
key concept 38.1 Plants Respond to Pathogens with Constitutive and Induced Responses
| life11e_ch38_2.html | 57c5cd08757a2ed62e000000 |
DLAP questions | life11e_ch38_2_dlap.xml | 57c5cd08757a2ed62e000000 |
Physical barriers form constitutive defenses
| life11e_ch38_3.html | 57c5cd08757a2ed62e000000 |
DLAP questions | life11e_ch38_3_dlap.xml | 57c5cd08757a2ed62e000000 |
Plants can seal off infected parts to limit damage
| life11e_ch38_4.html | 57c5cd08757a2ed62e000000 |
DLAP questions | life11e_ch38_4_dlap.xml | 57c5cd08757a2ed62e000000 |
General and specific immunity both involve multiple responses
| life11e_ch38_5.html | 57c5cd08757a2ed62e000000 |
DLAP questions | life11e_ch38_5_dlap.xml | 57c5cd08757a2ed62e000000 |
Specific immunity is genetically determined
| life11e_ch38_6.html | 57c5cd08757a2ed62e000000 |
DLAP questions | life11e_ch38_6_dlap.xml | 57c5cd08757a2ed62e000000 |
Specific immunity usually leads to the hypersensitive response
| life11e_ch38_7.html | 57c5cd08757a2ed62e000000 |
DLAP questions | life11e_ch38_7_dlap.xml | 57c5cd08757a2ed62e000000 |
Systemic acquired resistance is a form of long-term immunity
| life11e_ch38_8.html | 57c5cd08757a2ed62e000000 |
DLAP questions | life11e_ch38_8_dlap.xml | 57c5cd08757a2ed62e000000 |
recap | life11e_ch38_9.html | 57c5cd08757a2ed62e000000 |
DLAP questions | life11e_ch38_9_dlap.xml | 57c5cd08757a2ed62e000000 |
key concept 38.2 Plants Have Mechanical and Chemical Defenses against Herbivores
| life11e_ch38_10.html | 57c5cd08757a2ed62e000000 |
DLAP questions | life11e_ch38_10_dlap.xml | 57c5cd08757a2ed62e000000 |
Plants have mechanical defenses against herbivores
| life11e_ch38_11.html | 57c5cd08757a2ed62e000000 |
DLAP questions | life11e_ch38_11_dlap.xml | 57c5cd08757a2ed62e000000 |
Plants produce constitutive chemical defenses against herbivores
| life11e_ch38_12.html | 57c5cd08757a2ed62e000000 |
DLAP questions | life11e_ch38_12_dlap.xml | 57c5cd08757a2ed62e000000 |
Plants respond to herbivory with induced defenses
| life11e_ch38_13.html | 57c5cd08757a2ed62e000000 |
DLAP questions | life11e_ch38_13_dlap.xml | 57c5cd08757a2ed62e000000 |
Jasmonates trigger a range of responses to wounding and herbivory
| life11e_ch38_14.html | 57c5cd08757a2ed62e000000 |
DLAP questions | life11e_ch38_14_dlap.xml | 57c5cd08757a2ed62e000000 |
Plants donât always win the arms race
| life11e_ch38_15.html | 57c5cd08757a2ed62e000000 |
DLAP questions | life11e_ch38_15_dlap.xml | 57c5cd08757a2ed62e000000 |
recap | life11e_ch38_16.html | 57c5cd08757a2ed62e000000 |
DLAP questions | life11e_ch38_16_dlap.xml | 57c5cd08757a2ed62e000000 |
key concept 38.3 Plants Can Adapt to Environmental Stresses
| life11e_ch38_17.html | 57c5cd08757a2ed62e000000 |
DLAP questions | life11e_ch38_17_dlap.xml | 57c5cd08757a2ed62e000000 |
Plants can adapt to dry conditions
| life11e_ch38_18.html | 57c5cd08757a2ed62e000000 |
DLAP questions | life11e_ch38_18_dlap.xml | 57c5cd08757a2ed62e000000 |
Some plants grow in saturated soils
| life11e_ch38_19.html | 57c5cd08757a2ed62e000000 |
DLAP questions | life11e_ch38_19_dlap.xml | 57c5cd08757a2ed62e000000 |
Plants can respond to drought stress
| life11e_ch38_20.html | 57c5cd08757a2ed62e000000 |
DLAP questions | life11e_ch38_20_dlap.xml | 57c5cd08757a2ed62e000000 |
Plants can cope with temperature extremes
| life11e_ch38_21.html | 57c5cd08757a2ed62e000000 |
DLAP questions | life11e_ch38_21_dlap.xml | 57c5cd08757a2ed62e000000 |
Plants can adapt to salty soil
| life11e_ch38_22.html | 57c5cd08757a2ed62e000000 |
DLAP questions | life11e_ch38_22_dlap.xml | 57c5cd08757a2ed62e000000 |
Some plants can tolerate heavy metals
| life11e_ch38_23.html | 57c5cd08757a2ed62e000000 |
DLAP questions | life11e_ch38_23_dlap.xml | 57c5cd08757a2ed62e000000 |
recap | life11e_ch38_24.html | 57c5cd08757a2ed62e000000 |
DLAP questions | life11e_ch38_24_dlap.xml | 57c5cd08757a2ed62e000000 |
Investigating Life | life11e_ch38_25.html | 57c5cd08757a2ed62e000000 |
DLAP questions | life11e_ch38_25_dlap.xml | 57c5cd08757a2ed62e000000 |
Chapter Summary
| life11e_ch38_26.html | 57c5cd08757a2ed62e000000 |
DLAP questions | life11e_ch38_26_dlap.xml | 57c5cd08757a2ed62e000000 |
Apply What Youâve Learned
| life11e_ch38_27.html | 57c5cd08757a2ed62e000000 |
DLAP questions | life11e_ch38_27_dlap.xml | 57c5cd08757a2ed62e000000 |
Chapter Introduction | life11e_ch39_1.html | 57c6e266757a2eee3e000000 |
DLAP questions | life11e_ch39_1_dlap.xml | 57c6e266757a2eee3e000000 |
key concept 39.1 Animals Are Composed of Organs Built from Four Types of Tissues
| life11e_ch39_2.html | 57c6e266757a2eee3e000000 |
DLAP questions | life11e_ch39_2_dlap.xml | 57c6e266757a2eee3e000000 |
How would you build a multicellular animal?
| life11e_ch39_3.html | 57c6e266757a2eee3e000000 |
DLAP questions | life11e_ch39_3_dlap.xml | 57c6e266757a2eee3e000000 |
There are advantages and challenges to getting bigger
| life11e_ch39_4.html | 57c6e266757a2eee3e000000 |
DLAP questions | life11e_ch39_4_dlap.xml | 57c6e266757a2eee3e000000 |
There are four tissue types
| life11e_ch39_5.html | 57c6e266757a2eee3e000000 |
DLAP questions | life11e_ch39_5_dlap.xml | 57c6e266757a2eee3e000000 |
Organs are built from multiple tissues
| life11e_ch39_6.html | 57c6e266757a2eee3e000000 |
DLAP questions | life11e_ch39_6_dlap.xml | 57c6e266757a2eee3e000000 |
recap | life11e_ch39_7.html | 57c6e266757a2eee3e000000 |
DLAP questions | life11e_ch39_7_dlap.xml | 57c6e266757a2eee3e000000 |
key concept 39.2 Physiological Systems Maintain Homeostasis of the Internal Environment
| life11e_ch39_8.html | 57c6e266757a2eee3e000000 |
DLAP questions | life11e_ch39_8_dlap.xml | 57c6e266757a2eee3e000000 |
The internal environment is the extracellular fluid that serves all the needs of the cells of the body
| life11e_ch39_9.html | 57c6e266757a2eee3e000000 |
DLAP questions | life11e_ch39_9_dlap.xml | 57c6e266757a2eee3e000000 |
Physiological systems are regulated to maintain homeostasis
| life11e_ch39_10.html | 57c6e266757a2eee3e000000 |
DLAP questions | life11e_ch39_10_dlap.xml | 57c6e266757a2eee3e000000 |
recap | life11e_ch39_11.html | 57c6e266757a2eee3e000000 |
DLAP questions | life11e_ch39_11_dlap.xml | 57c6e266757a2eee3e000000 |
key concept 39.3 Biological Processes Are Temperature-Sensitive
| life11e_ch39_12.html | 57c6e266757a2eee3e000000 |
DLAP questions | life11e_ch39_12_dlap.xml | 57c6e266757a2eee3e000000 |
Temperature affects living systems
| life11e_ch39_13.html | 57c6e266757a2eee3e000000 |
DLAP questions | life11e_ch39_13_dlap.xml | 57c6e266757a2eee3e000000 |
Q10 is a measure of temperature sensitivity
| life11e_ch39_14.html | 57c6e266757a2eee3e000000 |
DLAP questions | life11e_ch39_14_dlap.xml | 57c6e266757a2eee3e000000 |
Animals acclimatize to seasonal temperatures
| life11e_ch39_15.html | 57c6e266757a2eee3e000000 |
DLAP questions | life11e_ch39_15_dlap.xml | 57c6e266757a2eee3e000000 |
Small changes in temperature can have large physiological effects
| life11e_ch39_16.html | 57c6e266757a2eee3e000000 |
DLAP questions | life11e_ch39_16_dlap.xml | 57c6e266757a2eee3e000000 |
recap | life11e_ch39_17.html | 57c6e266757a2eee3e000000 |
DLAP questions | life11e_ch39_17_dlap.xml | 57c6e266757a2eee3e000000 |
key concept 39.4 Body Temperature Depends on the Balance between Heat In and Heat Out of the Body
| life11e_ch39_18.html | 57c6e266757a2eee3e000000 |
DLAP questions | life11e_ch39_18_dlap.xml | 57c6e266757a2eee3e000000 |
Animals can be classified by their thermoregulatory characteristics
| life11e_ch39_19.html | 57c6e266757a2eee3e000000 |
DLAP questions | life11e_ch39_19_dlap.xml | 57c6e266757a2eee3e000000 |
Endotherms produce substantial amounts of metabolic heat
| life11e_ch39_20.html | 57c6e266757a2eee3e000000 |
DLAP questions | life11e_ch39_20_dlap.xml | 57c6e266757a2eee3e000000 |
Ectotherms and endotherms respond differently to changes in environmental temperature
| life11e_ch39_21.html | 57c6e266757a2eee3e000000 |
DLAP questions | life11e_ch39_21_dlap.xml | 57c6e266757a2eee3e000000 |
Energy budgets reflect adaptations for regulating body temperature
| life11e_ch39_22.html | 57c6e266757a2eee3e000000 |
DLAP questions | life11e_ch39_22_dlap.xml | 57c6e266757a2eee3e000000 |
Both ectotherms and endotherms control blood flow to the skin
| life11e_ch39_23.html | 57c6e266757a2eee3e000000 |
DLAP questions | life11e_ch39_23_dlap.xml | 57c6e266757a2eee3e000000 |
Some fishes conserve metabolic heat
| life11e_ch39_24.html | 57c6e266757a2eee3e000000 |
DLAP questions | life11e_ch39_24_dlap.xml | 57c6e266757a2eee3e000000 |
Some ectotherms regulate metabolic heat production
| life11e_ch39_25.html | 57c6e266757a2eee3e000000 |
DLAP questions | life11e_ch39_25_dlap.xml | 57c6e266757a2eee3e000000 |
recap | life11e_ch39_26.html | 57c6e266757a2eee3e000000 |
DLAP questions | life11e_ch39_26_dlap.xml | 57c6e266757a2eee3e000000 |
key concept 39.5 Body Temperature Is Regulated through Adaptations for Heat Production and Heat Loss
| life11e_ch39_27.html | 57c6e266757a2eee3e000000 |
DLAP questions | life11e_ch39_27_dlap.xml | 57c6e266757a2eee3e000000 |
Basal heat production rates of endotherms correlate with body size
| life11e_ch39_28.html | 57c6e266757a2eee3e000000 |
DLAP questions | life11e_ch39_28_dlap.xml | 57c6e266757a2eee3e000000 |
Endotherms respond to cold by producing heat and adapt to cold by reducing heat loss
| life11e_ch39_29.html | 57c6e266757a2eee3e000000 |
DLAP questions | life11e_ch39_29_dlap.xml | 57c6e266757a2eee3e000000 |
Evaporation of water can dissipate heat, but at a cost
| life11e_ch39_30.html | 57c6e266757a2eee3e000000 |
DLAP questions | life11e_ch39_30_dlap.xml | 57c6e266757a2eee3e000000 |
The mammalian thermostat uses feedback information
| life11e_ch39_31.html | 57c6e266757a2eee3e000000 |
DLAP questions | life11e_ch39_31_dlap.xml | 57c6e266757a2eee3e000000 |
Some animals conserve energy by turning down the thermostat
| life11e_ch39_32.html | 57c6e266757a2eee3e000000 |
DLAP questions | life11e_ch39_32_dlap.xml | 57c6e266757a2eee3e000000 |
recap | life11e_ch39_33.html | 57c6e266757a2eee3e000000 |
DLAP questions | life11e_ch39_33_dlap.xml | 57c6e266757a2eee3e000000 |
Investigating Life | life11e_ch39_34.html | 57c6e266757a2eee3e000000 |
DLAP questions | life11e_ch39_34_dlap.xml | 57c6e266757a2eee3e000000 |
Chapter Summary
| life11e_ch39_35.html | 57c6e266757a2eee3e000000 |
DLAP questions | life11e_ch39_35_dlap.xml | 57c6e266757a2eee3e000000 |
Apply What Youâve Learned
| life11e_ch39_36.html | 57c6e266757a2eee3e000000 |
DLAP questions | life11e_ch39_36_dlap.xml | 57c6e266757a2eee3e000000 |
Chapter Introduction | life11e_ch40_1.html | 57c835a7757a2ef052000002 |
DLAP questions | life11e_ch40_1_dlap.xml | 57c835a7757a2ef052000002 |
key concept 40.1 Hormones Circulate Around the Body and Affect Target Cells
| life11e_ch40_2.html | 57c835a7757a2ef052000002 |
DLAP questions | life11e_ch40_2_dlap.xml | 57c835a7757a2ef052000002 |
There are multiple chemical communication systems in the body
| life11e_ch40_3.html | 57c835a7757a2ef052000002 |
DLAP questions | life11e_ch40_3_dlap.xml | 57c835a7757a2ef052000002 |
Endocrine signaling can act locally or at a distance
| life11e_ch40_4.html | 57c835a7757a2ef052000002 |
DLAP questions | life11e_ch40_4_dlap.xml | 57c835a7757a2ef052000002 |
Hormones are divided into three chemical groups
| life11e_ch40_5.html | 57c835a7757a2ef052000002 |
DLAP questions | life11e_ch40_5_dlap.xml | 57c835a7757a2ef052000002 |
Hormone action is mediated by receptors on or within their target cells
| life11e_ch40_6.html | 57c835a7757a2ef052000002 |
DLAP questions | life11e_ch40_6_dlap.xml | 57c835a7757a2ef052000002 |
Hormone action depends on the nature of the target cell and its receptors
| life11e_ch40_7.html | 57c835a7757a2ef052000002 |
DLAP questions | life11e_ch40_7_dlap.xml | 57c835a7757a2ef052000002 |
Hormone structure is conserved through evolution, but functions change
| life11e_ch40_8.html | 57c835a7757a2ef052000002 |
DLAP questions | life11e_ch40_8_dlap.xml | 57c835a7757a2ef052000002 |
recap
| life11e_ch40_9.html | 57c835a7757a2ef052000002 |
DLAP questions | life11e_ch40_9_dlap.xml | 57c835a7757a2ef052000002 |
key concept 40.2 The Endocrine System and Nervous System Work Together
| life11e_ch40_10.html | 57c835a7757a2ef052000002 |
DLAP questions | life11e_ch40_10_dlap.xml | 57c835a7757a2ef052000002 |
The pituitary is an interface between the nervous and endocrine systems
| life11e_ch40_11.html | 57c835a7757a2ef052000002 |
DLAP questions | life11e_ch40_11_dlap.xml | 57c835a7757a2ef052000002 |
Hypothalamic neurohormones control the anterior pituitary
| life11e_ch40_12.html | 57c835a7757a2ef052000002 |
DLAP questions | life11e_ch40_12_dlap.xml | 57c835a7757a2ef052000002 |
Negative feedback loops regulate hormone secretion
| life11e_ch40_13.html | 57c835a7757a2ef052000002 |
DLAP questions | life11e_ch40_13_dlap.xml | 57c835a7757a2ef052000002 |
Hormones influence the nervous system
| life11e_ch40_14.html | 57c835a7757a2ef052000002 |
DLAP questions | life11e_ch40_14_dlap.xml | 57c835a7757a2ef052000002 |
recap
| life11e_ch40_15.html | 57c835a7757a2ef052000002 |
DLAP questions | life11e_ch40_15_dlap.xml | 57c835a7757a2ef052000002 |
key concept 40.3 Hormones Play Important Roles in Development
| life11e_ch40_16.html | 57c835a7757a2ef052000002 |
DLAP questions | life11e_ch40_16_dlap.xml | 57c835a7757a2ef052000002 |
Insect development consists of either complete or incomplete metamorphosis
| life11e_ch40_17.html | 57c835a7757a2ef052000002 |
DLAP questions | life11e_ch40_17_dlap.xml | 57c835a7757a2ef052000002 |
Experiments on insect development revealed hormonal signaling systems
| life11e_ch40_18.html | 57c835a7757a2ef052000002 |
DLAP questions | life11e_ch40_18_dlap.xml | 57c835a7757a2ef052000002 |
Three hormones regulate molting and maturation in arthropods
| life11e_ch40_19.html | 57c835a7757a2ef052000002 |
DLAP questions | life11e_ch40_19_dlap.xml | 57c835a7757a2ef052000002 |
Sex steroids control sexual development
| life11e_ch40_20.html | 57c835a7757a2ef052000002 |
DLAP questions | life11e_ch40_20_dlap.xml | 57c835a7757a2ef052000002 |
recap
| life11e_ch40_21.html | 57c835a7757a2ef052000002 |
DLAP questions | life11e_ch40_21_dlap.xml | 57c835a7757a2ef052000002 |
key concept 40.4 Hormones Regulate Metabolism and the Internal Environment
| life11e_ch40_22.html | 57c835a7757a2ef052000002 |
DLAP questions | life11e_ch40_22_dlap.xml | 57c835a7757a2ef052000002 |
Thyroxine stimulates many metabolic processes
| life11e_ch40_23.html | 57c835a7757a2ef052000002 |
DLAP questions | life11e_ch40_23_dlap.xml | 57c835a7757a2ef052000002 |
Three hormones regulate blood calcium concentrations
| life11e_ch40_24.html | 57c835a7757a2ef052000002 |
DLAP questions | life11e_ch40_24_dlap.xml | 57c835a7757a2ef052000002 |
PTH lowers blood phosphate levels
| life11e_ch40_25.html | 57c835a7757a2ef052000002 |
DLAP questions | life11e_ch40_25_dlap.xml | 57c835a7757a2ef052000002 |
Insulin and glucagon regulate blood glucose concentrations
| life11e_ch40_26.html | 57c835a7757a2ef052000002 |
DLAP questions | life11e_ch40_26_dlap.xml | 57c835a7757a2ef052000002 |
The adrenal gland is two glands in one
| life11e_ch40_27.html | 57c835a7757a2ef052000002 |
DLAP questions | life11e_ch40_27_dlap.xml | 57c835a7757a2ef052000002 |
Many chemicals may act as hormones
| life11e_ch40_28.html | 57c835a7757a2ef052000002 |
DLAP questions | life11e_ch40_28_dlap.xml | 57c835a7757a2ef052000002 |
The pineal gland has a daily cycle of melatonin release
| life11e_ch40_29.html | 57c835a7757a2ef052000002 |
DLAP questions | life11e_ch40_29_dlap.xml | 57c835a7757a2ef052000002 |
recap
| life11e_ch40_30.html | 57c835a7757a2ef052000002 |
DLAP questions | life11e_ch40_30_dlap.xml | 57c835a7757a2ef052000002 |
Investigating Life | life11e_ch40_31.html | 57c835a7757a2ef052000002 |
DLAP questions | life11e_ch40_31_dlap.xml | 57c835a7757a2ef052000002 |
Chapter Summary
| life11e_ch40_32.html | 57c835a7757a2ef052000002 |
DLAP questions | life11e_ch40_32_dlap.xml | 57c835a7757a2ef052000002 |
Apply What Youâve Learned
| life11e_ch40_33.html | 57c835a7757a2ef052000002 |
DLAP questions | life11e_ch40_33_dlap.xml | 57c835a7757a2ef052000002 |
Chapter Introduction | life11e_ch41_1.html | 57e29c4f757a2e5f06000001 |
DLAP questions | life11e_ch41_1_dlap.xml | 57e29c4f757a2e5f06000001 |
key concept 41.1 Animals Use Innate and Adaptive Mechanisms for Defense
| life11e_ch41_2.html | 57e29c4f757a2e5f06000001 |
DLAP questions | life11e_ch41_2_dlap.xml | 57e29c4f757a2e5f06000001 |
Innate defenses evolved before adaptive defenses
| life11e_ch41_3.html | 57e29c4f757a2e5f06000001 |
DLAP questions | life11e_ch41_3_dlap.xml | 57e29c4f757a2e5f06000001 |
Mammals have both innate and adaptive defenses
| life11e_ch41_4.html | 57e29c4f757a2e5f06000001 |
DLAP questions | life11e_ch41_4_dlap.xml | 57e29c4f757a2e5f06000001 |
Blood and lymph tissues play important roles in defense
| life11e_ch41_5.html | 57e29c4f757a2e5f06000001 |
DLAP questions | life11e_ch41_5_dlap.xml | 57e29c4f757a2e5f06000001 |
White blood cells play many defensive roles
| life11e_ch41_6.html | 57e29c4f757a2e5f06000001 |
DLAP questions | life11e_ch41_6_dlap.xml | 57e29c4f757a2e5f06000001 |
Immune system proteins bind pathogens or signal other cells
| life11e_ch41_7.html | 57e29c4f757a2e5f06000001 |
DLAP questions | life11e_ch41_7_dlap.xml | 57e29c4f757a2e5f06000001 |
recap | life11e_ch41_8.html | 57e29c4f757a2e5f06000001 |
DLAP questions | life11e_ch41_8_dlap.xml | 57e29c4f757a2e5f06000001 |
key concept 41.2 Innate Defenses Are Nonspecific
| life11e_ch41_9.html | 57e29c4f757a2e5f06000001 |
DLAP questions | life11e_ch41_9_dlap.xml | 57e29c4f757a2e5f06000001 |
Specialized proteins and cells participate in innate immunity
| life11e_ch41_10.html | 57e29c4f757a2e5f06000001 |
DLAP questions | life11e_ch41_10_dlap.xml | 57e29c4f757a2e5f06000001 |
Inflammation is a coordinated innate response to infection or injury
| life11e_ch41_11.html | 57e29c4f757a2e5f06000001 |
DLAP questions | life11e_ch41_11_dlap.xml | 57e29c4f757a2e5f06000001 |
recap | life11e_ch41_12.html | 57e29c4f757a2e5f06000001 |
DLAP questions | life11e_ch41_12_dlap.xml | 57e29c4f757a2e5f06000001 |
key concept 41.3 Adaptive Defenses Are Specific
| life11e_ch41_13.html | 57e29c4f757a2e5f06000001 |
DLAP questions | life11e_ch41_13_dlap.xml | 57e29c4f757a2e5f06000001 |
What are the key features of adaptive immunity?
