Name | File | Manuscript |
Chapter Introduction | berg8e_ch9_1.html | 54fdfc70757a2e8122000000 |
DLAP questions | berg8e_ch9_1_dlap.xml | 54fdfc70757a2e8122000000 |
9.1 Proteases Facilitate a Fundamentally Difficult Reaction
| berg8e_ch9_2.html | 54fdfc70757a2e8122000000 |
DLAP questions | berg8e_ch9_2_dlap.xml | 54fdfc70757a2e8122000000 |
9.2 Carbonic Anhydrases Make a Fast Reaction Faster
| berg8e_ch9_3.html | 54fdfc70757a2e8122000000 |
DLAP questions | berg8e_ch9_3_dlap.xml | 54fdfc70757a2e8122000000 |
9.3 Restriction Enzymes Catalyze Highly Specific DNA-Cleavage Reactions
| berg8e_ch9_4.html | 54fdfc70757a2e8122000000 |
DLAP questions | berg8e_ch9_4_dlap.xml | 54fdfc70757a2e8122000000 |
9.4 Myosins Harness Changes in Enzyme Conformation to Couple ATP Hydrolysis to Mechanical Work
| berg8e_ch9_5.html | 54fdfc70757a2e8122000000 |
DLAP questions | berg8e_ch9_5_dlap.xml | 54fdfc70757a2e8122000000 |
SUMMARY | berg8e_ch9_6.html | 54fdfc70757a2e8122000000 |
DLAP questions | berg8e_ch9_6_dlap.xml | 54fdfc70757a2e8122000000 |
KEY TERMS | berg8e_ch9_7.html | 54fdfc70757a2e8122000000 |
DLAP questions | berg8e_ch9_7_dlap.xml | 54fdfc70757a2e8122000000 |
PROBLEMS | berg8e_ch9_8.html | 54fdfc70757a2e8122000000 |
DLAP questions | berg8e_ch9_8_dlap.xml | 54fdfc70757a2e8122000000 |
Chapter Introduction | berg8e_ch10_1.html | 550831aa757a2e4f49000000 |
DLAP questions | berg8e_ch10_1_dlap.xml | 550831aa757a2e4f49000000 |
10.1 Aspartate Transcarbamoylase Is Allosterically Inhibited by the End Product of Its Pathway
| berg8e_ch10_2.html | 550831aa757a2e4f49000000 |
DLAP questions | berg8e_ch10_2_dlap.xml | 550831aa757a2e4f49000000 |
10.2 Isozymes Provide a Means of Regulation Specific to Distinct Tissues and Developmental Stages
| berg8e_ch10_3.html | 550831aa757a2e4f49000000 |
DLAP questions | berg8e_ch10_3_dlap.xml | 550831aa757a2e4f49000000 |
10.3 Covalent Modification Is a Means of Regulating Enzyme Activity
| berg8e_ch10_4.html | 550831aa757a2e4f49000000 |
DLAP questions | berg8e_ch10_4_dlap.xml | 550831aa757a2e4f49000000 |
10.4 Many Enzymes are Activated by Specific Proteolytic Cleavage
| berg8e_ch10_5.html | 550831aa757a2e4f49000000 |
DLAP questions | berg8e_ch10_5_dlap.xml | 550831aa757a2e4f49000000 |
SUMMARY | berg8e_ch10_6.html | 550831aa757a2e4f49000000 |
DLAP questions | berg8e_ch10_6_dlap.xml | 550831aa757a2e4f49000000 |
KEY TERMS | berg8e_ch10_7.html | 550831aa757a2e4f49000000 |
DLAP questions | berg8e_ch10_7_dlap.xml | 550831aa757a2e4f49000000 |
PROBLEMS | berg8e_ch10_8.html | 550831aa757a2e4f49000000 |
DLAP questions | berg8e_ch10_8_dlap.xml | 550831aa757a2e4f49000000 |
Chapter Introduction | berg8e_ch11_1.html | 550841bc757a2e794f000000 |
DLAP questions | berg8e_ch11_1_dlap.xml | 550841bc757a2e794f000000 |
11.1 Monosaccharides Are the Simplest Carbohydrates
| berg8e_ch11_2.html | 550841bc757a2e794f000000 |
DLAP questions | berg8e_ch11_2_dlap.xml | 550841bc757a2e794f000000 |
11.2 Monosaccharides Are Linked to Form Complex Carbohydrates
| berg8e_ch11_3.html | 550841bc757a2e794f000000 |
DLAP questions | berg8e_ch11_3_dlap.xml | 550841bc757a2e794f000000 |
11.3 Carbohydrates Can Be Linked to Proteins to Form Glycoproteins
| berg8e_ch11_4.html | 550841bc757a2e794f000000 |
DLAP questions | berg8e_ch11_4_dlap.xml | 550841bc757a2e794f000000 |
11.4 Lectins Are Specific Carbohydrate-Binding Proteins
| berg8e_ch11_5.html | 550841bc757a2e794f000000 |
DLAP questions | berg8e_ch11_5_dlap.xml | 550841bc757a2e794f000000 |
SUMMARY | berg8e_ch11_6.html | 550841bc757a2e794f000000 |
DLAP questions | berg8e_ch11_6_dlap.xml | 550841bc757a2e794f000000 |
KEY TERMS | berg8e_ch11_7.html | 550841bc757a2e794f000000 |
DLAP questions | berg8e_ch11_7_dlap.xml | 550841bc757a2e794f000000 |
PROBLEMS | berg8e_ch11_8.html | 550841bc757a2e794f000000 |
DLAP questions | berg8e_ch11_8_dlap.xml | 550841bc757a2e794f000000 |
Chapter Introduction | berg8e_ch12_1.html | 550847ae757a2ebb4e00000f |
DLAP questions | berg8e_ch12_1_dlap.xml | 550847ae757a2ebb4e00000f |
12.1 Fatty Acids Are Key Constituents of Lipids
| berg8e_ch12_2.html | 550847ae757a2ebb4e00000f |
DLAP questions | berg8e_ch12_2_dlap.xml | 550847ae757a2ebb4e00000f |
12.2 There Are Three Common Types of Membrane Lipids
| berg8e_ch12_3.html | 550847ae757a2ebb4e00000f |
DLAP questions | berg8e_ch12_3_dlap.xml | 550847ae757a2ebb4e00000f |
12.3 Phospholipids and Glycolipids Readily Form Bimolecular Sheets in Aqueous Media
| berg8e_ch12_4.html | 550847ae757a2ebb4e00000f |
DLAP questions | berg8e_ch12_4_dlap.xml | 550847ae757a2ebb4e00000f |
12.4 Proteins Carry Out Most Membrane Processes
| berg8e_ch12_5.html | 550847ae757a2ebb4e00000f |
DLAP questions | berg8e_ch12_5_dlap.xml | 550847ae757a2ebb4e00000f |
12.5 Lipids and Many Membrane Proteins Diffuse Rapidly in the Plane of the Membrane
| berg8e_ch12_6.html | 550847ae757a2ebb4e00000f |
DLAP questions | berg8e_ch12_6_dlap.xml | 550847ae757a2ebb4e00000f |
12.6 Eukaryotic Cells Contain Compartments Bounded by Internal Membranes
| berg8e_ch12_7.html | 550847ae757a2ebb4e00000f |
DLAP questions | berg8e_ch12_7_dlap.xml | 550847ae757a2ebb4e00000f |
SUMMARY | berg8e_ch12_8.html | 550847ae757a2ebb4e00000f |
DLAP questions | berg8e_ch12_8_dlap.xml | 550847ae757a2ebb4e00000f |
KEY TERMS | berg8e_ch12_9.html | 550847ae757a2ebb4e00000f |
DLAP questions | berg8e_ch12_9_dlap.xml | 550847ae757a2ebb4e00000f |
PROBLEMS | berg8e_ch12_10.html | 550847ae757a2ebb4e00000f |
DLAP questions | berg8e_ch12_10_dlap.xml | 550847ae757a2ebb4e00000f |
Chapter Introduction | berg8e_ch13_1.html | 55084dca757a2eca55000000 |
DLAP questions | berg8e_ch13_1_dlap.xml | 55084dca757a2eca55000000 |
13.1 The Transport of Molecules Across a Membrane May Be Active or Passive
| berg8e_ch13_2.html | 55084dca757a2eca55000000 |
DLAP questions | berg8e_ch13_2_dlap.xml | 55084dca757a2eca55000000 |
13.2 Two Families of Membrane Proteins Use ATP Hydrolysis to Pump Ions and Molecules Across Membranes
| berg8e_ch13_3.html | 55084dca757a2eca55000000 |
DLAP questions | berg8e_ch13_3_dlap.xml | 55084dca757a2eca55000000 |
13.3 Lactose Permease Is an Archetype of Secondary Transporters That Use One Concentration Gradient to Power the Formation of Another
| berg8e_ch13_4.html | 55084dca757a2eca55000000 |
DLAP questions | berg8e_ch13_4_dlap.xml | 55084dca757a2eca55000000 |
13.4 Specific Channels Can Rapidly Transport Ions Across Membranes
| berg8e_ch13_5.html | 55084dca757a2eca55000000 |
DLAP questions | berg8e_ch13_5_dlap.xml | 55084dca757a2eca55000000 |
13.5 Gap Junctions Allow Ions and Small Molecules to Flow Between Communicating Cells
| berg8e_ch13_6.html | 55084dca757a2eca55000000 |
DLAP questions | berg8e_ch13_6_dlap.xml | 55084dca757a2eca55000000 |
13.6 Specific Channels Increase the Permeability of Some Membranes to Water
| berg8e_ch13_7.html | 55084dca757a2eca55000000 |
DLAP questions | berg8e_ch13_7_dlap.xml | 55084dca757a2eca55000000 |
SUMMARY | berg8e_ch13_8.html | 55084dca757a2eca55000000 |