| life11e_ch41_14.html | 57e29c4f757a2e5f06000001 |
DLAP questions | life11e_ch41_14_dlap.xml | 57e29c4f757a2e5f06000001 |
Macrophages and dendritic cells play a key role in activating the adaptive immune system
| life11e_ch41_15.html | 57e29c4f757a2e5f06000001 |
DLAP questions | life11e_ch41_15_dlap.xml | 57e29c4f757a2e5f06000001 |
Two types of adaptive immune responses interact
| life11e_ch41_16.html | 57e29c4f757a2e5f06000001 |
DLAP questions | life11e_ch41_16_dlap.xml | 57e29c4f757a2e5f06000001 |
Adaptive immunity develops as a result of clonal selection
| life11e_ch41_17.html | 57e29c4f757a2e5f06000001 |
DLAP questions | life11e_ch41_17_dlap.xml | 57e29c4f757a2e5f06000001 |
Clonal deletion helps the immune system distinguish self from nonself
| life11e_ch41_18.html | 57e29c4f757a2e5f06000001 |
DLAP questions | life11e_ch41_18_dlap.xml | 57e29c4f757a2e5f06000001 |
Immunological memory results in a secondary immune response
| life11e_ch41_19.html | 57e29c4f757a2e5f06000001 |
DLAP questions | life11e_ch41_19_dlap.xml | 57e29c4f757a2e5f06000001 |
Vaccines are an application of immunological memory
| life11e_ch41_20.html | 57e29c4f757a2e5f06000001 |
DLAP questions | life11e_ch41_20_dlap.xml | 57e29c4f757a2e5f06000001 |
recap | life11e_ch41_21.html | 57e29c4f757a2e5f06000001 |
DLAP questions | life11e_ch41_21_dlap.xml | 57e29c4f757a2e5f06000001 |
key concept 41.4 The Humoral Adaptive Response Involves Antibodies
| life11e_ch41_22.html | 57e29c4f757a2e5f06000001 |
DLAP questions | life11e_ch41_22_dlap.xml | 57e29c4f757a2e5f06000001 |
Antibody protein structure reflects function
| life11e_ch41_23.html | 57e29c4f757a2e5f06000001 |
DLAP questions | life11e_ch41_23_dlap.xml | 57e29c4f757a2e5f06000001 |
There are five classes of immunoglobulins
| life11e_ch41_24.html | 57e29c4f757a2e5f06000001 |
DLAP questions | life11e_ch41_24_dlap.xml | 57e29c4f757a2e5f06000001 |
Immunoglobulin diversity results from DNA rearrangements and other mutations
| life11e_ch41_25.html | 57e29c4f757a2e5f06000001 |
DLAP questions | life11e_ch41_25_dlap.xml | 57e29c4f757a2e5f06000001 |
The constant region is involved in immunoglobulin class switching
| life11e_ch41_26.html | 57e29c4f757a2e5f06000001 |
DLAP questions | life11e_ch41_26_dlap.xml | 57e29c4f757a2e5f06000001 |
recap | life11e_ch41_27.html | 57e29c4f757a2e5f06000001 |
DLAP questions | life11e_ch41_27_dlap.xml | 57e29c4f757a2e5f06000001 |
key concept 41.5 The Cellular Adaptive Response Involves T Cells and Receptors
| life11e_ch41_28.html | 57e29c4f757a2e5f06000001 |
DLAP questions | life11e_ch41_28_dlap.xml | 57e29c4f757a2e5f06000001 |
MHC proteins present antigen to T cells, causing recognition
| life11e_ch41_29.html | 57e29c4f757a2e5f06000001 |
DLAP questions | life11e_ch41_29_dlap.xml | 57e29c4f757a2e5f06000001 |
T-helper cells and MHC II proteins contribute to the humoral immune response
| life11e_ch41_30.html | 57e29c4f757a2e5f06000001 |
DLAP questions | life11e_ch41_30_dlap.xml | 57e29c4f757a2e5f06000001 |
Cytotoxic T cells and MHC I proteins contribute to the cellular immune response
| life11e_ch41_31.html | 57e29c4f757a2e5f06000001 |
DLAP questions | life11e_ch41_31_dlap.xml | 57e29c4f757a2e5f06000001 |
Regulatory T cells suppress the humoral and cellular immune responses
| life11e_ch41_32.html | 57e29c4f757a2e5f06000001 |
DLAP questions | life11e_ch41_32_dlap.xml | 57e29c4f757a2e5f06000001 |
recap | life11e_ch41_33.html | 57e29c4f757a2e5f06000001 |
DLAP questions | life11e_ch41_33_dlap.xml | 57e29c4f757a2e5f06000001 |
key concept 41.6 Malfunctions in Immunity Can Be Harmful
| life11e_ch41_34.html | 57e29c4f757a2e5f06000001 |
DLAP questions | life11e_ch41_34_dlap.xml | 57e29c4f757a2e5f06000001 |
The immune system mounts an excessive response in allergic reactions
| life11e_ch41_35.html | 57e29c4f757a2e5f06000001 |
DLAP questions | life11e_ch41_35_dlap.xml | 57e29c4f757a2e5f06000001 |
Autoimmune diseases are caused by reactions against self antigens
| life11e_ch41_36.html | 57e29c4f757a2e5f06000001 |
DLAP questions | life11e_ch41_36_dlap.xml | 57e29c4f757a2e5f06000001 |
AIDS is an immune deficiency disorder
| life11e_ch41_37.html | 57e29c4f757a2e5f06000001 |
DLAP questions | life11e_ch41_37_dlap.xml | 57e29c4f757a2e5f06000001 |
recap | life11e_ch41_38.html | 57e29c4f757a2e5f06000001 |
DLAP questions | life11e_ch41_38_dlap.xml | 57e29c4f757a2e5f06000001 |
Investigating Life | life11e_ch41_39.html | 57e29c4f757a2e5f06000001 |
DLAP questions | life11e_ch41_39_dlap.xml | 57e29c4f757a2e5f06000001 |
Chapter Summary
| life11e_ch41_40.html | 57e29c4f757a2e5f06000001 |
DLAP questions | life11e_ch41_40_dlap.xml | 57e29c4f757a2e5f06000001 |
Apply What Youâve Learned
| life11e_ch41_41.html | 57e29c4f757a2e5f06000001 |
DLAP questions | life11e_ch41_41_dlap.xml | 57e29c4f757a2e5f06000001 |
Chapter Introduction | life11e_ch42_1.html | 57e3f36e757a2e781a000000 |
DLAP questions | life11e_ch42_1_dlap.xml | 57e3f36e757a2e781a000000 |
key concept 42.1 Asexual Reproduction Is Efficient but Limits Genetic Variability
| life11e_ch42_2.html | 57e3f36e757a2e781a000000 |
DLAP questions | life11e_ch42_2_dlap.xml | 57e3f36e757a2e781a000000 |
Asexual reproduction limits genetic diversity
| life11e_ch42_3.html | 57e3f36e757a2e781a000000 |
DLAP questions | life11e_ch42_3_dlap.xml | 57e3f36e757a2e781a000000 |
Budding and regeneration produce new individuals by mitosis
| life11e_ch42_4.html | 57e3f36e757a2e781a000000 |
DLAP questions | life11e_ch42_4_dlap.xml | 57e3f36e757a2e781a000000 |
Parthenogenesis is the development of unfertilized eggs
| life11e_ch42_5.html | 57e3f36e757a2e781a000000 |
DLAP questions | life11e_ch42_5_dlap.xml | 57e3f36e757a2e781a000000 |
recap | life11e_ch42_6.html | 57e3f36e757a2e781a000000 |
DLAP questions | life11e_ch42_6_dlap.xml | 57e3f36e757a2e781a000000 |
key concept 42.2 Sexual Reproduction Involves the Union of Haploid Egg and Sperm
| life11e_ch42_7.html | 57e3f36e757a2e781a000000 |
DLAP questions | life11e_ch42_7_dlap.xml | 57e3f36e757a2e781a000000 |
Gametogenesis produces eggs and sperm
| life11e_ch42_8.html | 57e3f36e757a2e781a000000 |
DLAP questions | life11e_ch42_8_dlap.xml | 57e3f36e757a2e781a000000 |
Fertilization is the union of sperm and egg
| life11e_ch42_9.html | 57e3f36e757a2e781a000000 |
DLAP questions | life11e_ch42_9_dlap.xml | 57e3f36e757a2e781a000000 |
Spawning and mating behaviors get eggs and sperm together
| life11e_ch42_10.html | 57e3f36e757a2e781a000000 |
DLAP questions | life11e_ch42_10_dlap.xml | 57e3f36e757a2e781a000000 |
Some individuals can function as both male and female
| life11e_ch42_11.html | 57e3f36e757a2e781a000000 |
DLAP questions | life11e_ch42_11_dlap.xml | 57e3f36e757a2e781a000000 |
The evolution of vertebrate reproductive systems parallels the move to land
| life11e_ch42_12.html | 57e3f36e757a2e781a000000 |
DLAP questions | life11e_ch42_12_dlap.xml | 57e3f36e757a2e781a000000 |
Animals with internal fertilization are distinguished by where the embryo develops
| life11e_ch42_13.html | 57e3f36e757a2e781a000000 |
DLAP questions | life11e_ch42_13_dlap.xml | 57e3f36e757a2e781a000000 |
recap | life11e_ch42_14.html | 57e3f36e757a2e781a000000 |
DLAP questions | life11e_ch42_14_dlap.xml | 57e3f36e757a2e781a000000 |
key concept 42.3 Male Sex Organs Produce and May Deliver Sperm
| life11e_ch42_15.html | 57e3f36e757a2e781a000000 |
DLAP questions | life11e_ch42_15_dlap.xml | 57e3f36e757a2e781a000000 |
Semen is the product of the male reproductive system
| life11e_ch42_16.html | 57e3f36e757a2e781a000000 |
DLAP questions | life11e_ch42_16_dlap.xml | 57e3f36e757a2e781a000000 |
The penis and the scrotum are the male external genitalia
| life11e_ch42_17.html | 57e3f36e757a2e781a000000 |
DLAP questions | life11e_ch42_17_dlap.xml | 57e3f36e757a2e781a000000 |
Male sexual function is controlled by hormones
| life11e_ch42_18.html | 57e3f36e757a2e781a000000 |
DLAP questions | life11e_ch42_18_dlap.xml | 57e3f36e757a2e781a000000 |
recap | life11e_ch42_19.html | 57e3f36e757a2e781a000000 |
DLAP questions | life11e_ch42_19_dlap.xml | 57e3f36e757a2e781a000000 |
key concept 42.4 Female Sex Organs Produce Eggs and Nurture Embryos
| life11e_ch42_20.html | 57e3f36e757a2e781a000000 |
DLAP questions | life11e_ch42_20_dlap.xml | 57e3f36e757a2e781a000000 |
Ovarian cycles produce mature eggs
| life11e_ch42_21.html | 57e3f36e757a2e781a000000 |
DLAP questions | life11e_ch42_21_dlap.xml | 57e3f36e757a2e781a000000 |
The uterine cycle prepares an environment for a fertilized egg
| life11e_ch42_22.html | 57e3f36e757a2e781a000000 |
DLAP questions | life11e_ch42_22_dlap.xml | 57e3f36e757a2e781a000000 |
Hormones control and coordinate the ovarian and uterine cycles
| life11e_ch42_23.html | 57e3f36e757a2e781a000000 |
DLAP questions | life11e_ch42_23_dlap.xml | 57e3f36e757a2e781a000000 |
FSH receptors determine which follicle ovulates
| life11e_ch42_24.html | 57e3f36e757a2e781a000000 |
DLAP questions | life11e_ch42_24_dlap.xml | 57e3f36e757a2e781a000000 |
In pregnancy, hormones from the extraembryonic membranes take over
| life11e_ch42_25.html | 57e3f36e757a2e781a000000 |
DLAP questions | life11e_ch42_25_dlap.xml | 57e3f36e757a2e781a000000 |
Breast feeding delays the return of the ovarian cycle
| life11e_ch42_26.html | 57e3f36e757a2e781a000000 |
DLAP questions | life11e_ch42_26_dlap.xml | 57e3f36e757a2e781a000000 |
Childbirth is triggered by hormonal and mechanical stimuli
| life11e_ch42_27.html | 57e3f36e757a2e781a000000 |
DLAP questions | life11e_ch42_27_dlap.xml | 57e3f36e757a2e781a000000 |
Birth as well as reproduction is timed
| life11e_ch42_28.html | 57e3f36e757a2e781a000000 |
DLAP questions | life11e_ch42_28_dlap.xml | 57e3f36e757a2e781a000000 |
recap | life11e_ch42_29.html | 57e3f36e757a2e781a000000 |
DLAP questions | life11e_ch42_29_dlap.xml | 57e3f36e757a2e781a000000 |
key concept 42.5 Fertility Can Be Controlled
| life11e_ch42_30.html | 57e3f36e757a2e781a000000 |
DLAP questions | life11e_ch42_30_dlap.xml | 57e3f36e757a2e781a000000 |
Humans use a variety of methods to control fertility
| life11e_ch42_31.html | 57e3f36e757a2e781a000000 |
DLAP questions | life11e_ch42_31_dlap.xml | 57e3f36e757a2e781a000000 |
Reproductive technologies help solve problems of infertility
| life11e_ch42_32.html | 57e3f36e757a2e781a000000 |
DLAP questions | life11e_ch42_32_dlap.xml | 57e3f36e757a2e781a000000 |
recap | life11e_ch42_33.html | 57e3f36e757a2e781a000000 |
DLAP questions | life11e_ch42_33_dlap.xml | 57e3f36e757a2e781a000000 |
Investigating Life | life11e_ch42_34.html | 57e3f36e757a2e781a000000 |
DLAP questions | life11e_ch42_34_dlap.xml | 57e3f36e757a2e781a000000 |
Chapter Summary
| life11e_ch42_35.html | 57e3f36e757a2e781a000000 |
DLAP questions | life11e_ch42_35_dlap.xml | 57e3f36e757a2e781a000000 |
Apply What Youâve Learned
| life11e_ch42_36.html | 57e3f36e757a2e781a000000 |
DLAP questions | life11e_ch42_36_dlap.xml | 57e3f36e757a2e781a000000 |
Chapter Introduction | life11e_ch43_1.html | 57e53d39757a2ea02d000000 |
DLAP questions | life11e_ch43_1_dlap.xml | 57e53d39757a2ea02d000000 |
key concept 43.1 Fertilization Activates Development
| life11e_ch43_2.html | 57e53d39757a2ea02d000000 |
DLAP questions | life11e_ch43_2_dlap.xml | 57e53d39757a2ea02d000000 |
The sperm and the egg make different contributions to the zygote
| life11e_ch43_3.html | 57e53d39757a2ea02d000000 |
DLAP questions | life11e_ch43_3_dlap.xml | 57e53d39757a2ea02d000000 |
Fertilization sets the stage for determination
| life11e_ch43_4.html | 57e53d39757a2ea02d000000 |
DLAP questions | life11e_ch43_4_dlap.xml | 57e53d39757a2ea02d000000 |
recap | life11e_ch43_5.html | 57e53d39757a2ea02d000000 |
DLAP questions | life11e_ch43_5_dlap.xml | 57e53d39757a2ea02d000000 |
key concept 43.2 Mitosis Divides Up the Early Embryo
| life11e_ch43_6.html | 57e53d39757a2ea02d000000 |
DLAP questions | life11e_ch43_6_dlap.xml | 57e53d39757a2ea02d000000 |
Cleavage produces a multicellular embryo
| life11e_ch43_7.html | 57e53d39757a2ea02d000000 |
DLAP questions | life11e_ch43_7_dlap.xml | 57e53d39757a2ea02d000000 |
Cleavage in mammals is unique
| life11e_ch43_8.html | 57e53d39757a2ea02d000000 |
DLAP questions | life11e_ch43_8_dlap.xml | 57e53d39757a2ea02d000000 |
The fates of blastomeres depend on the cytoplasm they receive during cleavage
| life11e_ch43_9.html | 57e53d39757a2ea02d000000 |
DLAP questions | life11e_ch43_9_dlap.xml | 57e53d39757a2ea02d000000 |
Reproductive germ cells are determined early in cleavage
| life11e_ch43_10.html | 57e53d39757a2ea02d000000 |
DLAP questions | life11e_ch43_10_dlap.xml | 57e53d39757a2ea02d000000 |
recap | life11e_ch43_11.html | 57e53d39757a2ea02d000000 |
DLAP questions | life11e_ch43_11_dlap.xml | 57e53d39757a2ea02d000000 |
key concept 43.3 Gastrulation Generates Multiple Tissue Layers
| life11e_ch43_12.html | 57e53d39757a2ea02d000000 |
DLAP questions | life11e_ch43_12_dlap.xml | 57e53d39757a2ea02d000000 |
Invagination at the vegetal pole initiates gastrulation in the sea urchin
| life11e_ch43_13.html | 57e53d39757a2ea02d000000 |
DLAP questions | life11e_ch43_13_dlap.xml | 57e53d39757a2ea02d000000 |
Frog gastrulation begins at the gray crescent
| life11e_ch43_14.html | 57e53d39757a2ea02d000000 |
DLAP questions | life11e_ch43_14_dlap.xml | 57e53d39757a2ea02d000000 |
The dorsal lip of the blastopore organizes the formation of the amphibian embryo
| life11e_ch43_15.html | 57e53d39757a2ea02d000000 |
DLAP questions | life11e_ch43_15_dlap.xml | 57e53d39757a2ea02d000000 |
Transcription factors and growth factors underlie the organizerâs actions
| life11e_ch43_16.html | 57e53d39757a2ea02d000000 |
DLAP questions | life11e_ch43_16_dlap.xml | 57e53d39757a2ea02d000000 |
Properties of organizer cells change as they migrate from the dorsal lip
| life11e_ch43_17.html | 57e53d39757a2ea02d000000 |
DLAP questions | life11e_ch43_17_dlap.xml | 57e53d39757a2ea02d000000 |
The amount of yolk influences gastrulation
| life11e_ch43_18.html | 57e53d39757a2ea02d000000 |
DLAP questions | life11e_ch43_18_dlap.xml | 57e53d39757a2ea02d000000 |
Gastrulation in mammals is similar to avian gastrulation
| life11e_ch43_19.html | 57e53d39757a2ea02d000000 |
DLAP questions | life11e_ch43_19_dlap.xml | 57e53d39757a2ea02d000000 |
How is bilateral symmetry broken?
| life11e_ch43_20.html | 57e53d39757a2ea02d000000 |
DLAP questions | life11e_ch43_20_dlap.xml | 57e53d39757a2ea02d000000 |
recap | life11e_ch43_21.html | 57e53d39757a2ea02d000000 |
DLAP questions | life11e_ch43_21_dlap.xml | 57e53d39757a2ea02d000000 |
key concept 43.4 Organs Develop from the Three Germ Layers
| life11e_ch43_22.html | 57e53d39757a2ea02d000000 |
DLAP questions | life11e_ch43_22_dlap.xml | 57e53d39757a2ea02d000000 |
The organizer sets the stage for organogenesis
| life11e_ch43_23.html | 57e53d39757a2ea02d000000 |
DLAP questions | life11e_ch43_23_dlap.xml | 57e53d39757a2ea02d000000 |
Body segmentation is an early feature of vertebrate development
| life11e_ch43_24.html | 57e53d39757a2ea02d000000 |
DLAP questions | life11e_ch43_24_dlap.xml | 57e53d39757a2ea02d000000 |
Hox genes control differentiation along the anteriorâposterior axis
| life11e_ch43_25.html | 57e53d39757a2ea02d000000 |
DLAP questions | life11e_ch43_25_dlap.xml | 57e53d39757a2ea02d000000 |
recap | life11e_ch43_26.html | 57e53d39757a2ea02d000000 |
DLAP questions | life11e_ch43_26_dlap.xml | 57e53d39757a2ea02d000000 |
key concept 43.5 Extraembryonic Membranes Nurture Avian and Mammalian Embryos
| life11e_ch43_27.html | 57e53d39757a2ea02d000000 |
DLAP questions | life11e_ch43_27_dlap.xml | 57e53d39757a2ea02d000000 |
Birds develop four extraembryonic membranes
| life11e_ch43_28.html | 57e53d39757a2ea02d000000 |
DLAP questions | life11e_ch43_28_dlap.xml | 57e53d39757a2ea02d000000 |
The mammalian placenta forms from extraembryonic membranes
| life11e_ch43_29.html | 57e53d39757a2ea02d000000 |
DLAP questions | life11e_ch43_29_dlap.xml | 57e53d39757a2ea02d000000 |
Human gestation is divided into trimesters
| life11e_ch43_30.html | 57e53d39757a2ea02d000000 |
DLAP questions | life11e_ch43_30_dlap.xml | 57e53d39757a2ea02d000000 |
recap | life11e_ch43_31.html | 57e53d39757a2ea02d000000 |
DLAP questions | life11e_ch43_31_dlap.xml | 57e53d39757a2ea02d000000 |
Investigating Life | life11e_ch43_32.html | 57e53d39757a2ea02d000000 |
DLAP questions | life11e_ch43_32_dlap.xml | 57e53d39757a2ea02d000000 |
Chapter Summary
| life11e_ch43_33.html | 57e53d39757a2ea02d000000 |
DLAP questions | life11e_ch43_33_dlap.xml | 57e53d39757a2ea02d000000 |
Apply What Youâve Learned
| life11e_ch43_34.html | 57e53d39757a2ea02d000000 |
DLAP questions | life11e_ch43_34_dlap.xml | 57e53d39757a2ea02d000000 |
Chapter Introduction | life11e_ch44_1.html | 57e57e94757a2e8832000000 |
DLAP questions | life11e_ch44_1_dlap.xml | 57e57e94757a2e8832000000 |
key concept 44.1 Neurons and Glia Are Unique Cells of Nervous Systems
| life11e_ch44_2.html | 57e57e94757a2e8832000000 |
DLAP questions | life11e_ch44_2_dlap.xml | 57e57e94757a2e8832000000 |
Vertebrate neurons and macroglia originate in the embryonic neural tube
| life11e_ch44_3.html | 57e57e94757a2e8832000000 |
DLAP questions | life11e_ch44_3_dlap.xml | 57e57e94757a2e8832000000 |
The structure of neurons reflects their functions
| life11e_ch44_4.html | 57e57e94757a2e8832000000 |
DLAP questions | life11e_ch44_4_dlap.xml | 57e57e94757a2e8832000000 |
Glia are the âsilent partnersâ of neurons
| life11e_ch44_5.html | 57e57e94757a2e8832000000 |
DLAP questions | life11e_ch44_5_dlap.xml | 57e57e94757a2e8832000000 |
recap | life11e_ch44_6.html | 57e57e94757a2e8832000000 |
DLAP questions | life11e_ch44_6_dlap.xml | 57e57e94757a2e8832000000 |
key concept 44.2 Neurons Generate and Transmit Electric Signals
| life11e_ch44_7.html | 57e57e94757a2e8832000000 |
DLAP questions | life11e_ch44_7_dlap.xml | 57e57e94757a2e8832000000 |
Simple electrical concepts underlie neuronal function
| life11e_ch44_8.html | 57e57e94757a2e8832000000 |
DLAP questions | life11e_ch44_8_dlap.xml | 57e57e94757a2e8832000000 |
Activities of neurons are recorded as changes in membrane potential
| life11e_ch44_9.html | 57e57e94757a2e8832000000 |
DLAP questions | life11e_ch44_9_dlap.xml | 57e57e94757a2e8832000000 |
Ion transporters and channels generate membrane potentials
| life11e_ch44_10.html | 57e57e94757a2e8832000000 |
DLAP questions | life11e_ch44_10_dlap.xml | 57e57e94757a2e8832000000 |
Ion channels and their properties can be studied directly
| life11e_ch44_11.html | 57e57e94757a2e8832000000 |
DLAP questions | life11e_ch44_11_dlap.xml | 57e57e94757a2e8832000000 |
Gated ion channels alter membrane potential
| life11e_ch44_12.html | 57e57e94757a2e8832000000 |
DLAP questions | life11e_ch44_12_dlap.xml | 57e57e94757a2e8832000000 |
Graded changes in membrane potential can integrate information
| life11e_ch44_13.html | 57e57e94757a2e8832000000 |
DLAP questions | life11e_ch44_13_dlap.xml | 57e57e94757a2e8832000000 |
Sudden changes in Na+ and K+ channels generate action potentials
| life11e_ch44_14.html | 57e57e94757a2e8832000000 |
DLAP questions | life11e_ch44_14_dlap.xml | 57e57e94757a2e8832000000 |
Action potentials are conducted along axons without loss of signal
| life11e_ch44_15.html | 57e57e94757a2e8832000000 |
DLAP questions | life11e_ch44_15_dlap.xml | 57e57e94757a2e8832000000 |
Action potentials jump along myelinated axons
| life11e_ch44_16.html | 57e57e94757a2e8832000000 |
DLAP questions | life11e_ch44_16_dlap.xml | 57e57e94757a2e8832000000 |
recap | life11e_ch44_17.html | 57e57e94757a2e8832000000 |
DLAP questions | life11e_ch44_17_dlap.xml | 57e57e94757a2e8832000000 |
key concept 44.3 Neurons Communicate with Other Cells
| life11e_ch44_18.html | 57e57e94757a2e8832000000 |
DLAP questions | life11e_ch44_18_dlap.xml | 57e57e94757a2e8832000000 |
The neuromuscular junction is a model chemical synapse
| life11e_ch44_19.html | 57e57e94757a2e8832000000 |
DLAP questions | life11e_ch44_19_dlap.xml | 57e57e94757a2e8832000000 |
The arrival of an action potential causes the release of neurotransmitter
| life11e_ch44_20.html | 57e57e94757a2e8832000000 |
DLAP questions | life11e_ch44_20_dlap.xml | 57e57e94757a2e8832000000 |
Synaptic functions involve many proteins
| life11e_ch44_21.html | 57e57e94757a2e8832000000 |
DLAP questions | life11e_ch44_21_dlap.xml | 57e57e94757a2e8832000000 |
The postsynaptic membrane responds to neurotransmitter
| life11e_ch44_22.html | 57e57e94757a2e8832000000 |
DLAP questions | life11e_ch44_22_dlap.xml | 57e57e94757a2e8832000000 |
Synapses can be excitatory or inhibitory
| life11e_ch44_23.html | 57e57e94757a2e8832000000 |
DLAP questions | life11e_ch44_23_dlap.xml | 57e57e94757a2e8832000000 |
The postsynaptic neuron sums excitatory and inhibitory input
| life11e_ch44_24.html | 57e57e94757a2e8832000000 |
DLAP questions | life11e_ch44_24_dlap.xml | 57e57e94757a2e8832000000 |
Electrical synapses are fast but do not integrate information well
| life11e_ch44_25.html | 57e57e94757a2e8832000000 |
DLAP questions | life11e_ch44_25_dlap.xml | 57e57e94757a2e8832000000 |
The action of a neurotransmitter depends on the receptor to which it binds
| life11e_ch44_26.html | 57e57e94757a2e8832000000 |
DLAP questions | life11e_ch44_26_dlap.xml | 57e57e94757a2e8832000000 |
To turn off responses, synapses must be cleared of neurotransmitter
| life11e_ch44_27.html | 57e57e94757a2e8832000000 |
DLAP questions | life11e_ch44_27_dlap.xml | 57e57e94757a2e8832000000 |
The diversity of receptors makes drug specificity possible
| life11e_ch44_28.html | 57e57e94757a2e8832000000 |
DLAP questions | life11e_ch44_28_dlap.xml | 57e57e94757a2e8832000000 |
recap | life11e_ch44_29.html | 57e57e94757a2e8832000000 |
DLAP questions | life11e_ch44_29_dlap.xml | 57e57e94757a2e8832000000 |
key concept 44.4 Neurons and Glia Form Information-Processing Circuits
| life11e_ch44_30.html | 57e57e94757a2e8832000000 |
DLAP questions | life11e_ch44_30_dlap.xml | 57e57e94757a2e8832000000 |
Nervous systems range in complexity
| life11e_ch44_31.html | 57e57e94757a2e8832000000 |
DLAP questions | life11e_ch44_31_dlap.xml | 57e57e94757a2e8832000000 |
Reflexes are controlled by simple circuits involving sensory neurons, interneurons, and effectors
| life11e_ch44_32.html | 57e57e94757a2e8832000000 |
DLAP questions | life11e_ch44_32_dlap.xml | 57e57e94757a2e8832000000 |
The vertebrate brain is the seat of behavioral complexity
| life11e_ch44_33.html | 57e57e94757a2e8832000000 |
DLAP questions | life11e_ch44_33_dlap.xml | 57e57e94757a2e8832000000 |
recap | life11e_ch44_34.html | 57e57e94757a2e8832000000 |
DLAP questions | life11e_ch44_34_dlap.xml | 57e57e94757a2e8832000000 |
Investigating Life | life11e_ch44_35.html | 57e57e94757a2e8832000000 |
DLAP questions | life11e_ch44_35_dlap.xml | 57e57e94757a2e8832000000 |
Chapter Summary
| life11e_ch44_36.html | 57e57e94757a2e8832000000 |
DLAP questions | life11e_ch44_36_dlap.xml | 57e57e94757a2e8832000000 |
Apply What Youâve Learned
| life11e_ch44_37.html | 57e57e94757a2e8832000000 |
DLAP questions | life11e_ch44_37_dlap.xml | 57e57e94757a2e8832000000 |
Chapter Introduction | life11e_ch45_1.html | 57f5e72b757a2e3f5e000000 |
DLAP questions | life11e_ch45_1_dlap.xml | 57f5e72b757a2e3f5e000000 |
key concept 45.1 Sensory Receptor Cells Convert Stimuli into Action Potentials
| life11e_ch45_2.html | 57f5e72b757a2e3f5e000000 |
DLAP questions | life11e_ch45_2_dlap.xml | 57f5e72b757a2e3f5e000000 |
Sensory transduction involves changes in membrane potentials
| life11e_ch45_3.html | 57f5e72b757a2e3f5e000000 |
DLAP questions | life11e_ch45_3_dlap.xml | 57f5e72b757a2e3f5e000000 |
Sensory receptor proteins act on ion channels
| life11e_ch45_4.html | 57f5e72b757a2e3f5e000000 |
DLAP questions | life11e_ch45_4_dlap.xml | 57f5e72b757a2e3f5e000000 |
Sensation depends on which neurons receive action potentials from sensory cells
| life11e_ch45_5.html | 57f5e72b757a2e3f5e000000 |
DLAP questions | life11e_ch45_5_dlap.xml | 57f5e72b757a2e3f5e000000 |
Many receptors adapt to repeated stimulation
| life11e_ch45_6.html | 57f5e72b757a2e3f5e000000 |
DLAP questions | life11e_ch45_6_dlap.xml | 57f5e72b757a2e3f5e000000 |
recap | life11e_ch45_7.html | 57f5e72b757a2e3f5e000000 |
DLAP questions | life11e_ch45_7_dlap.xml | 57f5e72b757a2e3f5e000000 |
key concept 45.2 Chemoreceptors Respond to Specific Molecules
| life11e_ch45_8.html | 57f5e72b757a2e3f5e000000 |
DLAP questions | life11e_ch45_8_dlap.xml | 57f5e72b757a2e3f5e000000 |
Olfaction is the sense of smell
| life11e_ch45_9.html | 57f5e72b757a2e3f5e000000 |
DLAP questions | life11e_ch45_9_dlap.xml | 57f5e72b757a2e3f5e000000 |
Some chemoreceptors detect pheromones
| life11e_ch45_10.html | 57f5e72b757a2e3f5e000000 |
DLAP questions | life11e_ch45_10_dlap.xml | 57f5e72b757a2e3f5e000000 |
The vomeronasal organ contains chemoreceptors
| life11e_ch45_11.html | 57f5e72b757a2e3f5e000000 |
DLAP questions | life11e_ch45_11_dlap.xml | 57f5e72b757a2e3f5e000000 |
Gustation is the sense of taste
| life11e_ch45_12.html | 57f5e72b757a2e3f5e000000 |
DLAP questions | life11e_ch45_12_dlap.xml | 57f5e72b757a2e3f5e000000 |
recap | life11e_ch45_13.html | 57f5e72b757a2e3f5e000000 |
DLAP questions | life11e_ch45_13_dlap.xml | 57f5e72b757a2e3f5e000000 |
key concept 45.3 Mechanoreceptors Respond to Physical Forces
| life11e_ch45_14.html | 57f5e72b757a2e3f5e000000 |
DLAP questions | life11e_ch45_14_dlap.xml | 57f5e72b757a2e3f5e000000 |
Many different receptor cells respond to touch and pressure
| life11e_ch45_15.html | 57f5e72b757a2e3f5e000000 |
DLAP questions | life11e_ch45_15_dlap.xml | 57f5e72b757a2e3f5e000000 |
Mechanoreceptors are also found in muscles, tendons, and ligaments
| life11e_ch45_16.html | 57f5e72b757a2e3f5e000000 |
DLAP questions | life11e_ch45_16_dlap.xml | 57f5e72b757a2e3f5e000000 |
Hair cells are mechanoreceptors of the auditory and vestibular systems
| life11e_ch45_17.html | 57f5e72b757a2e3f5e000000 |
DLAP questions | life11e_ch45_17_dlap.xml | 57f5e72b757a2e3f5e000000 |
Auditory systems use hair cells to sense sound waves
| life11e_ch45_18.html | 57f5e72b757a2e3f5e000000 |
DLAP questions | life11e_ch45_18_dlap.xml | 57f5e72b757a2e3f5e000000 |
Flexion of the basilar membrane is perceived as sound
| life11e_ch45_19.html | 57f5e72b757a2e3f5e000000 |
DLAP questions | life11e_ch45_19_dlap.xml | 57f5e72b757a2e3f5e000000 |
Various types of damage can result in hearing loss
| life11e_ch45_20.html | 57f5e72b757a2e3f5e000000 |
DLAP questions | life11e_ch45_20_dlap.xml | 57f5e72b757a2e3f5e000000 |
The vestibular system uses hair cells to detect forces of gravity and momentum
| life11e_ch45_21.html | 57f5e72b757a2e3f5e000000 |
DLAP questions | life11e_ch45_21_dlap.xml | 57f5e72b757a2e3f5e000000 |
recap | life11e_ch45_22.html | 57f5e72b757a2e3f5e000000 |
DLAP questions | life11e_ch45_22_dlap.xml | 57f5e72b757a2e3f5e000000 |
key concept 45.4 Photoreceptors Respond to Light
| life11e_ch45_23.html | 57f5e72b757a2e3f5e000000 |
DLAP questions | life11e_ch45_23_dlap.xml | 57f5e72b757a2e3f5e000000 |
Invertebrates have a variety of visual systems
| life11e_ch45_24.html | 57f5e72b757a2e3f5e000000 |
DLAP questions | life11e_ch45_24_dlap.xml | 57f5e72b757a2e3f5e000000 |
Image-forming eyes evolved independently in vertebrates and cephalopods
| life11e_ch45_25.html | 57f5e72b757a2e3f5e000000 |
DLAP questions | life11e_ch45_25_dlap.xml | 57f5e72b757a2e3f5e000000 |
The vertebrate retina receives and processes visual information
| life11e_ch45_26.html | 57f5e72b757a2e3f5e000000 |
DLAP questions | life11e_ch45_26_dlap.xml | 57f5e72b757a2e3f5e000000 |
Opsins are the universal photoreceptor molecule in animals
| life11e_ch45_27.html | 57f5e72b757a2e3f5e000000 |
DLAP questions | life11e_ch45_27_dlap.xml | 57f5e72b757a2e3f5e000000 |
Rod and cone cells are the photoreceptors of the vertebrate retina
| life11e_ch45_28.html | 57f5e72b757a2e3f5e000000 |
DLAP questions | life11e_ch45_28_dlap.xml | 57f5e72b757a2e3f5e000000 |
Information flows through layers of neurons in the retina
| life11e_ch45_29.html | 57f5e72b757a2e3f5e000000 |
DLAP questions | life11e_ch45_29_dlap.xml | 57f5e72b757a2e3f5e000000 |
recap | life11e_ch45_30.html | 57f5e72b757a2e3f5e000000 |