DLAP questions | berg8e_ch13_8_dlap.xml | 55084dca757a2eca55000000 |
KEY TERMS | berg8e_ch13_9.html | 55084dca757a2eca55000000 |
DLAP questions | berg8e_ch13_9_dlap.xml | 55084dca757a2eca55000000 |
PROBLEMS | berg8e_ch13_10.html | 55084dca757a2eca55000000 |
DLAP questions | berg8e_ch13_10_dlap.xml | 55084dca757a2eca55000000 |
Chapter Introduction | berg8e_ch01_1.html | 552d1275757a2ef567000000 |
DLAP questions | berg8e_ch01_1_dlap.xml | 552d1275757a2ef567000000 |
1.1 Biochemical Unity Underlies Biological Diversity
| berg8e_ch01_2.html | 552d1275757a2ef567000000 |
DLAP questions | berg8e_ch01_2_dlap.xml | 552d1275757a2ef567000000 |
1.2 DNA Illustrates the Interplay Between Form and Function
| berg8e_ch01_3.html | 552d1275757a2ef567000000 |
DLAP questions | berg8e_ch01_3_dlap.xml | 552d1275757a2ef567000000 |
1.3 Concepts from Chemistry Explain the Properties of Biological Molecules
| berg8e_ch01_4.html | 552d1275757a2ef567000000 |
DLAP questions | berg8e_ch01_4_dlap.xml | 552d1275757a2ef567000000 |
1.4 The Genomic Revolution Is Transforming Biochemistry, Medicine, and Other Fields
| berg8e_ch01_5.html | 552d1275757a2ef567000000 |
DLAP questions | berg8e_ch01_5_dlap.xml | 552d1275757a2ef567000000 |
APPENDIX: Visualizing Molecular Structures I: Small Molecules | berg8e_ch01_6.html | 552d1275757a2ef567000000 |
DLAP questions | berg8e_ch01_6_dlap.xml | 552d1275757a2ef567000000 |
KEY TERMS | berg8e_ch01_7.html | 552d1275757a2ef567000000 |
DLAP questions | berg8e_ch01_7_dlap.xml | 552d1275757a2ef567000000 |
PROBLEMS | berg8e_ch01_8.html | 552d1275757a2ef567000000 |
DLAP questions | berg8e_ch01_8_dlap.xml | 552d1275757a2ef567000000 |
Chapter Introduction | berg8e_ch02_1.html | 552d3dbf757a2e2f79000001 |
DLAP questions | berg8e_ch02_1_dlap.xml | 552d3dbf757a2e2f79000001 |
2.1 Proteins Are Built from a Repertoire of 20 Amino Acids
| berg8e_ch02_2.html | 552d3dbf757a2e2f79000001 |
DLAP questions | berg8e_ch02_2_dlap.xml | 552d3dbf757a2e2f79000001 |
2.2 Primary Structure: Amino Acids Are Linked by Peptide Bonds to Form Polypeptide Chains
| berg8e_ch02_3.html | 552d3dbf757a2e2f79000001 |
DLAP questions | berg8e_ch02_3_dlap.xml | 552d3dbf757a2e2f79000001 |
2.3 Secondary Structure: Polypeptide Chains Can Fold into Regular Structures Such As the Alpha Helix, the Beta Sheet, and Turns and Loops
| berg8e_ch02_4.html | 552d3dbf757a2e2f79000001 |
DLAP questions | berg8e_ch02_4_dlap.xml | 552d3dbf757a2e2f79000001 |
2.4 Tertiary Structure: Water-Soluble Proteins Fold into Compact Structures with Nonpolar Cores
| berg8e_ch02_5.html | 552d3dbf757a2e2f79000001 |
DLAP questions | berg8e_ch02_5_dlap.xml | 552d3dbf757a2e2f79000001 |
2.5 Quaternary Structure: Polypeptide Chains Can Assemble into Multisubunit Structures
| berg8e_ch02_6.html | 552d3dbf757a2e2f79000001 |
DLAP questions | berg8e_ch02_6_dlap.xml | 552d3dbf757a2e2f79000001 |
2.6 The Amino Acid Sequence of a Protein Determines Its Three-Dimensional Structure
| berg8e_ch02_7.html | 552d3dbf757a2e2f79000001 |
DLAP questions | berg8e_ch02_7_dlap.xml | 552d3dbf757a2e2f79000001 |
SUMMARY | berg8e_ch02_8.html | 552d3dbf757a2e2f79000001 |
DLAP questions | berg8e_ch02_8_dlap.xml | 552d3dbf757a2e2f79000001 |
APPENDIX: Visualizing Molecular Structures II: Proteins | berg8e_ch02_9.html | 552d3dbf757a2e2f79000001 |
DLAP questions | berg8e_ch02_9_dlap.xml | 552d3dbf757a2e2f79000001 |
KEY TERMS | berg8e_ch02_10.html | 552d3dbf757a2e2f79000001 |
DLAP questions | berg8e_ch02_10_dlap.xml | 552d3dbf757a2e2f79000001 |
PROBLEMS | berg8e_ch02_11.html | 552d3dbf757a2e2f79000001 |
DLAP questions | berg8e_ch02_11_dlap.xml | 552d3dbf757a2e2f79000001 |
Chapter Introduction | berg8e_ch03_1.html | 552d5ced757a2e9908000000 |
DLAP questions | berg8e_ch03_1_dlap.xml | 552d5ced757a2e9908000000 |
3.1 The Purification of Proteins Is an Essential First Step in Understanding Their Function
| berg8e_ch03_2.html | 552d5ced757a2e9908000000 |
DLAP questions | berg8e_ch03_2_dlap.xml | 552d5ced757a2e9908000000 |
3.2 Immunology Provides Important Techniques with Which to Investigate Proteins
| berg8e_ch03_3.html | 552d5ced757a2e9908000000 |
DLAP questions | berg8e_ch03_3_dlap.xml | 552d5ced757a2e9908000000 |
3.3 Mass Spectrometry is a Powerful Technique for the Identification of Peptides and Proteins
| berg8e_ch03_4.html | 552d5ced757a2e9908000000 |
DLAP questions | berg8e_ch03_4_dlap.xml | 552d5ced757a2e9908000000 |
3.4 Peptides Can Be Synthesized by Automated Solid-Phase Methods
| berg8e_ch03_5.html | 552d5ced757a2e9908000000 |
DLAP questions | berg8e_ch03_5_dlap.xml | 552d5ced757a2e9908000000 |
3.5 Three-Dimensional Protein Structure Can Be Determined by X-ray Crystallography and NMR Spectroscopy
| berg8e_ch03_6.html | 552d5ced757a2e9908000000 |
DLAP questions | berg8e_ch03_6_dlap.xml | 552d5ced757a2e9908000000 |
SUMMARY | berg8e_ch03_7.html | 552d5ced757a2e9908000000 |
DLAP questions | berg8e_ch03_7_dlap.xml | 552d5ced757a2e9908000000 |
KEY TERMS | berg8e_ch03_8.html | 552d5ced757a2e9908000000 |
DLAP questions | berg8e_ch03_8_dlap.xml | 552d5ced757a2e9908000000 |
PROBLEMS | berg8e_ch03_9.html | 552d5ced757a2e9908000000 |
DLAP questions | berg8e_ch03_9_dlap.xml | 552d5ced757a2e9908000000 |
Chapter Introduction | berg8e_ch04_1.html | 552d84c1757a2e3a18000000 |
DLAP questions | berg8e_ch04_1_dlap.xml | 552d84c1757a2e3a18000000 |
4.1 A Nucleic Acid Consists of Four Kinds of Bases Linked to a SugarâPhosphate Backbone
| berg8e_ch04_2.html | 552d84c1757a2e3a18000000 |
DLAP questions | berg8e_ch04_2_dlap.xml | 552d84c1757a2e3a18000000 |
4.2 A Pair of Nucleic Acid Strands with Complementary Sequences Can Form a Double-Helical Structure
| berg8e_ch04_3.html | 552d84c1757a2e3a18000000 |
DLAP questions | berg8e_ch04_3_dlap.xml | 552d84c1757a2e3a18000000 |
4.3 The Double Helix Facilitates the Accurate Transmission of Hereditary Information
| berg8e_ch04_4.html | 552d84c1757a2e3a18000000 |
DLAP questions | berg8e_ch04_4_dlap.xml | 552d84c1757a2e3a18000000 |
4.4 DNA Is Replicated by Polymerases That Take Instructions from Templates
| berg8e_ch04_5.html | 552d84c1757a2e3a18000000 |
DLAP questions | berg8e_ch04_5_dlap.xml | 552d84c1757a2e3a18000000 |
4.5 Gene Expression Is the Transformation of DNA Information into Functional Molecules
| berg8e_ch04_6.html | 552d84c1757a2e3a18000000 |
DLAP questions | berg8e_ch04_6_dlap.xml | 552d84c1757a2e3a18000000 |
4.6 Amino Acids Are Encoded by Groups of Three Bases Starting from a Fixed Point
| berg8e_ch04_7.html | 552d84c1757a2e3a18000000 |
DLAP questions | berg8e_ch04_7_dlap.xml | 552d84c1757a2e3a18000000 |
4.7 Most Eukaryotic Genes Are Mosaics of Introns and Exons
| berg8e_ch04_8.html | 552d84c1757a2e3a18000000 |
DLAP questions | berg8e_ch04_8_dlap.xml | 552d84c1757a2e3a18000000 |
SUMMARY | berg8e_ch04_9.html | 552d84c1757a2e3a18000000 |
DLAP questions | berg8e_ch04_9_dlap.xml | 552d84c1757a2e3a18000000 |
KEY TERMS | berg8e_ch04_10.html | 552d84c1757a2e3a18000000 |