DLAP questions | life11e_ch45_30_dlap.xml | 57f5e72b757a2e3f5e000000 |
Investigating Life | life11e_ch45_31.html | 57f5e72b757a2e3f5e000000 |
DLAP questions | life11e_ch45_31_dlap.xml | 57f5e72b757a2e3f5e000000 |
Chapter Summary
| life11e_ch45_32.html | 57f5e72b757a2e3f5e000000 |
DLAP questions | life11e_ch45_32_dlap.xml | 57f5e72b757a2e3f5e000000 |
Apply What Youâve Learned
| life11e_ch45_33.html | 57f5e72b757a2e3f5e000000 |
DLAP questions | life11e_ch45_33_dlap.xml | 57f5e72b757a2e3f5e000000 |
Chapter Introduction | life11e_ch46_1.html | 57fbbd97757a2e3e10000001 |
DLAP questions | life11e_ch46_1_dlap.xml | 57fbbd97757a2e3e10000001 |
key concept 46.1 Functions Are Localized in the Nervous System
| life11e_ch46_2.html | 57fbbd97757a2e3e10000001 |
DLAP questions | life11e_ch46_2_dlap.xml | 57fbbd97757a2e3e10000001 |
Functional organization is based on flow and type of information
| life11e_ch46_3.html | 57fbbd97757a2e3e10000001 |
DLAP questions | life11e_ch46_3_dlap.xml | 57fbbd97757a2e3e10000001 |
The anatomical organization of the CNS emerges during development
| life11e_ch46_4.html | 57fbbd97757a2e3e10000001 |
DLAP questions | life11e_ch46_4_dlap.xml | 57fbbd97757a2e3e10000001 |
The spinal cord transmits and processes information
| life11e_ch46_5.html | 57fbbd97757a2e3e10000001 |
DLAP questions | life11e_ch46_5_dlap.xml | 57fbbd97757a2e3e10000001 |
The brainstem carries out many autonomic functions
| life11e_ch46_6.html | 57fbbd97757a2e3e10000001 |
DLAP questions | life11e_ch46_6_dlap.xml | 57fbbd97757a2e3e10000001 |
The core of the forebrain controls physiological drives, instincts, and emotions
| life11e_ch46_7.html | 57fbbd97757a2e3e10000001 |
DLAP questions | life11e_ch46_7_dlap.xml | 57fbbd97757a2e3e10000001 |
The cerebrum is responsible for complex behavior and consciousness
| life11e_ch46_8.html | 57fbbd97757a2e3e10000001 |
DLAP questions | life11e_ch46_8_dlap.xml | 57fbbd97757a2e3e10000001 |
The size of the human brain is off the curve
| life11e_ch46_9.html | 57fbbd97757a2e3e10000001 |
DLAP questions | life11e_ch46_9_dlap.xml | 57fbbd97757a2e3e10000001 |
recap | life11e_ch46_10.html | 57fbbd97757a2e3e10000001 |
DLAP questions | life11e_ch46_10_dlap.xml | 57fbbd97757a2e3e10000001 |
key concept 46.2 Nervous System Functions Rely on Neural Circuits
| life11e_ch46_11.html | 57fbbd97757a2e3e10000001 |
DLAP questions | life11e_ch46_11_dlap.xml | 57fbbd97757a2e3e10000001 |
Pathways of the autonomic nervous system control involuntary physiological functions
| life11e_ch46_12.html | 57fbbd97757a2e3e10000001 |
DLAP questions | life11e_ch46_12_dlap.xml | 57fbbd97757a2e3e10000001 |
The visual system is an example of information integration by the cerebral cortex
| life11e_ch46_13.html | 57fbbd97757a2e3e10000001 |
DLAP questions | life11e_ch46_13_dlap.xml | 57fbbd97757a2e3e10000001 |
Three-dimensional vision results from cortical cells receiving input from both eyes
| life11e_ch46_14.html | 57fbbd97757a2e3e10000001 |
DLAP questions | life11e_ch46_14_dlap.xml | 57fbbd97757a2e3e10000001 |
recap | life11e_ch46_15.html | 57fbbd97757a2e3e10000001 |
DLAP questions | life11e_ch46_15_dlap.xml | 57fbbd97757a2e3e10000001 |
key concept 46.3 Higher Brain Functions Involve Integration of Multiple Systems
| life11e_ch46_16.html | 57fbbd97757a2e3e10000001 |
DLAP questions | life11e_ch46_16_dlap.xml | 57fbbd97757a2e3e10000001 |
Sleep and dreaming are reflected in electrical patterns in the cerebral cortex
| life11e_ch46_17.html | 57fbbd97757a2e3e10000001 |
DLAP questions | life11e_ch46_17_dlap.xml | 57fbbd97757a2e3e10000001 |
Language abilities are localized in the left cerebral hemisphere
| life11e_ch46_18.html | 57fbbd97757a2e3e10000001 |
DLAP questions | life11e_ch46_18_dlap.xml | 57fbbd97757a2e3e10000001 |
Some learning and memory can be localized to specific brain areas
| life11e_ch46_19.html | 57fbbd97757a2e3e10000001 |
DLAP questions | life11e_ch46_19_dlap.xml | 57fbbd97757a2e3e10000001 |
We still cannot answer the question âWhat is consciousness?â
| life11e_ch46_20.html | 57fbbd97757a2e3e10000001 |
DLAP questions | life11e_ch46_20_dlap.xml | 57fbbd97757a2e3e10000001 |
recap | life11e_ch46_21.html | 57fbbd97757a2e3e10000001 |
DLAP questions | life11e_ch46_21_dlap.xml | 57fbbd97757a2e3e10000001 |
Investigating Life | life11e_ch46_22.html | 57fbbd97757a2e3e10000001 |
DLAP questions | life11e_ch46_22_dlap.xml | 57fbbd97757a2e3e10000001 |
Chapter Summary
| life11e_ch46_23.html | 57fbbd97757a2e3e10000001 |
DLAP questions | life11e_ch46_23_dlap.xml | 57fbbd97757a2e3e10000001 |
Apply What Youâve Learned
| life11e_ch46_24.html | 57fbbd97757a2e3e10000001 |
DLAP questions | life11e_ch46_24_dlap.xml | 57fbbd97757a2e3e10000001 |
Chapter Introduction | life11e_ch47_1.html | 57ea6cdb757a2e2f52000000 |
DLAP questions | life11e_ch47_1_dlap.xml | 57ea6cdb757a2e2f52000000 |
key concept 47.1 Interactions of Actin and Myosin Cause Muscles to Contract
| life11e_ch47_2.html | 57ea6cdb757a2e2f52000000 |
DLAP questions | life11e_ch47_2_dlap.xml | 57ea6cdb757a2e2f52000000 |
Sliding filaments of actin and myosin cause skeletal muscle to contract
| life11e_ch47_3.html | 57ea6cdb757a2e2f52000000 |
DLAP questions | life11e_ch47_3_dlap.xml | 57ea6cdb757a2e2f52000000 |
Actinâmyosin interactions cause filaments to slide
| life11e_ch47_4.html | 57ea6cdb757a2e2f52000000 |
DLAP questions | life11e_ch47_4_dlap.xml | 57ea6cdb757a2e2f52000000 |
Actinâmyosin interactions are controlled by calcium ions
| life11e_ch47_5.html | 57ea6cdb757a2e2f52000000 |
DLAP questions | life11e_ch47_5_dlap.xml | 57ea6cdb757a2e2f52000000 |
Cardiac muscle is similar to and different from skeletal muscle
| life11e_ch47_6.html | 57ea6cdb757a2e2f52000000 |
DLAP questions | life11e_ch47_6_dlap.xml | 57ea6cdb757a2e2f52000000 |
Smooth muscle causes slow contractions of many internal organs
| life11e_ch47_7.html | 57ea6cdb757a2e2f52000000 |
DLAP questions | life11e_ch47_7_dlap.xml | 57ea6cdb757a2e2f52000000 |
recap | life11e_ch47_8.html | 57ea6cdb757a2e2f52000000 |
DLAP questions | life11e_ch47_8_dlap.xml | 57ea6cdb757a2e2f52000000 |
key concept 47.2 Many Factors Affect Muscle Performance
| life11e_ch47_9.html | 57ea6cdb757a2e2f52000000 |
DLAP questions | life11e_ch47_9_dlap.xml | 57ea6cdb757a2e2f52000000 |
The strength of a muscle contraction depends on how many fibers are contracting and at what rate
| life11e_ch47_10.html | 57ea6cdb757a2e2f52000000 |
DLAP questions | life11e_ch47_10_dlap.xml | 57ea6cdb757a2e2f52000000 |
Muscle fiber types determine endurance and strength
| life11e_ch47_11.html | 57ea6cdb757a2e2f52000000 |
DLAP questions | life11e_ch47_11_dlap.xml | 57ea6cdb757a2e2f52000000 |
A muscle has an optimal length for generating maximum tension
| life11e_ch47_12.html | 57ea6cdb757a2e2f52000000 |
DLAP questions | life11e_ch47_12_dlap.xml | 57ea6cdb757a2e2f52000000 |
Exercise increases muscle strength and endurance
| life11e_ch47_13.html | 57ea6cdb757a2e2f52000000 |
DLAP questions | life11e_ch47_13_dlap.xml | 57ea6cdb757a2e2f52000000 |
Muscle ATP supply limits performance
| life11e_ch47_14.html | 57ea6cdb757a2e2f52000000 |
DLAP questions | life11e_ch47_14_dlap.xml | 57ea6cdb757a2e2f52000000 |
Insect muscle has the greatest rate of cycling
| life11e_ch47_15.html | 57ea6cdb757a2e2f52000000 |
DLAP questions | life11e_ch47_15_dlap.xml | 57ea6cdb757a2e2f52000000 |
recap | life11e_ch47_16.html | 57ea6cdb757a2e2f52000000 |
DLAP questions | life11e_ch47_16_dlap.xml | 57ea6cdb757a2e2f52000000 |
key concept 47.3 Muscles and Skeletal Systems Work Together
| life11e_ch47_17.html | 57ea6cdb757a2e2f52000000 |
DLAP questions | life11e_ch47_17_dlap.xml | 57ea6cdb757a2e2f52000000 |
A hydrostatic skeleton consists of fluid in a muscular cavity
| life11e_ch47_18.html | 57ea6cdb757a2e2f52000000 |
DLAP questions | life11e_ch47_18_dlap.xml | 57ea6cdb757a2e2f52000000 |
Exoskeletons are rigid outer structures
| life11e_ch47_19.html | 57ea6cdb757a2e2f52000000 |
DLAP questions | life11e_ch47_19_dlap.xml | 57ea6cdb757a2e2f52000000 |
Vertebrate endoskeletons consist of cartilage and bone
| life11e_ch47_20.html | 57ea6cdb757a2e2f52000000 |
DLAP questions | life11e_ch47_20_dlap.xml | 57ea6cdb757a2e2f52000000 |
Bones develop from connective tissues
| life11e_ch47_21.html | 57ea6cdb757a2e2f52000000 |
DLAP questions | life11e_ch47_21_dlap.xml | 57ea6cdb757a2e2f52000000 |
Bones that have a common joint can work as a lever
| life11e_ch47_22.html | 57ea6cdb757a2e2f52000000 |
DLAP questions | life11e_ch47_22_dlap.xml | 57ea6cdb757a2e2f52000000 |
recap | life11e_ch47_23.html | 57ea6cdb757a2e2f52000000 |
DLAP questions | life11e_ch47_23_dlap.xml | 57ea6cdb757a2e2f52000000 |
Investigating Life | life11e_ch47_24.html | 57ea6cdb757a2e2f52000000 |
DLAP questions | life11e_ch47_24_dlap.xml | 57ea6cdb757a2e2f52000000 |
Chapter Summary
| life11e_ch47_25.html | 57ea6cdb757a2e2f52000000 |
DLAP questions | life11e_ch47_25_dlap.xml | 57ea6cdb757a2e2f52000000 |
Apply What Youâve Learned
| life11e_ch47_26.html | 57ea6cdb757a2e2f52000000 |
DLAP questions | life11e_ch47_26_dlap.xml | 57ea6cdb757a2e2f52000000 |
Chapter Introduction | life11e_ch48_1.html | 57fbf58f757a2e8412000000 |
DLAP questions | life11e_ch48_1_dlap.xml | 57fbf58f757a2e8412000000 |
key concept 48.1 Respiratory Gas Exchange Is Governed by Physical Factors
| life11e_ch48_2.html | 57fbf58f757a2e8412000000 |
DLAP questions | life11e_ch48_2_dlap.xml | 57fbf58f757a2e8412000000 |
Diffusion of gases is driven by partial pressure differences
| life11e_ch48_3.html | 57fbf58f757a2e8412000000 |
DLAP questions | life11e_ch48_3_dlap.xml | 57fbf58f757a2e8412000000 |
Fickâs law applies to all systems of gas exchange
| life11e_ch48_4.html | 57fbf58f757a2e8412000000 |
DLAP questions | life11e_ch48_4_dlap.xml | 57fbf58f757a2e8412000000 |
Air is a better respiratory medium than water
| life11e_ch48_5.html | 57fbf58f757a2e8412000000 |
DLAP questions | life11e_ch48_5_dlap.xml | 57fbf58f757a2e8412000000 |
High temperatures create respiratory problems for aquatic animals
| life11e_ch48_6.html | 57fbf58f757a2e8412000000 |
DLAP questions | life11e_ch48_6_dlap.xml | 57fbf58f757a2e8412000000 |
O2 availability decreases with altitude
| life11e_ch48_7.html | 57fbf58f757a2e8412000000 |
DLAP questions | life11e_ch48_7_dlap.xml | 57fbf58f757a2e8412000000 |
CO2 is lost by diffusion
| life11e_ch48_8.html | 57fbf58f757a2e8412000000 |
DLAP questions | life11e_ch48_8_dlap.xml | 57fbf58f757a2e8412000000 |
recap | life11e_ch48_9.html | 57fbf58f757a2e8412000000 |
DLAP questions | life11e_ch48_9_dlap.xml | 57fbf58f757a2e8412000000 |
key concept 48.2 Enhancing Diffusion Maximizes Respiratory Gas Exchange
| life11e_ch48_10.html | 57fbf58f757a2e8412000000 |
DLAP questions | life11e_ch48_10_dlap.xml | 57fbf58f757a2e8412000000 |
Respiratory organs have large surface areas
| life11e_ch48_11.html | 57fbf58f757a2e8412000000 |
DLAP questions | life11e_ch48_11_dlap.xml | 57fbf58f757a2e8412000000 |
Ventilation and perfusion of gas exchange surfaces maximize partial pressure gradients
| life11e_ch48_12.html | 57fbf58f757a2e8412000000 |
DLAP questions | life11e_ch48_12_dlap.xml | 57fbf58f757a2e8412000000 |
Insects have airways throughout their bodies
| life11e_ch48_13.html | 57fbf58f757a2e8412000000 |
DLAP questions | life11e_ch48_13_dlap.xml | 57fbf58f757a2e8412000000 |
Fish gills use countercurrent flow to maximize gas exchange
| life11e_ch48_14.html | 57fbf58f757a2e8412000000 |
DLAP questions | life11e_ch48_14_dlap.xml | 57fbf58f757a2e8412000000 |
Birds use unidirectional ventilation to maximize gas exchange
| life11e_ch48_15.html | 57fbf58f757a2e8412000000 |
DLAP questions | life11e_ch48_15_dlap.xml | 57fbf58f757a2e8412000000 |
Tidal ventilation produces dead space that limits gas exchange efficiency
| life11e_ch48_16.html | 57fbf58f757a2e8412000000 |
DLAP questions | life11e_ch48_16_dlap.xml | 57fbf58f757a2e8412000000 |
Small residual volume prevents the bends in seals
| life11e_ch48_17.html | 57fbf58f757a2e8412000000 |
DLAP questions | life11e_ch48_17_dlap.xml | 57fbf58f757a2e8412000000 |
recap | life11e_ch48_18.html | 57fbf58f757a2e8412000000 |
DLAP questions | life11e_ch48_18_dlap.xml | 57fbf58f757a2e8412000000 |
key concept 48.3 Humans Have Tidal Respiration
| life11e_ch48_19.html | 57fbf58f757a2e8412000000 |
DLAP questions | life11e_ch48_19_dlap.xml | 57fbf58f757a2e8412000000 |
Lungs are ventilated through a branching system of airways
| life11e_ch48_20.html | 57fbf58f757a2e8412000000 |
DLAP questions | life11e_ch48_20_dlap.xml | 57fbf58f757a2e8412000000 |
Respiratory tract secretions aid ventilation
| life11e_ch48_21.html | 57fbf58f757a2e8412000000 |
DLAP questions | life11e_ch48_21_dlap.xml | 57fbf58f757a2e8412000000 |
Lungs are ventilated by pressure changes in the thoracic cavity
| life11e_ch48_22.html | 57fbf58f757a2e8412000000 |
DLAP questions | life11e_ch48_22_dlap.xml | 57fbf58f757a2e8412000000 |
recap | life11e_ch48_23.html | 57fbf58f757a2e8412000000 |
DLAP questions | life11e_ch48_23_dlap.xml | 57fbf58f757a2e8412000000 |
key concept 48.4 Respiratory Gases Are Transported by the Blood
| life11e_ch48_24.html | 57fbf58f757a2e8412000000 |
DLAP questions | life11e_ch48_24_dlap.xml | 57fbf58f757a2e8412000000 |
Red blood cells are produced in the bone marrow
| life11e_ch48_25.html | 57fbf58f757a2e8412000000 |
DLAP questions | life11e_ch48_25_dlap.xml | 57fbf58f757a2e8412000000 |
Hemoglobin combines reversibly with O2 | life11e_ch48_26.html | 57fbf58f757a2e8412000000 |
DLAP questions | life11e_ch48_26_dlap.xml | 57fbf58f757a2e8412000000 |
Myoglobin holds an O2 reserve
| life11e_ch48_27.html | 57fbf58f757a2e8412000000 |
DLAP questions | life11e_ch48_27_dlap.xml | 57fbf58f757a2e8412000000 |
Hemoglobinâs affinity for O2 is variable
| life11e_ch48_28.html | 57fbf58f757a2e8412000000 |
DLAP questions | life11e_ch48_28_dlap.xml | 57fbf58f757a2e8412000000 |
Most CO2 is transported as bicarbonate ions in the blood
| life11e_ch48_29.html | 57fbf58f757a2e8412000000 |
DLAP questions | life11e_ch48_29_dlap.xml | 57fbf58f757a2e8412000000 |
recap | life11e_ch48_30.html | 57fbf58f757a2e8412000000 |
DLAP questions | life11e_ch48_30_dlap.xml | 57fbf58f757a2e8412000000 |
key concept 48.5 Breathing Is Homeostatically Regulated
| life11e_ch48_31.html | 57fbf58f757a2e8412000000 |
DLAP questions | life11e_ch48_31_dlap.xml | 57fbf58f757a2e8412000000 |
Breathing is controlled in the brainstem
| life11e_ch48_32.html | 57fbf58f757a2e8412000000 |
DLAP questions | life11e_ch48_32_dlap.xml | 57fbf58f757a2e8412000000 |
Regulating breathing requires feedback
| life11e_ch48_33.html | 57fbf58f757a2e8412000000 |
DLAP questions | life11e_ch48_33_dlap.xml | 57fbf58f757a2e8412000000 |
recap | life11e_ch48_34.html | 57fbf58f757a2e8412000000 |
DLAP questions | life11e_ch48_34_dlap.xml | 57fbf58f757a2e8412000000 |
Investigating Life | life11e_ch48_35.html | 57fbf58f757a2e8412000000 |
DLAP questions | life11e_ch48_35_dlap.xml | 57fbf58f757a2e8412000000 |
Chapter Summary
| life11e_ch48_36.html | 57fbf58f757a2e8412000000 |
DLAP questions | life11e_ch48_36_dlap.xml | 57fbf58f757a2e8412000000 |
Apply What Youâve Learned
| life11e_ch48_37.html | 57fbf58f757a2e8412000000 |
DLAP questions | life11e_ch48_37_dlap.xml | 57fbf58f757a2e8412000000 |
Chapter Introduction | life11e_ch49_1.html | 57fcde6b757a2ef61c000000 |
DLAP questions | life11e_ch49_1_dlap.xml | 57fcde6b757a2ef61c000000 |
key concept 49.1 Circulatory Systems Serve Many Functions
| life11e_ch49_2.html | 57fcde6b757a2ef61c000000 |
DLAP questions | life11e_ch49_2_dlap.xml | 57fcde6b757a2ef61c000000 |
Some animals do not have a circulatory system
| life11e_ch49_3.html | 57fcde6b757a2ef61c000000 |
DLAP questions | life11e_ch49_3_dlap.xml | 57fcde6b757a2ef61c000000 |
Circulatory systems can be open or closed
| life11e_ch49_4.html | 57fcde6b757a2ef61c000000 |
DLAP questions | life11e_ch49_4_dlap.xml | 57fcde6b757a2ef61c000000 |
Open circulatory systems move extracellular fluid
| life11e_ch49_5.html | 57fcde6b757a2ef61c000000 |
DLAP questions | life11e_ch49_5_dlap.xml | 57fcde6b757a2ef61c000000 |
Closed circulatory systems circulate blood through a system of blood vessels
| life11e_ch49_6.html | 57fcde6b757a2ef61c000000 |
DLAP questions | life11e_ch49_6_dlap.xml | 57fcde6b757a2ef61c000000 |
recap | life11e_ch49_7.html | 57fcde6b757a2ef61c000000 |
DLAP questions | life11e_ch49_7_dlap.xml | 57fcde6b757a2ef61c000000 |
key concept 49.2 Vertebrate Circulatory Systems Evolved from Single to Double Circuits
| life11e_ch49_8.html | 57fcde6b757a2ef61c000000 |
DLAP questions | life11e_ch49_8_dlap.xml | 57fcde6b757a2ef61c000000 |
Circulation in fishes is a single circuit
| life11e_ch49_9.html | 57fcde6b757a2ef61c000000 |
DLAP questions | life11e_ch49_9_dlap.xml | 57fcde6b757a2ef61c000000 |
Lungfishes evolved a gas-breathing organ
| life11e_ch49_10.html | 57fcde6b757a2ef61c000000 |
DLAP questions | life11e_ch49_10_dlap.xml | 57fcde6b757a2ef61c000000 |
Amphibians have partial separation of systemic and pulmonary circulation
| life11e_ch49_11.html | 57fcde6b757a2ef61c000000 |
DLAP questions | life11e_ch49_11_dlap.xml | 57fcde6b757a2ef61c000000 |
Reptiles have exquisite control of pulmonary and systemic circulation
| life11e_ch49_12.html | 57fcde6b757a2ef61c000000 |
DLAP questions | life11e_ch49_12_dlap.xml | 57fcde6b757a2ef61c000000 |
Birds and mammals have fully separated pulmonary and systemic circuits
| life11e_ch49_13.html | 57fcde6b757a2ef61c000000 |
DLAP questions | life11e_ch49_13_dlap.xml | 57fcde6b757a2ef61c000000 |
recap | life11e_ch49_14.html | 57fcde6b757a2ef61c000000 |
DLAP questions | life11e_ch49_14_dlap.xml | 57fcde6b757a2ef61c000000 |
key concept 49.3 Heart Function Depends on Properties of Cardiac Muscle
| life11e_ch49_15.html | 57fcde6b757a2ef61c000000 |
DLAP questions | life11e_ch49_15_dlap.xml | 57fcde6b757a2ef61c000000 |
Blood flows from right heart to lungs to left heart to body
| life11e_ch49_16.html | 57fcde6b757a2ef61c000000 |
DLAP questions | life11e_ch49_16_dlap.xml | 57fcde6b757a2ef61c000000 |
The heartbeat originates in the cardiac muscle
| life11e_ch49_17.html | 57fcde6b757a2ef61c000000 |
DLAP questions | life11e_ch49_17_dlap.xml | 57fcde6b757a2ef61c000000 |
A conduction system coordinates the contraction of heart muscle
| life11e_ch49_18.html | 57fcde6b757a2ef61c000000 |
DLAP questions | life11e_ch49_18_dlap.xml | 57fcde6b757a2ef61c000000 |
HCM can disrupt conduction
| life11e_ch49_19.html | 57fcde6b757a2ef61c000000 |
DLAP questions | life11e_ch49_19_dlap.xml | 57fcde6b757a2ef61c000000 |
Electrical properties of ventricular muscles sustain heart contraction
| life11e_ch49_20.html | 57fcde6b757a2ef61c000000 |
DLAP questions | life11e_ch49_20_dlap.xml | 57fcde6b757a2ef61c000000 |
The ECG records the electrical activity of the heart
| life11e_ch49_21.html | 57fcde6b757a2ef61c000000 |
DLAP questions | life11e_ch49_21_dlap.xml | 57fcde6b757a2ef61c000000 |
recap | life11e_ch49_22.html | 57fcde6b757a2ef61c000000 |
DLAP questions | life11e_ch49_22_dlap.xml | 57fcde6b757a2ef61c000000 |
key concept 49.4 Circulatory System Functions Depend on Blood and Blood Vessels
| life11e_ch49_23.html | 57fcde6b757a2ef61c000000 |
DLAP questions | life11e_ch49_23_dlap.xml | 57fcde6b757a2ef61c000000 |
Red blood cells transport respiratory gases
| life11e_ch49_24.html | 57fcde6b757a2ef61c000000 |
DLAP questions | life11e_ch49_24_dlap.xml | 57fcde6b757a2ef61c000000 |
Platelets are essential for blood clotting
| life11e_ch49_25.html | 57fcde6b757a2ef61c000000 |
DLAP questions | life11e_ch49_25_dlap.xml | 57fcde6b757a2ef61c000000 |
Arteries withstand high pressure, arterioles control blood flow
| life11e_ch49_26.html | 57fcde6b757a2ef61c000000 |
DLAP questions | life11e_ch49_26_dlap.xml | 57fcde6b757a2ef61c000000 |
Materials are exchanged in capillary beds by filtration, osmosis, and diffusion
| life11e_ch49_27.html | 57fcde6b757a2ef61c000000 |
DLAP questions | life11e_ch49_27_dlap.xml | 57fcde6b757a2ef61c000000 |
Blood flows back to the heart through veins
| life11e_ch49_28.html | 57fcde6b757a2ef61c000000 |
DLAP questions | life11e_ch49_28_dlap.xml | 57fcde6b757a2ef61c000000 |
Lymphatic vessels return interstitial fluid to the blood
| life11e_ch49_29.html | 57fcde6b757a2ef61c000000 |
DLAP questions | life11e_ch49_29_dlap.xml | 57fcde6b757a2ef61c000000 |
Vascular disease is a killer
| life11e_ch49_30.html | 57fcde6b757a2ef61c000000 |
DLAP questions | life11e_ch49_30_dlap.xml | 57fcde6b757a2ef61c000000 |
recap | life11e_ch49_31.html | 57fcde6b757a2ef61c000000 |
DLAP questions | life11e_ch49_31_dlap.xml | 57fcde6b757a2ef61c000000 |
key concept 49.5 The Circulation Is Controlled by Hormonal and Neural Signals
| life11e_ch49_32.html | 57fcde6b757a2ef61c000000 |
DLAP questions | life11e_ch49_32_dlap.xml | 57fcde6b757a2ef61c000000 |
Autoregulation matches local blood flow to local need
| life11e_ch49_33.html | 57fcde6b757a2ef61c000000 |
DLAP questions | life11e_ch49_33_dlap.xml | 57fcde6b757a2ef61c000000 |
Arterial pressure is regulated by hormonal and neural mechanisms
| life11e_ch49_34.html | 57fcde6b757a2ef61c000000 |
DLAP questions | life11e_ch49_34_dlap.xml | 57fcde6b757a2ef61c000000 |
recap | life11e_ch49_35.html | 57fcde6b757a2ef61c000000 |
DLAP questions | life11e_ch49_35_dlap.xml | 57fcde6b757a2ef61c000000 |
Investigating Life | life11e_ch49_36.html | 57fcde6b757a2ef61c000000 |
DLAP questions | life11e_ch49_36_dlap.xml | 57fcde6b757a2ef61c000000 |
Chapter Summary
| life11e_ch49_37.html | 57fcde6b757a2ef61c000000 |
DLAP questions | life11e_ch49_37_dlap.xml | 57fcde6b757a2ef61c000000 |
Apply What Youâve Learned
| life11e_ch49_38.html | 57fcde6b757a2ef61c000000 |
DLAP questions | life11e_ch49_38_dlap.xml | 57fcde6b757a2ef61c000000 |
Chapter Introduction | life11e_ch50_1.html | 57fe3b8a757a2e2735000000 |
DLAP questions | life11e_ch50_1_dlap.xml | 57fe3b8a757a2e2735000000 |
key concept 50.1 Food Provides Energy As Well As Materials for Biosynthesis
| life11e_ch50_2.html | 57fe3b8a757a2e2735000000 |
DLAP questions | life11e_ch50_2_dlap.xml | 57fe3b8a757a2e2735000000 |
Energy needs and expenditures can be measured
| life11e_ch50_3.html | 57fe3b8a757a2e2735000000 |
DLAP questions | life11e_ch50_3_dlap.xml | 57fe3b8a757a2e2735000000 |
Sources of energy are stored in the body
| life11e_ch50_4.html | 57fe3b8a757a2e2735000000 |
DLAP questions | life11e_ch50_4_dlap.xml | 57fe3b8a757a2e2735000000 |
Food provides carbon skeletons for biosynthesis
| life11e_ch50_5.html | 57fe3b8a757a2e2735000000 |
DLAP questions | life11e_ch50_5_dlap.xml | 57fe3b8a757a2e2735000000 |
Animals need mineral elements for a variety of functions
| life11e_ch50_6.html | 57fe3b8a757a2e2735000000 |
DLAP questions | life11e_ch50_6_dlap.xml | 57fe3b8a757a2e2735000000 |
Animals must obtain vitamins from food
| life11e_ch50_7.html | 57fe3b8a757a2e2735000000 |
DLAP questions | life11e_ch50_7_dlap.xml | 57fe3b8a757a2e2735000000 |
Nutrient deficiencies result in diseases
| life11e_ch50_8.html | 57fe3b8a757a2e2735000000 |
DLAP questions | life11e_ch50_8_dlap.xml | 57fe3b8a757a2e2735000000 |
recap | life11e_ch50_9.html | 57fe3b8a757a2e2735000000 |
DLAP questions | life11e_ch50_9_dlap.xml | 57fe3b8a757a2e2735000000 |
key concept 50.2 Diverse Adaptations Support Ingestion and Digestion of Food
| life11e_ch50_10.html | 57fe3b8a757a2e2735000000 |
DLAP questions | life11e_ch50_10_dlap.xml | 57fe3b8a757a2e2735000000 |
The food of herbivores is often low in energy and hard to digest
| life11e_ch50_11.html | 57fe3b8a757a2e2735000000 |
DLAP questions | life11e_ch50_11_dlap.xml | 57fe3b8a757a2e2735000000 |
Carnivores must find, capture, and kill prey
| life11e_ch50_12.html | 57fe3b8a757a2e2735000000 |
DLAP questions | life11e_ch50_12_dlap.xml | 57fe3b8a757a2e2735000000 |
Vertebrate species have distinctive teeth
| life11e_ch50_13.html | 57fe3b8a757a2e2735000000 |
DLAP questions | life11e_ch50_13_dlap.xml | 57fe3b8a757a2e2735000000 |
Digestion usually begins in a body cavity
| life11e_ch50_14.html | 57fe3b8a757a2e2735000000 |
DLAP questions | life11e_ch50_14_dlap.xml | 57fe3b8a757a2e2735000000 |
Tubular guts have an opening at each end
| life11e_ch50_15.html | 57fe3b8a757a2e2735000000 |
DLAP questions | life11e_ch50_15_dlap.xml | 57fe3b8a757a2e2735000000 |
Digestive enzymes break down complex food molecules
| life11e_ch50_16.html | 57fe3b8a757a2e2735000000 |
DLAP questions | life11e_ch50_16_dlap.xml | 57fe3b8a757a2e2735000000 |
The gut microbiome contributes to digestion
| life11e_ch50_17.html | 57fe3b8a757a2e2735000000 |
DLAP questions | life11e_ch50_17_dlap.xml | 57fe3b8a757a2e2735000000 |
recap | life11e_ch50_18.html | 57fe3b8a757a2e2735000000 |
DLAP questions | life11e_ch50_18_dlap.xml | 57fe3b8a757a2e2735000000 |
key concept 50.3 The Vertebrate Gastrointestinal System Is a Disassembly Line
| life11e_ch50_19.html | 57fe3b8a757a2e2735000000 |
DLAP questions | life11e_ch50_19_dlap.xml | 57fe3b8a757a2e2735000000 |
The vertebrate gut consists of concentric tissue layers
| life11e_ch50_20.html | 57fe3b8a757a2e2735000000 |
DLAP questions | life11e_ch50_20_dlap.xml | 57fe3b8a757a2e2735000000 |
Gut motility moves food through the gut and aids digestion
| life11e_ch50_21.html | 57fe3b8a757a2e2735000000 |
DLAP questions | life11e_ch50_21_dlap.xml | 57fe3b8a757a2e2735000000 |
Chemical digestion begins in the mouth and the stomach
| life11e_ch50_22.html | 57fe3b8a757a2e2735000000 |
DLAP questions | life11e_ch50_22_dlap.xml | 57fe3b8a757a2e2735000000 |
The stomach gradually releases its contents to the small intestine
| life11e_ch50_23.html | 57fe3b8a757a2e2735000000 |
DLAP questions | life11e_ch50_23_dlap.xml | 57fe3b8a757a2e2735000000 |
Most chemical digestion occurs in the small intestine
| life11e_ch50_24.html | 57fe3b8a757a2e2735000000 |
DLAP questions | life11e_ch50_24_dlap.xml | 57fe3b8a757a2e2735000000 |
Nutrients are absorbed in the small intestine
| life11e_ch50_25.html | 57fe3b8a757a2e2735000000 |
DLAP questions | life11e_ch50_25_dlap.xml | 57fe3b8a757a2e2735000000 |
Absorbed nutrients go to the liver
| life11e_ch50_26.html | 57fe3b8a757a2e2735000000 |
DLAP questions | life11e_ch50_26_dlap.xml | 57fe3b8a757a2e2735000000 |
Water and ions are absorbed in the large intestine
| life11e_ch50_27.html | 57fe3b8a757a2e2735000000 |
DLAP questions | life11e_ch50_27_dlap.xml | 57fe3b8a757a2e2735000000 |
Herbivores rely on their microbiota to digest cellulose
| life11e_ch50_28.html | 57fe3b8a757a2e2735000000 |
DLAP questions | life11e_ch50_28_dlap.xml | 57fe3b8a757a2e2735000000 |
recap | life11e_ch50_29.html | 57fe3b8a757a2e2735000000 |
DLAP questions | life11e_ch50_29_dlap.xml | 57fe3b8a757a2e2735000000 |
key concept 50.4 Nutrient Availability Is Controlled and Regulated
| life11e_ch50_30.html | 57fe3b8a757a2e2735000000 |
DLAP questions | life11e_ch50_30_dlap.xml | 57fe3b8a757a2e2735000000 |
Hormones control many digestive functions
| life11e_ch50_31.html | 57fe3b8a757a2e2735000000 |
DLAP questions | life11e_ch50_31_dlap.xml | 57fe3b8a757a2e2735000000 |
The liver stores and releases the molecules that fuel metabolism
| life11e_ch50_32.html | 57fe3b8a757a2e2735000000 |
DLAP questions | life11e_ch50_32_dlap.xml | 57fe3b8a757a2e2735000000 |
The liver produces lipoproteins: the good, the bad, and the ugly
| life11e_ch50_33.html | 57fe3b8a757a2e2735000000 |
DLAP questions | life11e_ch50_33_dlap.xml | 57fe3b8a757a2e2735000000 |
Insulin and glucagon control fuel metabolism
| life11e_ch50_34.html | 57fe3b8a757a2e2735000000 |
DLAP questions | life11e_ch50_34_dlap.xml | 57fe3b8a757a2e2735000000 |
The brain plays a major role in regulating food intake
| life11e_ch50_35.html | 57fe3b8a757a2e2735000000 |
DLAP questions | life11e_ch50_35_dlap.xml | 57fe3b8a757a2e2735000000 |
recap | life11e_ch50_36.html | 57fe3b8a757a2e2735000000 |