DLAP questions | berg8e_ch04_10_dlap.xml | 552d84c1757a2e3a18000000 |
PROBLEMS | berg8e_ch04_11.html | 552d84c1757a2e3a18000000 |
DLAP questions | berg8e_ch04_11_dlap.xml | 552d84c1757a2e3a18000000 |
Chapter Introduction | berg8e_ch05_1.html | 552e8b20757a2e4201000000 |
DLAP questions | berg8e_ch05_1_dlap.xml | 552e8b20757a2e4201000000 |
5.1 The Exploration of Genes Relies on Key Tools
| berg8e_ch05_2.html | 552e8b20757a2e4201000000 |
DLAP questions | berg8e_ch05_2_dlap.xml | 552e8b20757a2e4201000000 |
5.2 Recombinant DNA Technology Has Revolutionized All Aspects of Biology
| berg8e_ch05_3.html | 552e8b20757a2e4201000000 |
DLAP questions | berg8e_ch05_3_dlap.xml | 552e8b20757a2e4201000000 |
5.3 Complete Genomes Have Been Sequenced and Analyzed
| berg8e_ch05_4.html | 552e8b20757a2e4201000000 |
DLAP questions | berg8e_ch05_4_dlap.xml | 552e8b20757a2e4201000000 |
5.4 Eukaryotic Genes Can Be Quantitated and Manipulated with Considerable Precision
| berg8e_ch05_5.html | 552e8b20757a2e4201000000 |
DLAP questions | berg8e_ch05_5_dlap.xml | 552e8b20757a2e4201000000 |
SUMMARY | berg8e_ch05_6.html | 552e8b20757a2e4201000000 |
DLAP questions | berg8e_ch05_6_dlap.xml | 552e8b20757a2e4201000000 |
KEY TERMS | berg8e_ch05_7.html | 552e8b20757a2e4201000000 |
DLAP questions | berg8e_ch05_7_dlap.xml | 552e8b20757a2e4201000000 |
PROBLEMS | berg8e_ch05_8.html | 552e8b20757a2e4201000000 |
DLAP questions | berg8e_ch05_8_dlap.xml | 552e8b20757a2e4201000000 |
Chapter Introduction | berg8e_ch06_1.html | 552faff6757a2e436e000002 |
DLAP questions | berg8e_ch06_1_dlap.xml | 552faff6757a2e436e000002 |
6.1 Homologs Are Descended from a Common Ancestor
| berg8e_ch06_2.html | 552faff6757a2e436e000002 |
DLAP questions | berg8e_ch06_2_dlap.xml | 552faff6757a2e436e000002 |
6.2 Statistical Analysis of Sequence Alignments Can Detect Homology
| berg8e_ch06_3.html | 552faff6757a2e436e000002 |
DLAP questions | berg8e_ch06_3_dlap.xml | 552faff6757a2e436e000002 |
6.3 Examination of Three-Dimensional Structure Enhances Our Understanding of Evolutionary Relationships
| berg8e_ch06_4.html | 552faff6757a2e436e000002 |
DLAP questions | berg8e_ch06_4_dlap.xml | 552faff6757a2e436e000002 |
6.4 Evolutionary Trees Can Be Constructed on the Basis of Sequence Information
| berg8e_ch06_5.html | 552faff6757a2e436e000002 |
DLAP questions | berg8e_ch06_5_dlap.xml | 552faff6757a2e436e000002 |
6.5 Modern Techniques Make the Experimental Exploration of Evolution Possible
| berg8e_ch06_6.html | 552faff6757a2e436e000002 |
DLAP questions | berg8e_ch06_6_dlap.xml | 552faff6757a2e436e000002 |
SUMMARY | berg8e_ch06_7.html | 552faff6757a2e436e000002 |
DLAP questions | berg8e_ch06_7_dlap.xml | 552faff6757a2e436e000002 |
KEY TERMS | berg8e_ch06_8.html | 552faff6757a2e436e000002 |
DLAP questions | berg8e_ch06_8_dlap.xml | 552faff6757a2e436e000002 |
PROBLEMS | berg8e_ch06_9.html | 552faff6757a2e436e000002 |
DLAP questions | berg8e_ch06_9_dlap.xml | 552faff6757a2e436e000002 |
Chapter Introduction | berg8e_ch07_1.html | 552fbd5b757a2e967b000000 |
DLAP questions | berg8e_ch07_1_dlap.xml | 552fbd5b757a2e967b000000 |
7.1 Myoglobin and Hemoglobin Bind Oxygen at Iron Atoms in Heme
| berg8e_ch07_2.html | 552fbd5b757a2e967b000000 |
DLAP questions | berg8e_ch07_2_dlap.xml | 552fbd5b757a2e967b000000 |
7.2 Hemoglobin Binds Oxygen Cooperatively
| berg8e_ch07_3.html | 552fbd5b757a2e967b000000 |
DLAP questions | berg8e_ch07_3_dlap.xml | 552fbd5b757a2e967b000000 |
7.3 Hydrogen Ions and Carbon Dioxide Promote the Release of Oxygen: The Bohr Effect
| berg8e_ch07_4.html | 552fbd5b757a2e967b000000 |
DLAP questions | berg8e_ch07_4_dlap.xml | 552fbd5b757a2e967b000000 |
7.4 Mutations in Genes Encoding Hemoglobin Subunits Can Result in Disease
| berg8e_ch07_5.html | 552fbd5b757a2e967b000000 |
DLAP questions | berg8e_ch07_5_dlap.xml | 552fbd5b757a2e967b000000 |
SUMMARY | berg8e_ch07_6.html | 552fbd5b757a2e967b000000 |
DLAP questions | berg8e_ch07_6_dlap.xml | 552fbd5b757a2e967b000000 |
APPENDIX: Binding Models Can Be Formulated in Quantitative Terms: The Hill Plot and the Concerted Model | berg8e_ch07_7.html | 552fbd5b757a2e967b000000 |
DLAP questions | berg8e_ch07_7_dlap.xml | 552fbd5b757a2e967b000000 |
KEY TERMS | berg8e_ch07_8.html | 552fbd5b757a2e967b000000 |
DLAP questions | berg8e_ch07_8_dlap.xml | 552fbd5b757a2e967b000000 |
PROBLEMS | berg8e_ch07_9.html | 552fbd5b757a2e967b000000 |
DLAP questions | berg8e_ch07_9_dlap.xml | 552fbd5b757a2e967b000000 |
Chapter Introduction | berg8e_ch08_1.html | 55301970757a2e9621000000 |
DLAP questions | berg8e_ch08_1_dlap.xml | 55301970757a2e9621000000 |
8.1 Enzymes Are Powerful and Highly Specific Catalysts
| berg8e_ch08_2.html | 55301970757a2e9621000000 |
DLAP questions | berg8e_ch08_2_dlap.xml | 55301970757a2e9621000000 |
8.2 Gibbs Free Energy Is a Useful Thermodynamic Function for Understanding Enzymes
| berg8e_ch08_3.html | 55301970757a2e9621000000 |
DLAP questions | berg8e_ch08_3_dlap.xml | 55301970757a2e9621000000 |
8.3 Enzymes Accelerate Reactions by Facilitating the Formation of the Transition State
| berg8e_ch08_4.html | 55301970757a2e9621000000 |
DLAP questions | berg8e_ch08_4_dlap.xml | 55301970757a2e9621000000 |
8.4 The MichaelisâMenten Model Accounts for the Kinetic Properties of Many Enzymes
| berg8e_ch08_5.html | 55301970757a2e9621000000 |
DLAP questions | berg8e_ch08_5_dlap.xml | 55301970757a2e9621000000 |
8.5 Enzymes Can Be Inhibited by Specific Molecules
| berg8e_ch08_6.html | 55301970757a2e9621000000 |
DLAP questions | berg8e_ch08_6_dlap.xml | 55301970757a2e9621000000 |
8.6 Enzymes Can Be Studied One Molecule at a Time
| berg8e_ch08_7.html | 55301970757a2e9621000000 |
DLAP questions | berg8e_ch08_7_dlap.xml | 55301970757a2e9621000000 |
SUMMARY | berg8e_ch08_8.html | 55301970757a2e9621000000 |
DLAP questions | berg8e_ch08_8_dlap.xml | 55301970757a2e9621000000 |
APPENDIX: Enzymes are Classified on the Basis of the Types of Reactions That They Catalyze | berg8e_ch08_9.html | 55301970757a2e9621000000 |
DLAP questions | berg8e_ch08_9_dlap.xml | 55301970757a2e9621000000 |
KEY TERMS | berg8e_ch08_10.html | 55301970757a2e9621000000 |
DLAP questions | berg8e_ch08_10_dlap.xml | 55301970757a2e9621000000 |
PROBLEMS | berg8e_ch08_11.html | 55301970757a2e9621000000 |
DLAP questions | berg8e_ch08_11_dlap.xml | 55301970757a2e9621000000 |
Chapter Introduction | berg8e_ch14_1.html | 55312a1c757a2eda0d000000 |
DLAP questions | berg8e_ch14_1_dlap.xml | 55312a1c757a2eda0d000000 |
14.1 Heterotrimeric G Proteins Transmit Signals and Reset Themselves
| berg8e_ch14_2.html | 55312a1c757a2eda0d000000 |
DLAP questions | berg8e_ch14_2_dlap.xml | 55312a1c757a2eda0d000000 |
14.2 Insulin Signaling: Phosphorylation Cascades Are Central to Many Signal-Transduction Processes
| berg8e_ch14_3.html | 55312a1c757a2eda0d000000 |
DLAP questions | berg8e_ch14_3_dlap.xml | 55312a1c757a2eda0d000000 |
14.3 EGF Signaling: Signal-Transduction Pathways Are Poised to Respond