DLAP questions | life11e_ch50_36_dlap.xml | 57fe3b8a757a2e2735000000 |
Investigating Life | life11e_ch50_37.html | 57fe3b8a757a2e2735000000 |
DLAP questions | life11e_ch50_37_dlap.xml | 57fe3b8a757a2e2735000000 |
Chapter Summary
| life11e_ch50_38.html | 57fe3b8a757a2e2735000000 |
DLAP questions | life11e_ch50_38_dlap.xml | 57fe3b8a757a2e2735000000 |
Apply What Youâve Learned
| life11e_ch50_39.html | 57fe3b8a757a2e2735000000 |
DLAP questions | life11e_ch50_39_dlap.xml | 57fe3b8a757a2e2735000000 |
Chapter Introduction | life11e_ch51_1.html | 57ff811c757a2e5848000000 |
DLAP questions | life11e_ch51_1_dlap.xml | 57ff811c757a2e5848000000 |
key concept 51.1 Excretory Systems Regulate Osmotic and Ionic Concentrations
| life11e_ch51_2.html | 57ff811c757a2e5848000000 |
DLAP questions | life11e_ch51_2_dlap.xml | 57ff811c757a2e5848000000 |
Osmosis causes water to enter or to leave cells
| life11e_ch51_3.html | 57ff811c757a2e5848000000 |
DLAP questions | life11e_ch51_3_dlap.xml | 57ff811c757a2e5848000000 |
Excretory systems control extracellular fluid osmolarity and composition
| life11e_ch51_4.html | 57ff811c757a2e5848000000 |
DLAP questions | life11e_ch51_4_dlap.xml | 57ff811c757a2e5848000000 |
Aquatic invertebrates are either ionic conformers or regulators
| life11e_ch51_5.html | 57ff811c757a2e5848000000 |
DLAP questions | life11e_ch51_5_dlap.xml | 57ff811c757a2e5848000000 |
Vertebrates are osmoregulators and ionic regulators
| life11e_ch51_6.html | 57ff811c757a2e5848000000 |
DLAP questions | life11e_ch51_6_dlap.xml | 57ff811c757a2e5848000000 |
recap | life11e_ch51_7.html | 57ff811c757a2e5848000000 |
DLAP questions | life11e_ch51_7_dlap.xml | 57ff811c757a2e5848000000 |
key concept 51.2 Animals Excrete Nitrogen as Ammonia, Urea, or Uric Acid
| life11e_ch51_8.html | 57ff811c757a2e5848000000 |
DLAP questions | life11e_ch51_8_dlap.xml | 57ff811c757a2e5848000000 |
Ammonia is toxic
| life11e_ch51_9.html | 57ff811c757a2e5848000000 |
DLAP questions | life11e_ch51_9_dlap.xml | 57ff811c757a2e5848000000 |
Urea is highly soluble in water
| life11e_ch51_10.html | 57ff811c757a2e5848000000 |
DLAP questions | life11e_ch51_10_dlap.xml | 57ff811c757a2e5848000000 |
Uric acid is not very soluble in water
| life11e_ch51_11.html | 57ff811c757a2e5848000000 |
DLAP questions | life11e_ch51_11_dlap.xml | 57ff811c757a2e5848000000 |
Most species produce more than one nitrogenous waste
| life11e_ch51_12.html | 57ff811c757a2e5848000000 |
DLAP questions | life11e_ch51_12_dlap.xml | 57ff811c757a2e5848000000 |
recap | life11e_ch51_13.html | 57ff811c757a2e5848000000 |
DLAP questions | life11e_ch51_13_dlap.xml | 57ff811c757a2e5848000000 |
key concept 51.3 Invertebrate Excretory Systems Use Filtration, Secretion, and Reabsorption
| life11e_ch51_14.html | 57ff811c757a2e5848000000 |
DLAP questions | life11e_ch51_14_dlap.xml | 57ff811c757a2e5848000000 |
Protonephridia of flatworms excrete water and conserve salts
| life11e_ch51_15.html | 57ff811c757a2e5848000000 |
DLAP questions | life11e_ch51_15_dlap.xml | 57ff811c757a2e5848000000 |
Metanephridia of annelids process coelomic fluid
| life11e_ch51_16.html | 57ff811c757a2e5848000000 |
DLAP questions | life11e_ch51_16_dlap.xml | 57ff811c757a2e5848000000 |
Malpighian tubules of insects use active transport to excrete wastes
| life11e_ch51_17.html | 57ff811c757a2e5848000000 |
DLAP questions | life11e_ch51_17_dlap.xml | 57ff811c757a2e5848000000 |
recap | life11e_ch51_18.html | 57ff811c757a2e5848000000 |
DLAP questions | life11e_ch51_18_dlap.xml | 57ff811c757a2e5848000000 |
key concept 51.4 The Nephron Is the Basic Functional Unit of Vertebrate Excretory Systems
| life11e_ch51_19.html | 57ff811c757a2e5848000000 |
DLAP questions | life11e_ch51_19_dlap.xml | 57ff811c757a2e5848000000 |
Marine fishes must conserve water
| life11e_ch51_20.html | 57ff811c757a2e5848000000 |
DLAP questions | life11e_ch51_20_dlap.xml | 57ff811c757a2e5848000000 |
Terrestrial amphibians and reptiles must avoid desiccation
| life11e_ch51_21.html | 57ff811c757a2e5848000000 |
DLAP questions | life11e_ch51_21_dlap.xml | 57ff811c757a2e5848000000 |
Mammals can produce highly concentrated urine
| life11e_ch51_22.html | 57ff811c757a2e5848000000 |
DLAP questions | life11e_ch51_22_dlap.xml | 57ff811c757a2e5848000000 |
The nephron is the functional unit of the vertebrate kidney
| life11e_ch51_23.html | 57ff811c757a2e5848000000 |
DLAP questions | life11e_ch51_23_dlap.xml | 57ff811c757a2e5848000000 |
Blood is filtered into Bowmanâs capsule
| life11e_ch51_24.html | 57ff811c757a2e5848000000 |
DLAP questions | life11e_ch51_24_dlap.xml | 57ff811c757a2e5848000000 |
The renal tubules convert glomerular filtrate to urine
| life11e_ch51_25.html | 57ff811c757a2e5848000000 |
DLAP questions | life11e_ch51_25_dlap.xml | 57ff811c757a2e5848000000 |
recap | life11e_ch51_26.html | 57ff811c757a2e5848000000 |
DLAP questions | life11e_ch51_26_dlap.xml | 57ff811c757a2e5848000000 |
key concept 51.5 The Mammalian Kidney Can Produce Concentrated Urine
| life11e_ch51_27.html | 57ff811c757a2e5848000000 |
DLAP questions | life11e_ch51_27_dlap.xml | 57ff811c757a2e5848000000 |
Kidneys produce urine and the bladder stores it
| life11e_ch51_28.html | 57ff811c757a2e5848000000 |
DLAP questions | life11e_ch51_28_dlap.xml | 57ff811c757a2e5848000000 |
Nephrons have a regular arrangement in the kidney
| life11e_ch51_29.html | 57ff811c757a2e5848000000 |
DLAP questions | life11e_ch51_29_dlap.xml | 57ff811c757a2e5848000000 |
Most of the glomerular filtrate is reabsorbed by the proximal convoluted tubule
| life11e_ch51_30.html | 57ff811c757a2e5848000000 |
DLAP questions | life11e_ch51_30_dlap.xml | 57ff811c757a2e5848000000 |
The loop of Henle creates a concentration gradient in the renal medulla
| life11e_ch51_31.html | 57ff811c757a2e5848000000 |
DLAP questions | life11e_ch51_31_dlap.xml | 57ff811c757a2e5848000000 |
Water permeability of kidney tubules depends on water channels
| life11e_ch51_32.html | 57ff811c757a2e5848000000 |
DLAP questions | life11e_ch51_32_dlap.xml | 57ff811c757a2e5848000000 |
The distal convoluted tubule fine-tunes the composition of the urine
| life11e_ch51_33.html | 57ff811c757a2e5848000000 |
DLAP questions | life11e_ch51_33_dlap.xml | 57ff811c757a2e5848000000 |
Urine is concentrated in the collecting duct
| life11e_ch51_34.html | 57ff811c757a2e5848000000 |
DLAP questions | life11e_ch51_34_dlap.xml | 57ff811c757a2e5848000000 |
The kidneys help regulate acidâbase balance
| life11e_ch51_35.html | 57ff811c757a2e5848000000 |
DLAP questions | life11e_ch51_35_dlap.xml | 57ff811c757a2e5848000000 |
Kidney failure is treated with dialysis
| life11e_ch51_36.html | 57ff811c757a2e5848000000 |
DLAP questions | life11e_ch51_36_dlap.xml | 57ff811c757a2e5848000000 |
recap | life11e_ch51_37.html | 57ff811c757a2e5848000000 |
DLAP questions | life11e_ch51_37_dlap.xml | 57ff811c757a2e5848000000 |
key concept 51.6 Kidney Function Is Regulated
| life11e_ch51_38.html | 57ff811c757a2e5848000000 |
DLAP questions | life11e_ch51_38_dlap.xml | 57ff811c757a2e5848000000 |
Glomerular filtration rate is regulated
| life11e_ch51_39.html | 57ff811c757a2e5848000000 |
DLAP questions | life11e_ch51_39_dlap.xml | 57ff811c757a2e5848000000 |
Regulation of GFR uses feedback information from the distal tubule
| life11e_ch51_40.html | 57ff811c757a2e5848000000 |
DLAP questions | life11e_ch51_40_dlap.xml | 57ff811c757a2e5848000000 |
Blood osmolarity and blood pressure are regulated by ADH
| life11e_ch51_41.html | 57ff811c757a2e5848000000 |
DLAP questions | life11e_ch51_41_dlap.xml | 57ff811c757a2e5848000000 |
The heart produces a hormone that helps lower blood pressure
| life11e_ch51_42.html | 57ff811c757a2e5848000000 |
DLAP questions | life11e_ch51_42_dlap.xml | 57ff811c757a2e5848000000 |
recap | life11e_ch51_43.html | 57ff811c757a2e5848000000 |
DLAP questions | life11e_ch51_43_dlap.xml | 57ff811c757a2e5848000000 |
Investigating Life | life11e_ch51_44.html | 57ff811c757a2e5848000000 |
DLAP questions | life11e_ch51_44_dlap.xml | 57ff811c757a2e5848000000 |
Chapter Summary
| life11e_ch51_45.html | 57ff811c757a2e5848000000 |
DLAP questions | life11e_ch51_45_dlap.xml | 57ff811c757a2e5848000000 |
Apply What Youâve Learned
| life11e_ch51_46.html | 57ff811c757a2e5848000000 |
DLAP questions | life11e_ch51_46_dlap.xml | 57ff811c757a2e5848000000 |
Chapter Introduction | life11e_ch52_1.html | 57ffe55e757a2e3851000000 |
DLAP questions | life11e_ch52_1_dlap.xml | 57ffe55e757a2e3851000000 |
key concept 52.1 Ethology Led to Modern Behavioral Biology
| life11e_ch52_2.html | 57ffe55e757a2e3851000000 |
DLAP questions | life11e_ch52_2_dlap.xml | 57ffe55e757a2e3851000000 |
Conditioned reflexes are a simple behavioral mechanism
| life11e_ch52_3.html | 57ffe55e757a2e3851000000 |
DLAP questions | life11e_ch52_3_dlap.xml | 57ffe55e757a2e3851000000 |
Ethologists focused on the behavior of animals in their natural environment
| life11e_ch52_4.html | 57ffe55e757a2e3851000000 |
DLAP questions | life11e_ch52_4_dlap.xml | 57ffe55e757a2e3851000000 |
Ethologists probed the causes of behavior
| life11e_ch52_5.html | 57ffe55e757a2e3851000000 |
DLAP questions | life11e_ch52_5_dlap.xml | 57ffe55e757a2e3851000000 |
recap | life11e_ch52_6.html | 57ffe55e757a2e3851000000 |
DLAP questions | life11e_ch52_6_dlap.xml | 57ffe55e757a2e3851000000 |
key concept 52.2 Behavior Can Be Genetically Determined
| life11e_ch52_7.html | 57ffe55e757a2e3851000000 |
DLAP questions | life11e_ch52_7_dlap.xml | 57ffe55e757a2e3851000000 |
Single gene mutations can alter behavioral phenotypes
| life11e_ch52_8.html | 57ffe55e757a2e3851000000 |
DLAP questions | life11e_ch52_8_dlap.xml | 57ffe55e757a2e3851000000 |
Knockout experiments reveal the roles of specific genes
| life11e_ch52_9.html | 57ffe55e757a2e3851000000 |
DLAP questions | life11e_ch52_9_dlap.xml | 57ffe55e757a2e3851000000 |
Gene cascades can control complex behavioral phenotypes
| life11e_ch52_10.html | 57ffe55e757a2e3851000000 |
DLAP questions | life11e_ch52_10_dlap.xml | 57ffe55e757a2e3851000000 |
recap | life11e_ch52_11.html | 57ffe55e757a2e3851000000 |
DLAP questions | life11e_ch52_11_dlap.xml | 57ffe55e757a2e3851000000 |
key concept 52.3 Behavior Can Be Studied Developmentally
| life11e_ch52_12.html | 57ffe55e757a2e3851000000 |
DLAP questions | life11e_ch52_12_dlap.xml | 57ffe55e757a2e3851000000 |
Hormones can determine behavioral potential and timing
| life11e_ch52_13.html | 57ffe55e757a2e3851000000 |
DLAP questions | life11e_ch52_13_dlap.xml | 57ffe55e757a2e3851000000 |
Some behaviors can be acquired only at certain times
| life11e_ch52_14.html | 57ffe55e757a2e3851000000 |
DLAP questions | life11e_ch52_14_dlap.xml | 57ffe55e757a2e3851000000 |
Birdsong learning involves genetics, imprinting, development, and social interactions
| life11e_ch52_15.html | 57ffe55e757a2e3851000000 |
DLAP questions | life11e_ch52_15_dlap.xml | 57ffe55e757a2e3851000000 |
The timing and expression of birdsong are under hormonal control
| life11e_ch52_16.html | 57ffe55e757a2e3851000000 |
DLAP questions | life11e_ch52_16_dlap.xml | 57ffe55e757a2e3851000000 |
recap | life11e_ch52_17.html | 57ffe55e757a2e3851000000 |
DLAP questions | life11e_ch52_17_dlap.xml | 57ffe55e757a2e3851000000 |
key concept 52.4 Selective Pressures Shape Behavior
| life11e_ch52_18.html | 57ffe55e757a2e3851000000 |
DLAP questions | life11e_ch52_18_dlap.xml | 57ffe55e757a2e3851000000 |
Animals are faced with many choices
| life11e_ch52_19.html | 57ffe55e757a2e3851000000 |
DLAP questions | life11e_ch52_19_dlap.xml | 57ffe55e757a2e3851000000 |
Behaviors have costs and benefits
| life11e_ch52_20.html | 57ffe55e757a2e3851000000 |
DLAP questions | life11e_ch52_20_dlap.xml | 57ffe55e757a2e3851000000 |
Territorial behavior carries significant costs
| life11e_ch52_21.html | 57ffe55e757a2e3851000000 |
DLAP questions | life11e_ch52_21_dlap.xml | 57ffe55e757a2e3851000000 |
Foraging behavior has costs and benefits
| life11e_ch52_22.html | 57ffe55e757a2e3851000000 |
DLAP questions | life11e_ch52_22_dlap.xml | 57ffe55e757a2e3851000000 |
recap | life11e_ch52_23.html | 57ffe55e757a2e3851000000 |
DLAP questions | life11e_ch52_23_dlap.xml | 57ffe55e757a2e3851000000 |
key concept 52.5 Behavior Can Be Studied Mechanistically
| life11e_ch52_24.html | 57ffe55e757a2e3851000000 |
DLAP questions | life11e_ch52_24_dlap.xml | 57ffe55e757a2e3851000000 |
Biological rhythms coordinate behavior with environmental cycles
| life11e_ch52_25.html | 57ffe55e757a2e3851000000 |
DLAP questions | life11e_ch52_25_dlap.xml | 57ffe55e757a2e3851000000 |
Animals must find their way around their environment
| life11e_ch52_26.html | 57ffe55e757a2e3851000000 |
DLAP questions | life11e_ch52_26_dlap.xml | 57ffe55e757a2e3851000000 |
Animals use multiple modalities to communicate
| life11e_ch52_27.html | 57ffe55e757a2e3851000000 |
DLAP questions | life11e_ch52_27_dlap.xml | 57ffe55e757a2e3851000000 |
recap | life11e_ch52_28.html | 57ffe55e757a2e3851000000 |
DLAP questions | life11e_ch52_28_dlap.xml | 57ffe55e757a2e3851000000 |
key concept 52.6 Social Interactions Shape the Evolution of Behavior
| life11e_ch52_29.html | 57ffe55e757a2e3851000000 |
DLAP questions | life11e_ch52_29_dlap.xml | 57ffe55e757a2e3851000000 |
Mating systems evolve to maximize fitness
| life11e_ch52_30.html | 57ffe55e757a2e3851000000 |
DLAP questions | life11e_ch52_30_dlap.xml | 57ffe55e757a2e3851000000 |
Fitness can include more than your own offspring
| life11e_ch52_31.html | 57ffe55e757a2e3851000000 |
DLAP questions | life11e_ch52_31_dlap.xml | 57ffe55e757a2e3851000000 |
Eusociality is the extreme result of kin selection
| life11e_ch52_32.html | 57ffe55e757a2e3851000000 |
DLAP questions | life11e_ch52_32_dlap.xml | 57ffe55e757a2e3851000000 |
Group living has benefits and costs
| life11e_ch52_33.html | 57ffe55e757a2e3851000000 |
DLAP questions | life11e_ch52_33_dlap.xml | 57ffe55e757a2e3851000000 |
Can the concepts of sociobiology be applied to humans?