| berg8e_ch14_4.html | 55312a1c757a2eda0d000000 |
DLAP questions | berg8e_ch14_4_dlap.xml | 55312a1c757a2eda0d000000 |
14.4 Many Elements Recur with Variation in Different Signal-Transduction Pathways
| berg8e_ch14_5.html | 55312a1c757a2eda0d000000 |
DLAP questions | berg8e_ch14_5_dlap.xml | 55312a1c757a2eda0d000000 |
14.5 Defects in Signal-Transduction Pathways Can Lead to Cancer and Other Diseases
| berg8e_ch14_6.html | 55312a1c757a2eda0d000000 |
DLAP questions | berg8e_ch14_6_dlap.xml | 55312a1c757a2eda0d000000 |
SUMMARY | berg8e_ch14_7.html | 55312a1c757a2eda0d000000 |
DLAP questions | berg8e_ch14_7_dlap.xml | 55312a1c757a2eda0d000000 |
KEY TERMS | berg8e_ch14_8.html | 55312a1c757a2eda0d000000 |
DLAP questions | berg8e_ch14_8_dlap.xml | 55312a1c757a2eda0d000000 |
PROBLEMS | berg8e_ch14_9.html | 55312a1c757a2eda0d000000 |
DLAP questions | berg8e_ch14_9_dlap.xml | 55312a1c757a2eda0d000000 |
Chapter Introduction | berg8e_ch15_1.html | 553136f5757a2ee513000000 |
DLAP questions | berg8e_ch15_1_dlap.xml | 553136f5757a2ee513000000 |
15.1 Metabolism Is Composed of Many Coupled, Interconnecting Reactions
| berg8e_ch15_2.html | 553136f5757a2ee513000000 |
DLAP questions | berg8e_ch15_2_dlap.xml | 553136f5757a2ee513000000 |
15.2 ATP Is the Universal Currency of Free Energy in Biological Systems
| berg8e_ch15_3.html | 553136f5757a2ee513000000 |
DLAP questions | berg8e_ch15_3_dlap.xml | 553136f5757a2ee513000000 |
15.3 The Oxidation of Carbon Fuels Is an Important Source of Cellular Energy
| berg8e_ch15_4.html | 553136f5757a2ee513000000 |
DLAP questions | berg8e_ch15_4_dlap.xml | 553136f5757a2ee513000000 |
15.4 Metabolic Pathways Contain Many Recurring Motifs
| berg8e_ch15_5.html | 553136f5757a2ee513000000 |
DLAP questions | berg8e_ch15_5_dlap.xml | 553136f5757a2ee513000000 |
SUMMARY | berg8e_ch15_6.html | 553136f5757a2ee513000000 |
DLAP questions | berg8e_ch15_6_dlap.xml | 553136f5757a2ee513000000 |
KEY TERMS | berg8e_ch15_7.html | 553136f5757a2ee513000000 |
DLAP questions | berg8e_ch15_7_dlap.xml | 553136f5757a2ee513000000 |
PROBLEMS | berg8e_ch15_8.html | 553136f5757a2ee513000000 |
DLAP questions | berg8e_ch15_8_dlap.xml | 553136f5757a2ee513000000 |
Chapter Introduction | berg8e_ch16_1.html | 5531461a757a2e3319000000 |
DLAP questions | berg8e_ch16_1_dlap.xml | 5531461a757a2e3319000000 |
16.1 Glycolysis Is an Energy-Conversion Pathway in Many Organisms
| berg8e_ch16_2.html | 5531461a757a2e3319000000 |
DLAP questions | berg8e_ch16_2_dlap.xml | 5531461a757a2e3319000000 |
16.2 The Glycolytic Pathway Is Tightly Controlled
| berg8e_ch16_3.html | 5531461a757a2e3319000000 |
DLAP questions | berg8e_ch16_3_dlap.xml | 5531461a757a2e3319000000 |
16.3 Glucose Can Be Synthesized from Noncarbohydrate Precursors
| berg8e_ch16_4.html | 5531461a757a2e3319000000 |
DLAP questions | berg8e_ch16_4_dlap.xml | 5531461a757a2e3319000000 |
16.4 Gluconeogenesis and Glycolysis Are Reciprocally Regulated
| berg8e_ch16_5.html | 5531461a757a2e3319000000 |
DLAP questions | berg8e_ch16_5_dlap.xml | 5531461a757a2e3319000000 |
SUMMARY | berg8e_ch16_6.html | 5531461a757a2e3319000000 |
DLAP questions | berg8e_ch16_6_dlap.xml | 5531461a757a2e3319000000 |
KEY TERMS | berg8e_ch16_7.html | 5531461a757a2e3319000000 |
DLAP questions | berg8e_ch16_7_dlap.xml | 5531461a757a2e3319000000 |
PROBLEMS | berg8e_ch16_8.html | 5531461a757a2e3319000000 |
DLAP questions | berg8e_ch16_8_dlap.xml | 5531461a757a2e3319000000 |
Chapter Introduction | berg8e_ch17_1.html | 55437f0c757a2ed747000004 |
DLAP questions | berg8e_ch17_1_dlap.xml | 55437f0c757a2ed747000004 |
17.1 The Pyruvate Dehydrogenase Complex Links Glycolysis to the Citric Acid Cycle
| berg8e_ch17_2.html | 55437f0c757a2ed747000004 |
DLAP questions | berg8e_ch17_2_dlap.xml | 55437f0c757a2ed747000004 |
17.2 The Citric Acid Cycle Oxidizes Two-Carbon Units
| berg8e_ch17_3.html | 55437f0c757a2ed747000004 |
DLAP questions | berg8e_ch17_3_dlap.xml | 55437f0c757a2ed747000004 |
17.3 Entry to the Citric Acid Cycle and Metabolism Through It Are Controlled
| berg8e_ch17_4.html | 55437f0c757a2ed747000004 |
DLAP questions | berg8e_ch17_4_dlap.xml | 55437f0c757a2ed747000004 |
17.4 The Citric Acid Cycle Is a Source of Biosynthetic Precursors
| berg8e_ch17_5.html | 55437f0c757a2ed747000004 |
DLAP questions | berg8e_ch17_5_dlap.xml | 55437f0c757a2ed747000004 |
17.5 The Glyoxylate Cycle Enables Plants and Bacteria to Grow on Acetate
| berg8e_ch17_6.html | 55437f0c757a2ed747000004 |
DLAP questions | berg8e_ch17_6_dlap.xml | 55437f0c757a2ed747000004 |
SUMMARY | berg8e_ch17_7.html | 55437f0c757a2ed747000004 |
DLAP questions | berg8e_ch17_7_dlap.xml | 55437f0c757a2ed747000004 |
KEY TERMS | berg8e_ch17_8.html | 55437f0c757a2ed747000004 |
DLAP questions | berg8e_ch17_8_dlap.xml | 55437f0c757a2ed747000004 |
PROBLEMS | berg8e_ch17_9.html | 55437f0c757a2ed747000004 |
DLAP questions | berg8e_ch17_9_dlap.xml | 55437f0c757a2ed747000004 |
Chapter Introduction | berg8e_ch18_1.html | 5543d825757a2ed336000002 |
DLAP questions | berg8e_ch18_1_dlap.xml | 5543d825757a2ed336000002 |
18.1 Eukaryotic Oxidative Phosphorylation Takes Place in Mitochondria
| berg8e_ch18_2.html | 5543d825757a2ed336000002 |
DLAP questions | berg8e_ch18_2_dlap.xml | 5543d825757a2ed336000002 |
18.2 Oxidative Phosphorylation Depends on Electron Transfer
| berg8e_ch18_3.html | 5543d825757a2ed336000002 |
DLAP questions | berg8e_ch18_3_dlap.xml | 5543d825757a2ed336000002 |
18.3 The Respiratory Chain Consists of Four Complexes: Three Proton Pumps and a Physical Link to the Citric Acid Cycle
| berg8e_ch18_4.html | 5543d825757a2ed336000002 |
DLAP questions | berg8e_ch18_4_dlap.xml | 5543d825757a2ed336000002 |
18.4 A Proton Gradient Powers the Synthesis of ATP
| berg8e_ch18_5.html | 5543d825757a2ed336000002 |
DLAP questions | berg8e_ch18_5_dlap.xml | 5543d825757a2ed336000002 |
18.5 Many Shuttles Allow Movement Across Mitochondrial Membranes
| berg8e_ch18_6.html | 5543d825757a2ed336000002 |
DLAP questions | berg8e_ch18_6_dlap.xml | 5543d825757a2ed336000002 |
18.6 The Regulation of Cellular Respiration Is Governed Primarily by the Need for ATP
| berg8e_ch18_7.html | 5543d825757a2ed336000002 |
DLAP questions | berg8e_ch18_7_dlap.xml | 5543d825757a2ed336000002 |
SUMMARY | berg8e_ch18_8.html | 5543d825757a2ed336000002 |
DLAP questions | berg8e_ch18_8_dlap.xml | 5543d825757a2ed336000002 |
KEY TERMS | berg8e_ch18_9.html | 5543d825757a2ed336000002 |
DLAP questions | berg8e_ch18_9_dlap.xml | 5543d825757a2ed336000002 |
PROBLEMS | berg8e_ch18_10.html | 5543d825757a2ed336000002 |
DLAP questions | berg8e_ch18_10_dlap.xml | 5543d825757a2ed336000002 |
Chapter Introduction | berg8e_ch19_1.html | 55479693757a2eb611000000 |
DLAP questions | berg8e_ch19_1_dlap.xml | 55479693757a2eb611000000 |
19.1 Photosynthesis Takes Place in Chloroplasts
| berg8e_ch19_2.html | 55479693757a2eb611000000 |
DLAP questions | berg8e_ch19_2_dlap.xml | 55479693757a2eb611000000 |
19.2 Light Absorption by Chlorophyll Induces Electron Transfer