| life11e_ch52_34.html | 57ffe55e757a2e3851000000 |
DLAP questions | life11e_ch52_34_dlap.xml | 57ffe55e757a2e3851000000 |
recap | life11e_ch52_35.html | 57ffe55e757a2e3851000000 |
DLAP questions | life11e_ch52_35_dlap.xml | 57ffe55e757a2e3851000000 |
Investigating Life | life11e_ch52_36.html | 57ffe55e757a2e3851000000 |
DLAP questions | life11e_ch52_36_dlap.xml | 57ffe55e757a2e3851000000 |
Chapter Summary
| life11e_ch52_37.html | 57ffe55e757a2e3851000000 |
DLAP questions | life11e_ch52_37_dlap.xml | 57ffe55e757a2e3851000000 |
Apply What Youâve Learned
| life11e_ch52_38.html | 57ffe55e757a2e3851000000 |
DLAP questions | life11e_ch52_38_dlap.xml | 57ffe55e757a2e3851000000 |
Chapter Introduction | life11e_ch53_1.html | 58010f07757a2efc64000000 |
DLAP questions | life11e_ch53_1_dlap.xml | 58010f07757a2efc64000000 |
key concept 53.1 Ecology Is the Study of the Interrelationships among Organisms and the Environment
| life11e_ch53_2.html | 58010f07757a2efc64000000 |
DLAP questions | life11e_ch53_2_dlap.xml | 58010f07757a2efc64000000 |
Modern ecology has a more âuse-inspiredâ focus
| life11e_ch53_3.html | 58010f07757a2efc64000000 |
DLAP questions | life11e_ch53_3_dlap.xml | 58010f07757a2efc64000000 |
Ecology is studied at many levels of organization
| life11e_ch53_4.html | 58010f07757a2efc64000000 |
DLAP questions | life11e_ch53_4_dlap.xml | 58010f07757a2efc64000000 |
Answering ecological questions requires observations, experiments, and models
| life11e_ch53_5.html | 58010f07757a2efc64000000 |
DLAP questions | life11e_ch53_5_dlap.xml | 58010f07757a2efc64000000 |
recap | life11e_ch53_6.html | 58010f07757a2efc64000000 |
DLAP questions | life11e_ch53_6_dlap.xml | 58010f07757a2efc64000000 |
key concept 53.2 Global Climate Is a Fundamental Component of the Physical Environment
| life11e_ch53_7.html | 58010f07757a2efc64000000 |
DLAP questions | life11e_ch53_7_dlap.xml | 58010f07757a2efc64000000 |
Solar radiation drives global climate patterns
| life11e_ch53_8.html | 58010f07757a2efc64000000 |
DLAP questions | life11e_ch53_8_dlap.xml | 58010f07757a2efc64000000 |
Earth is a sphere, creating latitudinal variation in global temperature and precipitation
| life11e_ch53_9.html | 58010f07757a2efc64000000 |
DLAP questions | life11e_ch53_9_dlap.xml | 58010f07757a2efc64000000 |
Earth spins on an axis, producing prevailing winds and ocean currents
| life11e_ch53_10.html | 58010f07757a2efc64000000 |
DLAP questions | life11e_ch53_10_dlap.xml | 58010f07757a2efc64000000 |
The tilt of Earthâs axis and its orbit result in seasons
| life11e_ch53_11.html | 58010f07757a2efc64000000 |
DLAP questions | life11e_ch53_11_dlap.xml | 58010f07757a2efc64000000 |
recap | life11e_ch53_12.html | 58010f07757a2efc64000000 |
DLAP questions | life11e_ch53_12_dlap.xml | 58010f07757a2efc64000000 |
key concept 53.3 Topography, Vegetation, and Humans Modify the Physical Environment
| life11e_ch53_13.html | 58010f07757a2efc64000000 |
DLAP questions | life11e_ch53_13_dlap.xml | 58010f07757a2efc64000000 |
Earthâs topography affects the local and regional physical environment
| life11e_ch53_14.html | 58010f07757a2efc64000000 |
DLAP questions | life11e_ch53_14_dlap.xml | 58010f07757a2efc64000000 |
Vegetation affects the local and regional physical environment, especially climate
| life11e_ch53_15.html | 58010f07757a2efc64000000 |
DLAP questions | life11e_ch53_15_dlap.xml | 58010f07757a2efc64000000 |
Humans have transformed their physical environment, including urban climate
| life11e_ch53_16.html | 58010f07757a2efc64000000 |
DLAP questions | life11e_ch53_16_dlap.xml | 58010f07757a2efc64000000 |
recap | life11e_ch53_17.html | 58010f07757a2efc64000000 |
DLAP questions | life11e_ch53_17_dlap.xml | 58010f07757a2efc64000000 |
key concept 53.4 Biogeography Is the Study of How Organisms Are Distributed on Earth
| life11e_ch53_18.html | 58010f07757a2efc64000000 |
DLAP questions | life11e_ch53_18_dlap.xml | 58010f07757a2efc64000000 |
Patterns of biogeography are interconnected across a hierarchy of spatial and temporal scales
| life11e_ch53_19.html | 58010f07757a2efc64000000 |
DLAP questions | life11e_ch53_19_dlap.xml | 58010f07757a2efc64000000 |
Terrestrial biomes reflect global patterns of temperature and precipitation
| life11e_ch53_20.html | 58010f07757a2efc64000000 |
DLAP questions | life11e_ch53_20_dlap.xml | 58010f07757a2efc64000000 |
Biogeographic regions reflect evolutionary isolation
| life11e_ch53_21.html | 58010f07757a2efc64000000 |
DLAP questions | life11e_ch53_21_dlap.xml | 58010f07757a2efc64000000 |
Diversity varies with latitude and longitude
| life11e_ch53_22.html | 58010f07757a2efc64000000 |
DLAP questions | life11e_ch53_22_dlap.xml | 58010f07757a2efc64000000 |
Geographic variation in diversity is explained by multiple factors
| life11e_ch53_23.html | 58010f07757a2efc64000000 |
DLAP questions | life11e_ch53_23_dlap.xml | 58010f07757a2efc64000000 |
recap | life11e_ch53_24.html | 58010f07757a2efc64000000 |
DLAP questions | life11e_ch53_24_dlap.xml | 58010f07757a2efc64000000 |
key concept 53.5 Geographic Area and Humans Affect Regional Species Diversity
| life11e_ch53_25.html | 58010f07757a2efc64000000 |
DLAP questions | life11e_ch53_25_dlap.xml | 58010f07757a2efc64000000 |
Humans exert a powerful influence on biogeographic patterns
| life11e_ch53_26.html | 58010f07757a2efc64000000 |
DLAP questions | life11e_ch53_26_dlap.xml | 58010f07757a2efc64000000 |
recap | life11e_ch53_27.html | 58010f07757a2efc64000000 |
DLAP questions | life11e_ch53_27_dlap.xml | 58010f07757a2efc64000000 |
Investigating Life | life11e_ch53_28.html | 58010f07757a2efc64000000 |
DLAP questions | life11e_ch53_28_dlap.xml | 58010f07757a2efc64000000 |
Chapter Summary
| life11e_ch53_29.html | 58010f07757a2efc64000000 |
DLAP questions | life11e_ch53_29_dlap.xml | 58010f07757a2efc64000000 |
Apply What Youâve Learned
| life11e_ch53_30.html | 58010f07757a2efc64000000 |
DLAP questions | life11e_ch53_30_dlap.xml | 58010f07757a2efc64000000 |
Chapter Introduction | life11e_ch54_1.html | 58013936757a2e206a000001 |
DLAP questions | life11e_ch54_1_dlap.xml | 58013936757a2e206a000001 |
key concept 54.1 Populations Show Dynamic Variation in Size over Space and Time
| life11e_ch54_2.html | 58013936757a2e206a000001 |
DLAP questions | life11e_ch54_2_dlap.xml | 58013936757a2e206a000001 |
Population dynamics are controlled by the physical environment, biological interactions, and dispersal
| life11e_ch54_3.html | 58013936757a2e206a000001 |
DLAP questions | life11e_ch54_3_dlap.xml | 58013936757a2e206a000001 |
Ecologists use a variety of approaches to estimate population size and extent
| life11e_ch54_4.html | 58013936757a2e206a000001 |
DLAP questions | life11e_ch54_4_dlap.xml | 58013936757a2e206a000001 |
recap | life11e_ch54_5.html | 58013936757a2e206a000001 |
DLAP questions | life11e_ch54_5_dlap.xml | 58013936757a2e206a000001 |
key concept 54.2 Population Growth Describes the Change in Population Size over Time
| life11e_ch54_6.html | 58013936757a2e206a000001 |
DLAP questions | life11e_ch54_6_dlap.xml | 58013936757a2e206a000001 |
Births increase and deaths decrease population size over time
| life11e_ch54_7.html | 58013936757a2e206a000001 |
DLAP questions | life11e_ch54_7_dlap.xml | 58013936757a2e206a000001 |
All populations have the potential for exponential growth
| life11e_ch54_8.html | 58013936757a2e206a000001 |
DLAP questions | life11e_ch54_8_dlap.xml | 58013936757a2e206a000001 |
Logistic growth occurs as a population approaches its carrying capacity
| life11e_ch54_9.html | 58013936757a2e206a000001 |
DLAP questions | life11e_ch54_9_dlap.xml | 58013936757a2e206a000001 |
Factors limiting population growth can be density-dependent or density-independent
| life11e_ch54_10.html | 58013936757a2e206a000001 |
DLAP questions | life11e_ch54_10_dlap.xml | 58013936757a2e206a000001 |
Life tables keep track of demographic events
| life11e_ch54_11.html | 58013936757a2e206a000001 |
DLAP questions | life11e_ch54_11_dlap.xml | 58013936757a2e206a000001 |
recap | life11e_ch54_12.html | 58013936757a2e206a000001 |
DLAP questions | life11e_ch54_12_dlap.xml | 58013936757a2e206a000001 |
key concept 54.3 Life History Is the Lifetime Pattern of Growth, Reproduction, and Survival
| life11e_ch54_13.html | 58013936757a2e206a000001 |
DLAP questions | life11e_ch54_13_dlap.xml | 58013936757a2e206a000001 |
Life history strategies can vary at species and population levels
| life11e_ch54_14.html | 58013936757a2e206a000001 |
DLAP questions | life11e_ch54_14_dlap.xml | 58013936757a2e206a000001 |
Life history strategies arise from constraints on growth, reproduction, and survival
| life11e_ch54_15.html | 58013936757a2e206a000001 |
DLAP questions | life11e_ch54_15_dlap.xml | 58013936757a2e206a000001 |
recap | life11e_ch54_16.html | 58013936757a2e206a000001 |
DLAP questions | life11e_ch54_16_dlap.xml | 58013936757a2e206a000001 |
key concept 54.4 Population Biology Can Be Used in Conserving and Managing Populations
| life11e_ch54_17.html | 58013936757a2e206a000001 |
DLAP questions | life11e_ch54_17_dlap.xml | 58013936757a2e206a000001 |
Management plans must take life history strategies into account
| life11e_ch54_18.html | 58013936757a2e206a000001 |
DLAP questions | life11e_ch54_18_dlap.xml | 58013936757a2e206a000001 |
Management plans must be guided by the principles of population dynamics
| life11e_ch54_19.html | 58013936757a2e206a000001 |
DLAP questions | life11e_ch54_19_dlap.xml | 58013936757a2e206a000001 |
Knowledge of metapopulation dynamics helps us conserve species
| life11e_ch54_20.html | 58013936757a2e206a000001 |
DLAP questions | life11e_ch54_20_dlap.xml | 58013936757a2e206a000001 |
recap | life11e_ch54_21.html | 58013936757a2e206a000001 |
DLAP questions | life11e_ch54_21_dlap.xml | 58013936757a2e206a000001 |
Investigating Life | life11e_ch54_22.html | 58013936757a2e206a000001 |
DLAP questions | life11e_ch54_22_dlap.xml | 58013936757a2e206a000001 |
Chapter Summary
| life11e_ch54_23.html | 58013936757a2e206a000001 |
DLAP questions | life11e_ch54_23_dlap.xml | 58013936757a2e206a000001 |
Apply What Youâve Learned
| life11e_ch54_24.html | 58013936757a2e206a000001 |
DLAP questions | life11e_ch54_24_dlap.xml | 58013936757a2e206a000001 |
Chapter Introduction | life11e_ch55_1.html | 5804cf26757a2e547a000000 |
DLAP questions | life11e_ch55_1_dlap.xml | 5804cf26757a2e547a000000 |
key concept 55.1 Species Interactions Vary in Direction and Strength across a Continuum
| life11e_ch55_2.html | 5804cf26757a2e547a000000 |
DLAP questions | life11e_ch55_2_dlap.xml | 5804cf26757a2e547a000000 |
Species interactions are not always clear-cut
| life11e_ch55_3.html | 5804cf26757a2e547a000000 |
DLAP questions | life11e_ch55_3_dlap.xml | 5804cf26757a2e547a000000 |
Some interactions result in evolutionary change in the species involved
| life11e_ch55_4.html | 5804cf26757a2e547a000000 |
DLAP questions | life11e_ch55_4_dlap.xml | 5804cf26757a2e547a000000 |
recap | life11e_ch55_5.html | 5804cf26757a2e547a000000 |
DLAP questions | life11e_ch55_5_dlap.xml | 5804cf26757a2e547a000000 |
key concept 55.2 Predation Is a Trophic Interaction in which Predators Benefit and Prey Are Harmed
| life11e_ch55_6.html | 5804cf26757a2e547a000000 |
DLAP questions | life11e_ch55_6_dlap.xml | 5804cf26757a2e547a000000 |
Carnivory results in a range of capture and avoidance mechanisms
| life11e_ch55_7.html | 5804cf26757a2e547a000000 |
DLAP questions | life11e_ch55_7_dlap.xml | 5804cf26757a2e547a000000 |
Herbivory is a widespread but specialized interaction
| life11e_ch55_8.html | 5804cf26757a2e547a000000 |
DLAP questions | life11e_ch55_8_dlap.xml | 5804cf26757a2e547a000000 |
Most parasites specialize on hosts, and most hosts house many species of parasites
| life11e_ch55_9.html | 5804cf26757a2e547a000000 |
DLAP questions | life11e_ch55_9_dlap.xml | 5804cf26757a2e547a000000 |
Predator populations can cycle with their prey populations
| life11e_ch55_10.html | 5804cf26757a2e547a000000 |
DLAP questions | life11e_ch55_10_dlap.xml | 5804cf26757a2e547a000000 |
Predators can have dramatic effects on communities
| life11e_ch55_11.html | 5804cf26757a2e547a000000 |
DLAP questions | life11e_ch55_11_dlap.xml | 5804cf26757a2e547a000000 |
recap | life11e_ch55_12.html | 5804cf26757a2e547a000000 |
DLAP questions | life11e_ch55_12_dlap.xml | 5804cf26757a2e547a000000 |
key concept 55.3 Competition Is a Negative Interaction in which Species Overlap in the Use of Some Limiting Resource
| life11e_ch55_13.html | 5804cf26757a2e547a000000 |
DLAP questions | life11e_ch55_13_dlap.xml | 5804cf26757a2e547a000000 |
Resource partitioning allows species to coexist despite overlapping use of limiting resources
| life11e_ch55_14.html | 5804cf26757a2e547a000000 |
DLAP questions | life11e_ch55_14_dlap.xml | 5804cf26757a2e547a000000 |
The physical environment, disturbance, and predation can each alter the outcome of competition
| life11e_ch55_15.html | 5804cf26757a2e547a000000 |
DLAP questions | life11e_ch55_15_dlap.xml | 5804cf26757a2e547a000000 |
Competition can affect speciesâ distributions
| life11e_ch55_16.html | 5804cf26757a2e547a000000 |
DLAP questions | life11e_ch55_16_dlap.xml | 5804cf26757a2e547a000000 |
recap | life11e_ch55_17.html | 5804cf26757a2e547a000000 |
DLAP questions | life11e_ch55_17_dlap.xml | 5804cf26757a2e547a000000 |
key concept 55.4 Positive Interactions Occur When at Least One Species Benefits and None Are Harmed
| life11e_ch55_18.html | 5804cf26757a2e547a000000 |
DLAP questions | life11e_ch55_18_dlap.xml | 5804cf26757a2e547a000000 |
Positive interactions are more common in stressful environments
| life11e_ch55_19.html | 5804cf26757a2e547a000000 |
DLAP questions | life11e_ch55_19_dlap.xml | 5804cf26757a2e547a000000 |
Positive interactions can have dramatic effects on populations and communities
| life11e_ch55_20.html | 5804cf26757a2e547a000000 |
DLAP questions | life11e_ch55_20_dlap.xml | 5804cf26757a2e547a000000 |
recap | life11e_ch55_21.html | 5804cf26757a2e547a000000 |
DLAP questions | life11e_ch55_21_dlap.xml | 5804cf26757a2e547a000000 |
Investigating Life | life11e_ch55_22.html | 5804cf26757a2e547a000000 |
DLAP questions | life11e_ch55_22_dlap.xml | 5804cf26757a2e547a000000 |
Chapter Summary
| life11e_ch55_23.html | 5804cf26757a2e547a000000 |
DLAP questions | life11e_ch55_23_dlap.xml | 5804cf26757a2e547a000000 |
Apply What You've Learned
| life11e_ch55_24.html | 5804cf26757a2e547a000000 |
DLAP questions | life11e_ch55_24_dlap.xml | 5804cf26757a2e547a000000 |
Chapter Introduction | life11e_ch56_1.html | 58050f7e757a2e2f02000001 |
DLAP questions | life11e_ch56_1_dlap.xml | 58050f7e757a2e2f02000001 |
key concept 56.1 Communities Are Groups of Interacting Species Occurring Together in Space and Time
| life11e_ch56_2.html | 58050f7e757a2e2f02000001 |
DLAP questions | life11e_ch56_2_dlap.xml | 58050f7e757a2e2f02000001 |
Ecologists often use a subset of species to define communities
| life11e_ch56_3.html | 58050f7e757a2e2f02000001 |
DLAP questions | life11e_ch56_3_dlap.xml | 58050f7e757a2e2f02000001 |
Species diversity and composition are important descriptors of community structure
| life11e_ch56_4.html | 58050f7e757a2e2f02000001 |
DLAP questions | life11e_ch56_4_dlap.xml | 58050f7e757a2e2f02000001 |
recap | life11e_ch56_5.html | 58050f7e757a2e2f02000001 |
DLAP questions | life11e_ch56_5_dlap.xml | 58050f7e757a2e2f02000001 |
key concept 56.2 Community Membership Depends on Species Supply, Environmental Conditions, and Species Interactions
| life11e_ch56_6.html | 58050f7e757a2e2f02000001 |
DLAP questions | life11e_ch56_6_dlap.xml | 58050f7e757a2e2f02000001 |
Community membership depends on species supply
| life11e_ch56_7.html | 58050f7e757a2e2f02000001 |
DLAP questions | life11e_ch56_7_dlap.xml | 58050f7e757a2e2f02000001 |
Environmental conditions are critical to community membership
| life11e_ch56_8.html | 58050f7e757a2e2f02000001 |
DLAP questions | life11e_ch56_8_dlap.xml | 58050f7e757a2e2f02000001 |
Resident species can restrict or promote community membership
| life11e_ch56_9.html | 58050f7e757a2e2f02000001 |
DLAP questions | life11e_ch56_9_dlap.xml | 58050f7e757a2e2f02000001 |
recap | life11e_ch56_10.html | 58050f7e757a2e2f02000001 |
DLAP questions | life11e_ch56_10_dlap.xml | 58050f7e757a2e2f02000001 |
key concept 56.3 Communities Are Complex Networks of Species Interactions That Vary in Strength and Direction
| life11e_ch56_11.html | 58050f7e757a2e2f02000001 |
DLAP questions | life11e_ch56_11_dlap.xml | 58050f7e757a2e2f02000001 |
Indirect interactions are important to community structure
| life11e_ch56_12.html | 58050f7e757a2e2f02000001 |
DLAP questions | life11e_ch56_12_dlap.xml | 58050f7e757a2e2f02000001 |
Strongly interacting species often regulate community structure
| life11e_ch56_13.html | 58050f7e757a2e2f02000001 |
DLAP questions | life11e_ch56_13_dlap.xml | 58050f7e757a2e2f02000001 |
Species with similar effects on one another may coexist by chance
| life11e_ch56_14.html | 58050f7e757a2e2f02000001 |
DLAP questions | life11e_ch56_14_dlap.xml | 58050f7e757a2e2f02000001 |
recap | life11e_ch56_15.html | 58050f7e757a2e2f02000001 |
DLAP questions | life11e_ch56_15_dlap.xml | 58050f7e757a2e2f02000001 |
key concept 56.4 Communities Are Always Changing
| life11e_ch56_16.html | 58050f7e757a2e2f02000001 |
DLAP questions | life11e_ch56_16_dlap.xml | 58050f7e757a2e2f02000001 |
Change in communities can be caused by abiotic and biotic factors
| life11e_ch56_17.html | 58050f7e757a2e2f02000001 |
DLAP questions | life11e_ch56_17_dlap.xml | 58050f7e757a2e2f02000001 |
Succession is a process of change in communities over time
| life11e_ch56_18.html | 58050f7e757a2e2f02000001 |
DLAP questions | life11e_ch56_18_dlap.xml | 58050f7e757a2e2f02000001 |
Both facilitation and inhibition influence succession
| life11e_ch56_19.html | 58050f7e757a2e2f02000001 |
DLAP questions | life11e_ch56_19_dlap.xml | 58050f7e757a2e2f02000001 |
Alternative successional pathways result in variations in community composition
| life11e_ch56_20.html | 58050f7e757a2e2f02000001 |
DLAP questions | life11e_ch56_20_dlap.xml | 58050f7e757a2e2f02000001 |
recap | life11e_ch56_21.html | 58050f7e757a2e2f02000001 |
DLAP questions | life11e_ch56_21_dlap.xml | 58050f7e757a2e2f02000001 |
key concept 56.5 Relationships between Species Diversity and Community Function Are Often Positive
| life11e_ch56_22.html | 58050f7e757a2e2f02000001 |
DLAP questions | life11e_ch56_22_dlap.xml | 58050f7e757a2e2f02000001 |
Species diversity is associated with productivity and stability
| life11e_ch56_23.html | 58050f7e757a2e2f02000001 |
DLAP questions | life11e_ch56_23_dlap.xml | 58050f7e757a2e2f02000001 |
Diversity, productivity, and stability differ between natural and managed communities
| life11e_ch56_24.html | 58050f7e757a2e2f02000001 |
DLAP questions | life11e_ch56_24_dlap.xml | 58050f7e757a2e2f02000001 |
recap | life11e_ch56_25.html | 58050f7e757a2e2f02000001 |
DLAP questions | life11e_ch56_25_dlap.xml | 58050f7e757a2e2f02000001 |
Investigating Life | life11e_ch56_26.html | 58050f7e757a2e2f02000001 |
DLAP questions | life11e_ch56_26_dlap.xml | 58050f7e757a2e2f02000001 |
Chapter Summary
| life11e_ch56_27.html | 58050f7e757a2e2f02000001 |
DLAP questions | life11e_ch56_27_dlap.xml | 58050f7e757a2e2f02000001 |
Apply What Youâve Learned
| life11e_ch56_28.html | 58050f7e757a2e2f02000001 |
DLAP questions | life11e_ch56_28_dlap.xml | 58050f7e757a2e2f02000001 |
Chapter Introduction | life11e_ch57_1.html | 58061162757a2ec511000000 |
DLAP questions | life11e_ch57_1_dlap.xml | 58061162757a2ec511000000 |
key concept 57.1 Ecosystem Science Considers How Energy and Nutrients Flow through Biotic and Abiotic Environments
| life11e_ch57_2.html | 58061162757a2ec511000000 |
DLAP questions | life11e_ch57_2_dlap.xml | 58061162757a2ec511000000 |
Energy flowing through ecosystems originates with sunlight and inorganic and organic compounds
| life11e_ch57_3.html | 58061162757a2ec511000000 |
DLAP questions | life11e_ch57_3_dlap.xml | 58061162757a2ec511000000 |
Nutrients cycling through ecosystems originate in soil, water, and the atmosphere
| life11e_ch57_4.html | 58061162757a2ec511000000 |
DLAP questions | life11e_ch57_4_dlap.xml | 58061162757a2ec511000000 |
recap | life11e_ch57_5.html | 58061162757a2ec511000000 |
DLAP questions | life11e_ch57_5_dlap.xml | 58061162757a2ec511000000 |
key concept 57.2 Energy and Nutrients in Ecosystems Are First Captured by Primary Producers
| life11e_ch57_6.html | 58061162757a2ec511000000 |
DLAP questions | life11e_ch57_6_dlap.xml | 58061162757a2ec511000000 |
Net primary production is the amount of carbon remaining in plants after respiration
| life11e_ch57_7.html | 58061162757a2ec511000000 |
DLAP questions | life11e_ch57_7_dlap.xml | 58061162757a2ec511000000 |
Patterns of primary production vary with latitude and ecosystem type
| life11e_ch57_8.html | 58061162757a2ec511000000 |
DLAP questions | life11e_ch57_8_dlap.xml | 58061162757a2ec511000000 |
Rainfall and temperature largely control terrestrial primary production
| life11e_ch57_9.html | 58061162757a2ec511000000 |
DLAP questions | life11e_ch57_9_dlap.xml | 58061162757a2ec511000000 |
Light and nutrients combine to control aquatic primary production
| life11e_ch57_10.html | 58061162757a2ec511000000 |
DLAP questions | life11e_ch57_10_dlap.xml | 58061162757a2ec511000000 |
recap | life11e_ch57_11.html | 58061162757a2ec511000000 |
DLAP questions | life11e_ch57_11_dlap.xml | 58061162757a2ec511000000 |
key concept 57.3 Food Webs Transfer Energy and Nutrients from Primary Producers to Consumers
| life11e_ch57_12.html | 58061162757a2ec511000000 |
DLAP questions | life11e_ch57_12_dlap.xml | 58061162757a2ec511000000 |
The amount of energy transferred within food webs depends on trophic efficiency
| life11e_ch57_13.html | 58061162757a2ec511000000 |
DLAP questions | life11e_ch57_13_dlap.xml | 58061162757a2ec511000000 |
Food webs are controlled by bottom-up and top-down forces
| life11e_ch57_14.html | 58061162757a2ec511000000 |
DLAP questions | life11e_ch57_14_dlap.xml | 58061162757a2ec511000000 |
The number of trophic levels can control the flow of energy through food webs
| life11e_ch57_15.html | 58061162757a2ec511000000 |
DLAP questions | life11e_ch57_15_dlap.xml | 58061162757a2ec511000000 |
recap | life11e_ch57_16.html | 58061162757a2ec511000000 |
DLAP questions | life11e_ch57_16_dlap.xml | 58061162757a2ec511000000 |
key concept 57.4 Nutrient Cycling in Ecosystems Involves Chemical and Biological Transformations
| life11e_ch57_17.html | 58061162757a2ec511000000 |
DLAP questions | life11e_ch57_17_dlap.xml | 58061162757a2ec511000000 |
Water cycles rapidly around the globe
| life11e_ch57_18.html | 58061162757a2ec511000000 |
DLAP questions | life11e_ch57_18_dlap.xml | 58061162757a2ec511000000 |
The carbon cycle is being altered by human activities, resulting in climate change
| life11e_ch57_19.html | 58061162757a2ec511000000 |
DLAP questions | life11e_ch57_19_dlap.xml | 58061162757a2ec511000000 |
The nitrogen cycle is dominated by biotic processes
| life11e_ch57_20.html | 58061162757a2ec511000000 |
DLAP questions | life11e_ch57_20_dlap.xml | 58061162757a2ec511000000 |
The global phosphorus cycle is dominated by geochemical processes
| life11e_ch57_21.html | 58061162757a2ec511000000 |
DLAP questions | life11e_ch57_21_dlap.xml | 58061162757a2ec511000000 |
The burning of fossil fuels affects the sulfur cycle
| life11e_ch57_22.html | 58061162757a2ec511000000 |
DLAP questions | life11e_ch57_22_dlap.xml | 58061162757a2ec511000000 |
recap | life11e_ch57_23.html | 58061162757a2ec511000000 |
DLAP questions | life11e_ch57_23_dlap.xml | 58061162757a2ec511000000 |
key concept 57.5 Ecosystems Provide Important Services and Values to Humans
| life11e_ch57_24.html | 58061162757a2ec511000000 |
DLAP questions | life11e_ch57_24_dlap.xml | 58061162757a2ec511000000 |
The value of ecosystem services can be measured
| life11e_ch57_25.html | 58061162757a2ec511000000 |
DLAP questions | life11e_ch57_25_dlap.xml | 58061162757a2ec511000000 |
recap | life11e_ch57_26.html | 58061162757a2ec511000000 |
DLAP questions | life11e_ch57_26_dlap.xml | 58061162757a2ec511000000 |
Investigating Life | life11e_ch57_27.html | 58061162757a2ec511000000 |
DLAP questions | life11e_ch57_27_dlap.xml | 58061162757a2ec511000000 |
Chapter Summary
| life11e_ch57_28.html | 58061162757a2ec511000000 |
DLAP questions | life11e_ch57_28_dlap.xml | 58061162757a2ec511000000 |
Apply What Youâve Learned
| life11e_ch57_29.html | 58061162757a2ec511000000 |
DLAP questions | life11e_ch57_29_dlap.xml | 58061162757a2ec511000000 |
Chapter Introduction | life11e_ch58_1.html | 58064037757a2ebf15000000 |
DLAP questions | life11e_ch58_1_dlap.xml | 58064037757a2ebf15000000 |
key concept 58.1 Human Activities Are Changing the Biosphere, Resulting in Biodiversity Loss
| life11e_ch58_2.html | 58064037757a2ebf15000000 |
DLAP questions | life11e_ch58_2_dlap.xml | 58064037757a2ebf15000000 |
Biodiversity has great value to human society
| life11e_ch58_3.html | 58064037757a2ebf15000000 |
DLAP questions | life11e_ch58_3_dlap.xml | 58064037757a2ebf15000000 |
Diversity loss at one scale affects diversity loss at other scales
| life11e_ch58_4.html | 58064037757a2ebf15000000 |
DLAP questions | life11e_ch58_4_dlap.xml | 58064037757a2ebf15000000 |
Species diversity is being lost at unprecedented rates
| life11e_ch58_5.html | 58064037757a2ebf15000000 |
DLAP questions | life11e_ch58_5_dlap.xml | 58064037757a2ebf15000000 |
We can predict the effects of human activities on biodiversity
| life11e_ch58_6.html | 58064037757a2ebf15000000 |
DLAP questions | life11e_ch58_6_dlap.xml | 58064037757a2ebf15000000 |
recap | life11e_ch58_7.html | 58064037757a2ebf15000000 |
DLAP questions | life11e_ch58_7_dlap.xml | 58064037757a2ebf15000000 |
key concept 58.2 Most Biodiversity Loss Is Caused by Habitat Loss and Degradation
| life11e_ch58_8.html | 58064037757a2ebf15000000 |
DLAP questions | life11e_ch58_8_dlap.xml | 58064037757a2ebf15000000 |
Habitat loss and degradation endanger species
| life11e_ch58_9.html | 58064037757a2ebf15000000 |
DLAP questions | life11e_ch58_9_dlap.xml | 58064037757a2ebf15000000 |
Overharvesting has driven many species to extinction and changed food webs
| life11e_ch58_10.html | 58064037757a2ebf15000000 |
DLAP questions | life11e_ch58_10_dlap.xml | 58064037757a2ebf15000000 |
Invasive predators, competitors, and pathogens threaten many species
| life11e_ch58_11.html | 58064037757a2ebf15000000 |
DLAP questions | life11e_ch58_11_dlap.xml | 58064037757a2ebf15000000 |
Species and ecosystems are already being affected by climate change
| life11e_ch58_12.html | 58064037757a2ebf15000000 |
DLAP questions | life11e_ch58_12_dlap.xml | 58064037757a2ebf15000000 |
recap | life11e_ch58_13.html | 58064037757a2ebf15000000 |
DLAP questions | life11e_ch58_13_dlap.xml | 58064037757a2ebf15000000 |
key concept 58.3 Protecting Biodiversity Requires Conservation and Management Strategies
| life11e_ch58_14.html | 58064037757a2ebf15000000 |
DLAP questions | life11e_ch58_14_dlap.xml | 58064037757a2ebf15000000 |
Protected areas preserve habitat and curtail biodiversity loss
| life11e_ch58_15.html | 58064037757a2ebf15000000 |
DLAP questions | life11e_ch58_15_dlap.xml | 58064037757a2ebf15000000 |
Degraded ecosystems can be restored
| life11e_ch58_16.html | 58064037757a2ebf15000000 |
DLAP questions | life11e_ch58_16_dlap.xml | 58064037757a2ebf15000000 |
Captive breeding programs can maintain a few species
| life11e_ch58_17.html | 58064037757a2ebf15000000 |
DLAP questions | life11e_ch58_17_dlap.xml | 58064037757a2ebf15000000 |
Ending trade is crucial to saving some species
| life11e_ch58_18.html | 58064037757a2ebf15000000 |
DLAP questions | life11e_ch58_18_dlap.xml | 58064037757a2ebf15000000 |
Species invasions must be controlled or prevented
| life11e_ch58_19.html | 58064037757a2ebf15000000 |
DLAP questions | life11e_ch58_19_dlap.xml | 58064037757a2ebf15000000 |
Biodiversity can be conserved as a consequence of its economic value
| life11e_ch58_20.html | 58064037757a2ebf15000000 |
DLAP questions | life11e_ch58_20_dlap.xml | 58064037757a2ebf15000000 |
recap | life11e_ch58_21.html | 58064037757a2ebf15000000 |
DLAP questions | life11e_ch58_21_dlap.xml | 58064037757a2ebf15000000 |
Investigating Life | life11e_ch58_22.html | 58064037757a2ebf15000000 |
DLAP questions | life11e_ch58_22_dlap.xml | 58064037757a2ebf15000000 |
Chapter Summary
| life11e_ch58_23.html | 58064037757a2ebf15000000 |
DLAP questions | life11e_ch58_23_dlap.xml | 58064037757a2ebf15000000 |
Apply What Youâve Learned
| life11e_ch58_24.html | 58064037757a2ebf15000000 |
DLAP questions | life11e_ch58_24_dlap.xml | 58064037757a2ebf15000000 |
Chapter Introduction | life11e_ch59_1.html | 58174c24757a2ed556000002 |
DLAP questions | life11e_ch59_1_dlap.xml | 58174c24757a2ed556000002 |
Chapter Introduction | life11e_ch60_1.html | 5817567e757a2e5b58000000 |
DLAP questions | life11e_ch60_1_dlap.xml | 5817567e757a2e5b58000000 |
Why Do We Do Statistics?
| life11e_ch60_2.html | 5817567e757a2e5b58000000 |
DLAP questions | life11e_ch60_2_dlap.xml | 5817567e757a2e5b58000000 |
How Does Statistics Help Us Understand the Natural World?
| life11e_ch60_3.html | 5817567e757a2e5b58000000 |
DLAP questions | life11e_ch60_3_dlap.xml | 5817567e757a2e5b58000000 |
Step 1: Choose an Experimental Design
| life11e_ch60_4.html | 5817567e757a2e5b58000000 |
DLAP questions | life11e_ch60_4_dlap.xml | 5817567e757a2e5b58000000 |
Step 2: Collect Data
| life11e_ch60_5.html | 5817567e757a2e5b58000000 |
DLAP questions | life11e_ch60_5_dlap.xml | 5817567e757a2e5b58000000 |
Step 3: Organize and Visualize the Data
| life11e_ch60_6.html | 5817567e757a2e5b58000000 |
DLAP questions | life11e_ch60_6_dlap.xml | 5817567e757a2e5b58000000 |
Step 4: Summarize the Data
| life11e_ch60_7.html | 5817567e757a2e5b58000000 |
DLAP questions | life11e_ch60_7_dlap.xml | 5817567e757a2e5b58000000 |
Step 5: Make Inferences from the Data
| life11e_ch60_8.html | 5817567e757a2e5b58000000 |
DLAP questions | life11e_ch60_8_dlap.xml | 5817567e757a2e5b58000000 |
Chapter Introduction | life11e_ch61_1.html | 5818a074757a2e4e6d000000 |
DLAP questions | life11e_ch61_1_dlap.xml | 5818a074757a2e4e6d000000 |
Chapter Introduction | life11e_ch62_1.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_1_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 1
| life11e_ch62_2.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_2_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 2
| life11e_ch62_3.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_3_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 3
| life11e_ch62_4.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_4_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 4
| life11e_ch62_5.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_5_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 5
| life11e_ch62_6.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_6_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 6
| life11e_ch62_7.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_7_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 7
| life11e_ch62_8.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_8_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 8
| life11e_ch62_9.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_9_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 9
| life11e_ch62_10.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_10_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 10
| life11e_ch62_11.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_11_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 11
| life11e_ch62_12.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_12_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 12
| life11e_ch62_13.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_13_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 13
| life11e_ch62_14.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_14_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 14
| life11e_ch62_15.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_15_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 15
| life11e_ch62_16.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_16_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 16
| life11e_ch62_17.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_17_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 17
| life11e_ch62_18.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_18_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 18
| life11e_ch62_19.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_19_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 19
| life11e_ch62_20.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_20_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 20
| life11e_ch62_21.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_21_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 21
| life11e_ch62_22.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_22_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 22
| life11e_ch62_23.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_23_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 23
| life11e_ch62_24.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_24_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 24
| life11e_ch62_25.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_25_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 25
| life11e_ch62_26.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_26_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 26
| life11e_ch62_27.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_27_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 27
| life11e_ch62_28.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_28_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 28
| life11e_ch62_29.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_29_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 29
| life11e_ch62_30.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_30_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 30
| life11e_ch62_31.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_31_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 31
| life11e_ch62_32.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_32_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 32
| life11e_ch62_33.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_33_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 33
| life11e_ch62_34.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_34_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 34
| life11e_ch62_35.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_35_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 35
| life11e_ch62_36.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_36_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 36
| life11e_ch62_37.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_37_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 37
| life11e_ch62_38.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_38_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 38
| life11e_ch62_39.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_39_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 39
| life11e_ch62_40.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_40_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 40
| life11e_ch62_41.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_41_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 41
| life11e_ch62_42.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_42_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 42
| life11e_ch62_43.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_43_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 43
| life11e_ch62_44.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_44_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 44
| life11e_ch62_45.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_45_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 45
| life11e_ch62_46.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_46_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 46
| life11e_ch62_47.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_47_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 47
| life11e_ch62_48.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_48_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 48
| life11e_ch62_49.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_49_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 49
| life11e_ch62_50.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_50_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 50
| life11e_ch62_51.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_51_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 51
| life11e_ch62_52.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_52_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 52
| life11e_ch62_53.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_53_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 53
| life11e_ch62_54.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_54_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 54
| life11e_ch62_55.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_55_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 55
| life11e_ch62_56.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_56_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 56
| life11e_ch62_57.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_57_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 57
| life11e_ch62_58.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_58_dlap.xml | 5818d42e757a2e3073000001 |
Chapter 58
| life11e_ch62_59.html | 5818d42e757a2e3073000001 |
DLAP questions | life11e_ch62_59_dlap.xml | 5818d42e757a2e3073000001 |
Chapter Introduction | life11e_ch63_1.html | 581b517a757a2ef919000000 |
DLAP questions | life11e_ch63_1_dlap.xml | 581b517a757a2ef919000000 |
Chapter Introduction | life11e_ch64_1.html | 581b53c7757a2ef419000000 |
DLAP questions | life11e_ch64_1_dlap.xml | 581b53c7757a2ef419000000 |