| berg8e_ch19_3.html | 55479693757a2eb611000000 |
DLAP questions | berg8e_ch19_3_dlap.xml | 55479693757a2eb611000000 |
19.3 Two Photosystems Generate a Proton Gradient and NADPH in Oxygenic Photosynthesis
| berg8e_ch19_4.html | 55479693757a2eb611000000 |
DLAP questions | berg8e_ch19_4_dlap.xml | 55479693757a2eb611000000 |
19.4 A Proton Gradient across the Thylakoid Membrane Drives ATP Synthesis
| berg8e_ch19_5.html | 55479693757a2eb611000000 |
DLAP questions | berg8e_ch19_5_dlap.xml | 55479693757a2eb611000000 |
19.5 Accessory Pigments Funnel Energy into Reaction Centers
| berg8e_ch19_6.html | 55479693757a2eb611000000 |
DLAP questions | berg8e_ch19_6_dlap.xml | 55479693757a2eb611000000 |
19.6 The Ability to Convert Light into Chemical Energy Is Ancient
| berg8e_ch19_7.html | 55479693757a2eb611000000 |
DLAP questions | berg8e_ch19_7_dlap.xml | 55479693757a2eb611000000 |
SUMMARY | berg8e_ch19_8.html | 55479693757a2eb611000000 |
DLAP questions | berg8e_ch19_8_dlap.xml | 55479693757a2eb611000000 |
KEY TERMS | berg8e_ch19_9.html | 55479693757a2eb611000000 |
DLAP questions | berg8e_ch19_9_dlap.xml | 55479693757a2eb611000000 |
PROBLEMS | berg8e_ch19_10.html | 55479693757a2eb611000000 |
DLAP questions | berg8e_ch19_10_dlap.xml | 55479693757a2eb611000000 |
Chapter Introduction | berg8e_ch20_1.html | 5547d689757a2e4822000001 |
DLAP questions | berg8e_ch20_1_dlap.xml | 5547d689757a2e4822000001 |
20.1 The Calvin Cycle Synthesizes Hexoses from Carbon Dioxide and Water
| berg8e_ch20_2.html | 5547d689757a2e4822000001 |
DLAP questions | berg8e_ch20_2_dlap.xml | 5547d689757a2e4822000001 |
20.2 The Activity of the Calvin Cycle Depends on Environmental Conditions
| berg8e_ch20_3.html | 5547d689757a2e4822000001 |
DLAP questions | berg8e_ch20_3_dlap.xml | 5547d689757a2e4822000001 |
20.3 The Pentose Phosphate Pathway Generates NADPH and Synthesizes Five-Carbon Sugars
| berg8e_ch20_4.html | 5547d689757a2e4822000001 |
DLAP questions | berg8e_ch20_4_dlap.xml | 5547d689757a2e4822000001 |
20.4 The Metabolism of Glucose 6-Phosphate by the Pentose Phosphate Pathway Is Coordinated with Glycolysis
| berg8e_ch20_5.html | 5547d689757a2e4822000001 |
DLAP questions | berg8e_ch20_5_dlap.xml | 5547d689757a2e4822000001 |
20.5 Glucose 6-Phosphate Dehydrogenase Plays a Key Role in Protection Against Reactive Oxygen Species
| berg8e_ch20_6.html | 5547d689757a2e4822000001 |
DLAP questions | berg8e_ch20_6_dlap.xml | 5547d689757a2e4822000001 |
SUMMARY | berg8e_ch20_7.html | 5547d689757a2e4822000001 |
DLAP questions | berg8e_ch20_7_dlap.xml | 5547d689757a2e4822000001 |
KEY TERMS | berg8e_ch20_8.html | 5547d689757a2e4822000001 |
DLAP questions | berg8e_ch20_8_dlap.xml | 5547d689757a2e4822000001 |
PROBLEMS | berg8e_ch20_9.html | 5547d689757a2e4822000001 |
DLAP questions | berg8e_ch20_9_dlap.xml | 5547d689757a2e4822000001 |
Chapter Introduction | berg8e_ch21_1.html | 5548f038757a2e1a14000000 |
DLAP questions | berg8e_ch21_1_dlap.xml | 5548f038757a2e1a14000000 |
21.1 Glycogen Breakdown Requires the Interplay of Several Enzymes
| berg8e_ch21_2.html | 5548f038757a2e1a14000000 |
DLAP questions | berg8e_ch21_2_dlap.xml | 5548f038757a2e1a14000000 |
21.2 Phosphorylase Is Regulated by Allosteric Interactions and Reversible Phosphorylation
| berg8e_ch21_3.html | 5548f038757a2e1a14000000 |
DLAP questions | berg8e_ch21_3_dlap.xml | 5548f038757a2e1a14000000 |
21.3 Epinephrine and Glucagon Signal the Need for Glycogen Breakdown
| berg8e_ch21_4.html | 5548f038757a2e1a14000000 |
DLAP questions | berg8e_ch21_4_dlap.xml | 5548f038757a2e1a14000000 |
21.4 Glycogen Is Synthesized and Degraded by Different Pathways
| berg8e_ch21_5.html | 5548f038757a2e1a14000000 |
DLAP questions | berg8e_ch21_5_dlap.xml | 5548f038757a2e1a14000000 |
21.5 Glycogen Breakdown and Synthesis Are Reciprocally Regulated
| berg8e_ch21_6.html | 5548f038757a2e1a14000000 |
DLAP questions | berg8e_ch21_6_dlap.xml | 5548f038757a2e1a14000000 |
SUMMARY | berg8e_ch21_7.html | 5548f038757a2e1a14000000 |
DLAP questions | berg8e_ch21_7_dlap.xml | 5548f038757a2e1a14000000 |
KEY TERMS | berg8e_ch21_8.html | 5548f038757a2e1a14000000 |
DLAP questions | berg8e_ch21_8_dlap.xml | 5548f038757a2e1a14000000 |
PROBLEMS | berg8e_ch21_9.html | 5548f038757a2e1a14000000 |
DLAP questions | berg8e_ch21_9_dlap.xml | 5548f038757a2e1a14000000 |
Chapter Introduction | berg8e_ch22_1.html | 554909b0757a2ec21f000001 |
DLAP questions | berg8e_ch22_1_dlap.xml | 554909b0757a2ec21f000001 |
22.1 Triacylglycerols Are Highly Concentrated Energy Stores
| berg8e_ch22_2.html | 554909b0757a2ec21f000001 |
DLAP questions | berg8e_ch22_2_dlap.xml | 554909b0757a2ec21f000001 |
22.2 The Use of Fatty Acids as Fuel Requires Three Stages of Processing
| berg8e_ch22_3.html | 554909b0757a2ec21f000001 |
DLAP questions | berg8e_ch22_3_dlap.xml | 554909b0757a2ec21f000001 |
22.3 Unsaturated and Odd-Chain Fatty Acids Require Additional Steps for Degradation
| berg8e_ch22_4.html | 554909b0757a2ec21f000001 |
DLAP questions | berg8e_ch22_4_dlap.xml | 554909b0757a2ec21f000001 |
22.4 Fatty Acids Are Synthesized by Fatty Acid Synthase
| berg8e_ch22_5.html | 554909b0757a2ec21f000001 |
DLAP questions | berg8e_ch22_5_dlap.xml | 554909b0757a2ec21f000001 |
22.5 The Elongation and Unsaturation of Fatty Acids Are Accomplished by Accessory Enzyme Systems
| berg8e_ch22_6.html | 554909b0757a2ec21f000001 |
DLAP questions | berg8e_ch22_6_dlap.xml | 554909b0757a2ec21f000001 |
22.6 Acetyl CoA Carboxylase Plays a Key Role in Controlling Fatty Acid Metabolism
| berg8e_ch22_7.html | 554909b0757a2ec21f000001 |
DLAP questions | berg8e_ch22_7_dlap.xml | 554909b0757a2ec21f000001 |
SUMMARY | berg8e_ch22_8.html | 554909b0757a2ec21f000001 |
DLAP questions | berg8e_ch22_8_dlap.xml | 554909b0757a2ec21f000001 |
KEY TERMS | berg8e_ch22_9.html | 554909b0757a2ec21f000001 |
DLAP questions | berg8e_ch22_9_dlap.xml | 554909b0757a2ec21f000001 |
PROBLEMS | berg8e_ch22_10.html | 554909b0757a2ec21f000001 |
DLAP questions | berg8e_ch22_10_dlap.xml | 554909b0757a2ec21f000001 |
Chapter Introduction | berg8e_ch23_1.html | 554a7176757a2e882a000000 |
DLAP questions | berg8e_ch23_1_dlap.xml | 554a7176757a2e882a000000 |
23.1 Proteins Are Degraded to Amino Acids
| berg8e_ch23_2.html | 554a7176757a2e882a000000 |
DLAP questions | berg8e_ch23_2_dlap.xml | 554a7176757a2e882a000000 |
23.2 Protein Turnover Is Tightly Regulated
| berg8e_ch23_3.html | 554a7176757a2e882a000000 |
DLAP questions | berg8e_ch23_3_dlap.xml | 554a7176757a2e882a000000 |
23.3 The First Step in Amino Acid Degradation Is the Removal of Nitrogen
| berg8e_ch23_4.html | 554a7176757a2e882a000000 |
DLAP questions | berg8e_ch23_4_dlap.xml | 554a7176757a2e882a000000 |
23.4 Ammonium Ion Is Converted into Urea in Most Terrestrial Vertebrates
| berg8e_ch23_5.html | 554a7176757a2e882a000000 |
DLAP questions | berg8e_ch23_5_dlap.xml | 554a7176757a2e882a000000 |
23.5 Carbon Atoms of Degraded Amino Acids Emerge as Major Metabolic Intermediates
| berg8e_ch23_6.html | 554a7176757a2e882a000000 |
DLAP questions | berg8e_ch23_6_dlap.xml | 554a7176757a2e882a000000 |
23.6 Inborn Errors of Metabolism Can Disrupt Amino Acid Degradation
| berg8e_ch23_7.html | 554a7176757a2e882a000000 |
DLAP questions | berg8e_ch23_7_dlap.xml | 554a7176757a2e882a000000 |
SUMMARY | berg8e_ch23_8.html | 554a7176757a2e882a000000 |
DLAP questions | berg8e_ch23_8_dlap.xml | 554a7176757a2e882a000000 |
KEY TERMS | berg8e_ch23_9.html | 554a7176757a2e882a000000 |
DLAP questions | berg8e_ch23_9_dlap.xml | 554a7176757a2e882a000000 |
PROBLEMS | berg8e_ch23_10.html | 554a7176757a2e882a000000 |
DLAP questions | berg8e_ch23_10_dlap.xml | 554a7176757a2e882a000000 |
Chapter Introduction | berg8e_ch24_1.html | 554cb3dd757a2e1169000000 |
DLAP questions | berg8e_ch24_1_dlap.xml | 554cb3dd757a2e1169000000 |
24.1 Nitrogen Fixation: Microorganisms Use ATP and a Powerful Reductant to Reduce Atmospheric Nitrogen to Ammonia
| berg8e_ch24_2.html | 554cb3dd757a2e1169000000 |
DLAP questions | berg8e_ch24_2_dlap.xml | 554cb3dd757a2e1169000000 |
24.2 Amino Acids Are Made from Intermediates of the Citric Acid Cycle and Other Major Pathways
| berg8e_ch24_3.html | 554cb3dd757a2e1169000000 |
DLAP questions | berg8e_ch24_3_dlap.xml | 554cb3dd757a2e1169000000 |
24.3 Feedback Inhibition Regulates Amino Acid Biosynthesis
| berg8e_ch24_4.html | 554cb3dd757a2e1169000000 |
DLAP questions | berg8e_ch24_4_dlap.xml | 554cb3dd757a2e1169000000 |
24.4 Amino Acids Are Precursors of Many Biomolecules
| berg8e_ch24_5.html | 554cb3dd757a2e1169000000 |
DLAP questions | berg8e_ch24_5_dlap.xml | 554cb3dd757a2e1169000000 |
SUMMARY | berg8e_ch24_6.html | 554cb3dd757a2e1169000000 |
DLAP questions | berg8e_ch24_6_dlap.xml | 554cb3dd757a2e1169000000 |
KEY TERMS | berg8e_ch24_7.html | 554cb3dd757a2e1169000000 |
DLAP questions | berg8e_ch24_7_dlap.xml | 554cb3dd757a2e1169000000 |
PROBLEMS | berg8e_ch24_8.html | 554cb3dd757a2e1169000000 |
DLAP questions | berg8e_ch24_8_dlap.xml | 554cb3dd757a2e1169000000 |
Chapter Introduction | berg8e_ch25_1.html | 554d1051757a2e6635000000 |
DLAP questions | berg8e_ch25_1_dlap.xml | 554d1051757a2e6635000000 |
25.1 The Pyrimidine Ring Is Assembled de Novo or Recovered by Salvage Pathways
| berg8e_ch25_2.html | 554d1051757a2e6635000000 |
DLAP questions | berg8e_ch25_2_dlap.xml | 554d1051757a2e6635000000 |
25.2 Purine Bases Can Be Synthesized de Novo or Recycled by Salvage Pathways
| berg8e_ch25_3.html | 554d1051757a2e6635000000 |
DLAP questions | berg8e_ch25_3_dlap.xml | 554d1051757a2e6635000000 |
25.3 Deoxyribonucleotides Are Synthesized by the Reduction of Ribonucleotides Through a Radical Mechanism
| berg8e_ch25_4.html | 554d1051757a2e6635000000 |
DLAP questions | berg8e_ch25_4_dlap.xml | 554d1051757a2e6635000000 |
25.4 Key Steps in Nucleotide Biosynthesis Are Regulated by Feedback Inhibition
| berg8e_ch25_5.html | 554d1051757a2e6635000000 |
DLAP questions | berg8e_ch25_5_dlap.xml | 554d1051757a2e6635000000 |
25.5 Disruptions in Nucleotide Metabolism Can Cause Pathological Conditions
| berg8e_ch25_6.html | 554d1051757a2e6635000000 |
DLAP questions | berg8e_ch25_6_dlap.xml | 554d1051757a2e6635000000 |
SUMMARY | berg8e_ch25_7.html | 554d1051757a2e6635000000 |
DLAP questions | berg8e_ch25_7_dlap.xml | 554d1051757a2e6635000000 |
KEY TERMS | berg8e_ch25_8.html | 554d1051757a2e6635000000 |
DLAP questions | berg8e_ch25_8_dlap.xml | 554d1051757a2e6635000000 |
PROBLEMS | berg8e_ch25_9.html | 554d1051757a2e6635000000 |
DLAP questions | berg8e_ch25_9_dlap.xml | 554d1051757a2e6635000000 |
Chapter Introduction | berg8e_ch26_1.html | 554d6b94757a2ee24b000000 |
DLAP questions | berg8e_ch26_1_dlap.xml | 554d6b94757a2ee24b000000 |
26.1 Phosphatidate Is a Common Intermediate in the Synthesis of Phospholipids and Triacylglycerols
| berg8e_ch26_2.html | 554d6b94757a2ee24b000000 |
DLAP questions | berg8e_ch26_2_dlap.xml | 554d6b94757a2ee24b000000 |
26.2 Cholesterol Is Synthesized from Acetyl Coenzyme A in Three Stages
| berg8e_ch26_3.html | 554d6b94757a2ee24b000000 |
DLAP questions | berg8e_ch26_3_dlap.xml | 554d6b94757a2ee24b000000 |
26.3 The Complex Regulation of Cholesterol Biosynthesis Takes Place at Several Levels
| berg8e_ch26_4.html | 554d6b94757a2ee24b000000 |
DLAP questions | berg8e_ch26_4_dlap.xml | 554d6b94757a2ee24b000000 |
26.4 Important Derivatives of Cholesterol Include Bile Salts and Steroid Hormones
| berg8e_ch26_5.html | 554d6b94757a2ee24b000000 |
DLAP questions | berg8e_ch26_5_dlap.xml | 554d6b94757a2ee24b000000 |
SUMMARY | berg8e_ch26_6.html | 554d6b94757a2ee24b000000 |
DLAP questions | berg8e_ch26_6_dlap.xml | 554d6b94757a2ee24b000000 |
KEY TERMS | berg8e_ch26_7.html | 554d6b94757a2ee24b000000 |
DLAP questions | berg8e_ch26_7_dlap.xml | 554d6b94757a2ee24b000000 |
PROBLEMS | berg8e_ch26_8.html | 554d6b94757a2ee24b000000 |
DLAP questions | berg8e_ch26_8_dlap.xml | 554d6b94757a2ee24b000000 |
Chapter Introduction | berg8e_ch27_1.html | 5550b18a757a2e2944000000 |
DLAP questions | berg8e_ch27_1_dlap.xml | 5550b18a757a2e2944000000 |
27.1 !dna! Caloric Homeostasis Is a Means of Regulating Body Weight
| berg8e_ch27_2.html | 5550b18a757a2e2944000000 |
DLAP questions | berg8e_ch27_2_dlap.xml | 5550b18a757a2e2944000000 |
27.2 !dna! The Brain Plays a Key Role in Caloric Homeostasis
| berg8e_ch27_3.html | 5550b18a757a2e2944000000 |
DLAP questions | berg8e_ch27_3_dlap.xml | 5550b18a757a2e2944000000 |
27.3 !dna! Diabetes Is a Common Metabolic Disease Often Resulting from Obesity
| berg8e_ch27_4.html | 5550b18a757a2e2944000000 |
DLAP questions | berg8e_ch27_4_dlap.xml | 5550b18a757a2e2944000000 |
27.4 !dna! Exercise Beneficially Alters the Biochemistry of Cells
| berg8e_ch27_5.html | 5550b18a757a2e2944000000 |
DLAP questions | berg8e_ch27_5_dlap.xml | 5550b18a757a2e2944000000 |
27.5 !dna! Food Intake and Starvation Induce Metabolic Changes
| berg8e_ch27_6.html | 5550b18a757a2e2944000000 |
DLAP questions | berg8e_ch27_6_dlap.xml | 5550b18a757a2e2944000000 |
27.6 !dna! Ethanol Alters Energy Metabolism in the Liver
| berg8e_ch27_7.html | 5550b18a757a2e2944000000 |
DLAP questions | berg8e_ch27_7_dlap.xml | 5550b18a757a2e2944000000 |
SUMMARY | berg8e_ch27_8.html | 5550b18a757a2e2944000000 |
DLAP questions | berg8e_ch27_8_dlap.xml | 5550b18a757a2e2944000000 |
KEY TERMS | berg8e_ch27_9.html | 5550b18a757a2e2944000000 |
DLAP questions | berg8e_ch27_9_dlap.xml | 5550b18a757a2e2944000000 |
PROBLEMS | berg8e_ch27_10.html | 5550b18a757a2e2944000000 |
DLAP questions | berg8e_ch27_10_dlap.xml | 5550b18a757a2e2944000000 |
Chapter Introduction | berg8e_ch28_1.html | 5551f94c757a2e3a70000000 |
DLAP questions | berg8e_ch28_1_dlap.xml | 5551f94c757a2e3a70000000 |
28.1 DNA Replication Proceeds by the Polymerization of Deoxyribonucleoside Triphosphates Along a Template
| berg8e_ch28_2.html | 5551f94c757a2e3a70000000 |
DLAP questions | berg8e_ch28_2_dlap.xml | 5551f94c757a2e3a70000000 |
28.2 DNA Unwinding and Supercoiling Are Controlled by Topoisomerases
| berg8e_ch28_3.html | 5551f94c757a2e3a70000000 |
DLAP questions | berg8e_ch28_3_dlap.xml | 5551f94c757a2e3a70000000 |
28.3 DNA Replication Is Highly Coordinated
| berg8e_ch28_4.html | 5551f94c757a2e3a70000000 |
DLAP questions | berg8e_ch28_4_dlap.xml | 5551f94c757a2e3a70000000 |
28.4 Many Types of DNA Damage Can Be Repaired
| berg8e_ch28_5.html | 5551f94c757a2e3a70000000 |
DLAP questions | berg8e_ch28_5_dlap.xml | 5551f94c757a2e3a70000000 |
28.5 DNA Recombination Plays Important Roles in Replication, Repair, and Other Processes
| berg8e_ch28_6.html | 5551f94c757a2e3a70000000 |
DLAP questions | berg8e_ch28_6_dlap.xml | 5551f94c757a2e3a70000000 |
SUMMARY | berg8e_ch28_7.html | 5551f94c757a2e3a70000000 |
DLAP questions | berg8e_ch28_7_dlap.xml | 5551f94c757a2e3a70000000 |
KEY TERMS | berg8e_ch28_8.html | 5551f94c757a2e3a70000000 |
DLAP questions | berg8e_ch28_8_dlap.xml | 5551f94c757a2e3a70000000 |
PROBLEMS | berg8e_ch28_9.html | 5551f94c757a2e3a70000000 |
DLAP questions | berg8e_ch28_9_dlap.xml | 5551f94c757a2e3a70000000 |
Chapter Introduction | berg8e_ch29_1.html | 5551fde7757a2e5404000000 |
DLAP questions | berg8e_ch29_1_dlap.xml | 5551fde7757a2e5404000000 |
29.1 RNA Polymerases Catalyze Transcription
| berg8e_ch29_2.html | 5551fde7757a2e5404000000 |
DLAP questions | berg8e_ch29_2_dlap.xml | 5551fde7757a2e5404000000 |
29.2 Transcription in Eukaryotes Is Highly Regulated
| berg8e_ch29_3.html | 5551fde7757a2e5404000000 |
DLAP questions | berg8e_ch29_3_dlap.xml | 5551fde7757a2e5404000000 |
29.3 The Transcription Products of Eukaryotic Polymerases Are Processed
| berg8e_ch29_4.html | 5551fde7757a2e5404000000 |
DLAP questions | berg8e_ch29_4_dlap.xml | 5551fde7757a2e5404000000 |
29.4 The Discovery of Catalytic RNA Was Revealing in Regard to Both Mechanism and Evolution
| berg8e_ch29_5.html | 5551fde7757a2e5404000000 |
DLAP questions | berg8e_ch29_5_dlap.xml | 5551fde7757a2e5404000000 |
SUMMARY | berg8e_ch29_6.html | 5551fde7757a2e5404000000 |
DLAP questions | berg8e_ch29_6_dlap.xml | 5551fde7757a2e5404000000 |
KEY TERMS | berg8e_ch29_7.html | 5551fde7757a2e5404000000 |
DLAP questions | berg8e_ch29_7_dlap.xml | 5551fde7757a2e5404000000 |
PROBLEMS | berg8e_ch29_8.html | 5551fde7757a2e5404000000 |
DLAP questions | berg8e_ch29_8_dlap.xml | 5551fde7757a2e5404000000 |
Chapter Introduction | berg8e_ch30_1.html | 5551ffeb757a2e3f04000000 |
DLAP questions | berg8e_ch30_1_dlap.xml | 5551ffeb757a2e3f04000000 |
30.1 Protein Synthesis Requires the Translation of Nucleotide Sequences into Amino Acid Sequences
| berg8e_ch30_2.html | 5551ffeb757a2e3f04000000 |
DLAP questions | berg8e_ch30_2_dlap.xml | 5551ffeb757a2e3f04000000 |
30.2 Aminoacyl Transfer RNA Synthetases Read the Genetic Code
| berg8e_ch30_3.html | 5551ffeb757a2e3f04000000 |
DLAP questions | berg8e_ch30_3_dlap.xml | 5551ffeb757a2e3f04000000 |
30.3 The Ribosome Is the Site of Protein Synthesis
| berg8e_ch30_4.html | 5551ffeb757a2e3f04000000 |
DLAP questions | berg8e_ch30_4_dlap.xml | 5551ffeb757a2e3f04000000 |
30.4 Eukaryotic Protein Synthesis Differs from Bacterial Protein Synthesis Primarily in Translation Initiation
| berg8e_ch30_5.html | 5551ffeb757a2e3f04000000 |
DLAP questions | berg8e_ch30_5_dlap.xml | 5551ffeb757a2e3f04000000 |
30.5 A Variety of Antibiotics and Toxins Can Inhibit Protein Synthesis
| berg8e_ch30_6.html | 5551ffeb757a2e3f04000000 |
DLAP questions | berg8e_ch30_6_dlap.xml | 5551ffeb757a2e3f04000000 |
30.6 Ribosomes Bound to the Endoplasmic Reticulum Manufacture Secretory and Membrane Proteins
| berg8e_ch30_7.html | 5551ffeb757a2e3f04000000 |
DLAP questions | berg8e_ch30_7_dlap.xml | 5551ffeb757a2e3f04000000 |
SUMMARY | berg8e_ch30_8.html | 5551ffeb757a2e3f04000000 |
DLAP questions | berg8e_ch30_8_dlap.xml | 5551ffeb757a2e3f04000000 |
KEY TERMS | berg8e_ch30_9.html | 5551ffeb757a2e3f04000000 |
DLAP questions | berg8e_ch30_9_dlap.xml | 5551ffeb757a2e3f04000000 |
PROBLEMS | berg8e_ch30_10.html | 5551ffeb757a2e3f04000000 |
DLAP questions | berg8e_ch30_10_dlap.xml | 5551ffeb757a2e3f04000000 |
Chapter Introduction | berg8e_ch31_1.html | 55520145757a2e697d000000 |
DLAP questions | berg8e_ch31_1_dlap.xml | 55520145757a2e697d000000 |
31.1 Many DNA-Binding Proteins Recognize Specific DNA Sequences
| berg8e_ch31_2.html | 55520145757a2e697d000000 |
DLAP questions | berg8e_ch31_2_dlap.xml | 55520145757a2e697d000000 |
31.2 Prokaryotic DNA-Binding Proteins Bind Specifically to Regulatory Sites in Operons
| berg8e_ch31_3.html | 55520145757a2e697d000000 |
DLAP questions | berg8e_ch31_3_dlap.xml | 55520145757a2e697d000000 |
31.3 Regulatory Circuits Can Result in Switching Between Patterns of Gene Expression
| berg8e_ch31_4.html | 55520145757a2e697d000000 |
DLAP questions | berg8e_ch31_4_dlap.xml | 55520145757a2e697d000000 |
31.4 Gene Expression Can Be Controlled at Posttranscriptional Levels
| berg8e_ch31_5.html | 55520145757a2e697d000000 |
DLAP questions | berg8e_ch31_5_dlap.xml | 55520145757a2e697d000000 |
SUMMARY | berg8e_ch31_6.html | 55520145757a2e697d000000 |
DLAP questions | berg8e_ch31_6_dlap.xml | 55520145757a2e697d000000 |
KEY TERMS | berg8e_ch31_7.html | 55520145757a2e697d000000 |
DLAP questions | berg8e_ch31_7_dlap.xml | 55520145757a2e697d000000 |
PROBLEMS | berg8e_ch31_8.html | 55520145757a2e697d000000 |
DLAP questions | berg8e_ch31_8_dlap.xml | 55520145757a2e697d000000 |
Chapter Introduction | berg8e_ch32_1.html | 55520308757a2ee364000000 |
DLAP questions | berg8e_ch32_1_dlap.xml | 55520308757a2ee364000000 |
32.1 Eukaryotic DNA Is Organized into Chromatin
| berg8e_ch32_2.html | 55520308757a2ee364000000 |
DLAP questions | berg8e_ch32_2_dlap.xml | 55520308757a2ee364000000 |
32.2 Transcription Factors Bind DNA and Regulate Transcription Initiation
| berg8e_ch32_3.html | 55520308757a2ee364000000 |
DLAP questions | berg8e_ch32_3_dlap.xml | 55520308757a2ee364000000 |
32.3 The Control of Gene Expression Can Require Chromatin Remodeling
| berg8e_ch32_4.html | 55520308757a2ee364000000 |
DLAP questions | berg8e_ch32_4_dlap.xml | 55520308757a2ee364000000 |
32.4 Eukaryotic Gene Expression Can Be Controlled at Posttranscriptional Levels
| berg8e_ch32_5.html | 55520308757a2ee364000000 |
DLAP questions | berg8e_ch32_5_dlap.xml | 55520308757a2ee364000000 |
SUMMARY | berg8e_ch32_6.html | 55520308757a2ee364000000 |
DLAP questions | berg8e_ch32_6_dlap.xml | 55520308757a2ee364000000 |
KEY TERMS | berg8e_ch32_7.html | 55520308757a2ee364000000 |
DLAP questions | berg8e_ch32_7_dlap.xml | 55520308757a2ee364000000 |
PROBLEMS | berg8e_ch32_8.html | 55520308757a2ee364000000 |
DLAP questions | berg8e_ch32_8_dlap.xml | 55520308757a2ee364000000 |
Chapter Introduction | berg8e_ch33_1.html | 55520687757a2e6b7d000000 |
DLAP questions | berg8e_ch33_1_dlap.xml | 55520687757a2e6b7d000000 |
33.1 A Wide Variety of Organic Compounds Are Detected by Olfaction
| berg8e_ch33_2.html | 55520687757a2e6b7d000000 |
DLAP questions | berg8e_ch33_2_dlap.xml | 55520687757a2e6b7d000000 |
33.2 Taste Is a Combination of Senses That Function by Different Mechanisms
| berg8e_ch33_3.html | 55520687757a2e6b7d000000 |
DLAP questions | berg8e_ch33_3_dlap.xml | 55520687757a2e6b7d000000 |
33.3 Photoreceptor Molecules in the Eye Detect Visible Light
| berg8e_ch33_4.html | 55520687757a2e6b7d000000 |
DLAP questions | berg8e_ch33_4_dlap.xml | 55520687757a2e6b7d000000 |
33.4 Hearing Depends on the Speedy Detection of Mechanical Stimuli
| berg8e_ch33_5.html | 55520687757a2e6b7d000000 |
DLAP questions | berg8e_ch33_5_dlap.xml | 55520687757a2e6b7d000000 |
33.5 Touch Includes the Sensing of Pressure, Temperature, and Other Factors
| berg8e_ch33_6.html | 55520687757a2e6b7d000000 |
DLAP questions | berg8e_ch33_6_dlap.xml | 55520687757a2e6b7d000000 |
SUMMARY | berg8e_ch33_7.html | 55520687757a2e6b7d000000 |
DLAP questions | berg8e_ch33_7_dlap.xml | 55520687757a2e6b7d000000 |
KEY TERMS | berg8e_ch33_8.html | 55520687757a2e6b7d000000 |
DLAP questions | berg8e_ch33_8_dlap.xml | 55520687757a2e6b7d000000 |
PROBLEMS | berg8e_ch33_9.html | 55520687757a2e6b7d000000 |
DLAP questions | berg8e_ch33_9_dlap.xml | 55520687757a2e6b7d000000 |
Chapter Introduction | berg8e_ch34_1.html | 5552086d757a2e697d000001 |
DLAP questions | berg8e_ch34_1_dlap.xml | 5552086d757a2e697d000001 |
34.1 Antibodies Possess Distinct Antigen-Binding and Effector Units
| berg8e_ch34_2.html | 5552086d757a2e697d000001 |
DLAP questions | berg8e_ch34_2_dlap.xml | 5552086d757a2e697d000001 |
34.2 Antibodies Bind Specific Molecules Through Hypervariable Loops
| berg8e_ch34_3.html | 5552086d757a2e697d000001 |
DLAP questions | berg8e_ch34_3_dlap.xml | 5552086d757a2e697d000001 |
34.3 Diversity Is Generated by Gene Rearrangements
| berg8e_ch34_4.html | 5552086d757a2e697d000001 |
DLAP questions | berg8e_ch34_4_dlap.xml | 5552086d757a2e697d000001 |
34.4 Major-Histocompatibility-Complex Proteins Present Peptide Antigens on Cell Surfaces for Recognition by T-Cell Receptors
| berg8e_ch34_5.html | 5552086d757a2e697d000001 |
DLAP questions | berg8e_ch34_5_dlap.xml | 5552086d757a2e697d000001 |
34.5 The Immune System Contributes to the Prevention and the Development of Human Diseases
| berg8e_ch34_6.html | 5552086d757a2e697d000001 |
DLAP questions | berg8e_ch34_6_dlap.xml | 5552086d757a2e697d000001 |
SUMMARY | berg8e_ch34_7.html | 5552086d757a2e697d000001 |
DLAP questions | berg8e_ch34_7_dlap.xml | 5552086d757a2e697d000001 |
KEY TERMS | berg8e_ch34_8.html | 5552086d757a2e697d000001 |
DLAP questions | berg8e_ch34_8_dlap.xml | 5552086d757a2e697d000001 |
PROBLEMS | berg8e_ch34_9.html | 5552086d757a2e697d000001 |
DLAP questions | berg8e_ch34_9_dlap.xml | 5552086d757a2e697d000001 |
Chapter Introduction | berg8e_ch35_1.html | 55520a10757a2e150e000000 |
DLAP questions | berg8e_ch35_1_dlap.xml | 55520a10757a2e150e000000 |
35.1 Most Molecular-Motor Proteins Are Members of the P-Loop NTPase Superfamily
| berg8e_ch35_2.html | 55520a10757a2e150e000000 |
DLAP questions | berg8e_ch35_2_dlap.xml | 55520a10757a2e150e000000 |
35.2 Myosins Move Along Actin Filaments
| berg8e_ch35_3.html | 55520a10757a2e150e000000 |
DLAP questions | berg8e_ch35_3_dlap.xml | 55520a10757a2e150e000000 |
35.3 Kinesin and Dynein Move Along Microtubules
| berg8e_ch35_4.html | 55520a10757a2e150e000000 |
DLAP questions | berg8e_ch35_4_dlap.xml | 55520a10757a2e150e000000 |
35.4 A Rotary Motor Drives Bacterial Motion
| berg8e_ch35_5.html | 55520a10757a2e150e000000 |
DLAP questions | berg8e_ch35_5_dlap.xml | 55520a10757a2e150e000000 |
SUMMARY | berg8e_ch35_6.html | 55520a10757a2e150e000000 |
DLAP questions | berg8e_ch35_6_dlap.xml | 55520a10757a2e150e000000 |
KEY TERMS | berg8e_ch35_7.html | 55520a10757a2e150e000000 |
DLAP questions | berg8e_ch35_7_dlap.xml | 55520a10757a2e150e000000 |
PROBLEMS | berg8e_ch35_8.html | 55520a10757a2e150e000000 |
DLAP questions | berg8e_ch35_8_dlap.xml | 55520a10757a2e150e000000 |
Chapter Introduction | berg8e_ch36_1.html | 55520c12757a2e3a70000001 |
DLAP questions | berg8e_ch36_1_dlap.xml | 55520c12757a2e3a70000001 |
36.1 The Development of Drugs Presents Huge Challenges
| berg8e_ch36_2.html | 55520c12757a2e3a70000001 |
DLAP questions | berg8e_ch36_2_dlap.xml | 55520c12757a2e3a70000001 |
36.2 Drug Candidates Can Be Discovered by Serendipity, Screening, or Design
| berg8e_ch36_3.html | 55520c12757a2e3a70000001 |
DLAP questions | berg8e_ch36_3_dlap.xml | 55520c12757a2e3a70000001 |
36.3 Analyses of Genomes Hold Great Promise for Drug Discovery
| berg8e_ch36_4.html | 55520c12757a2e3a70000001 |
DLAP questions | berg8e_ch36_4_dlap.xml | 55520c12757a2e3a70000001 |
36.4 The Clinical Development of Drugs Proceeds Through Several Phases
| berg8e_ch36_5.html | 55520c12757a2e3a70000001 |
DLAP questions | berg8e_ch36_5_dlap.xml | 55520c12757a2e3a70000001 |
SUMMARY | berg8e_ch36_6.html | 55520c12757a2e3a70000001 |
DLAP questions | berg8e_ch36_6_dlap.xml | 55520c12757a2e3a70000001 |
KEY TERMS | berg8e_ch36_7.html | 55520c12757a2e3a70000001 |
DLAP questions | berg8e_ch36_7_dlap.xml | 55520c12757a2e3a70000001 |
PROBLEMS | berg8e_ch36_8.html | 55520c12757a2e3a70000001 |
DLAP questions | berg8e_ch36_8_dlap.xml | 55520c12757a2e3a70000001 |
Chapter Introduction | berg8e_ch101_1.html | 5563df5c757a2e3441000007 |
DLAP questions | berg8e_ch101_1_dlap.xml | 5563df5c757a2e3441000007 |
ABOUT THE AUTHORS | berg8e_ch101_2.html | 5563df5c757a2e3441000007 |
DLAP questions | berg8e_ch101_2_dlap.xml | 5563df5c757a2e3441000007 |
PREFACE | berg8e_ch101_3.html | 5563df5c757a2e3441000007 |
DLAP questions | berg8e_ch101_3_dlap.xml | 5563df5c757a2e3441000007 |
MEDIA AND ASSESSMENT | berg8e_ch101_4.html | 5563df5c757a2e3441000007 |
DLAP questions | berg8e_ch101_4_dlap.xml | 5563df5c757a2e3441000007 |
MOLECULAR EVOLUTION | berg8e_ch101_5.html | 5563df5c757a2e3441000007 |
DLAP questions | berg8e_ch101_5_dlap.xml | 5563df5c757a2e3441000007 |
CLINICAL APPLICATIONS | berg8e_ch101_6.html | 5563df5c757a2e3441000007 |
DLAP questions | berg8e_ch101_6_dlap.xml | 5563df5c757a2e3441000007 |
ACKNOWLEDGMENTS | berg8e_ch101_7.html | 5563df5c757a2e3441000007 |
DLAP questions | berg8e_ch101_7_dlap.xml | 5563df5c757a2e3441000007 |
BRIEF CONTENTS | berg8e_ch101_8.html | 5563df5c757a2e3441000007 |
DLAP questions | berg8e_ch101_8_dlap.xml | 5563df5c757a2e3441000007 |
CONTENTS | berg8e_ch101_9.html | 5563df5c757a2e3441000007 |
DLAP questions | berg8e_ch101_9_dlap.xml | 5563df5c757a2e3441000007 |
Chapter Introduction | berg8e_ch102_1.html | 5565e4b3757a2e3b4a000000 |
DLAP questions | berg8e_ch102_1_dlap.xml | 5565e4b3757a2e3b4a000000 |
Chapter 2 | berg8e_ch102_2.html | 5565e4b3757a2e3b4a000000 |
DLAP questions | berg8e_ch102_2_dlap.xml | 5565e4b3757a2e3b4a000000 |
Chapter 3 | berg8e_ch102_3.html | 5565e4b3757a2e3b4a000000 |
DLAP questions | berg8e_ch102_3_dlap.xml | 5565e4b3757a2e3b4a000000 |
Chapter 4 | berg8e_ch102_4.html | 5565e4b3757a2e3b4a000000 |
DLAP questions | berg8e_ch102_4_dlap.xml | 5565e4b3757a2e3b4a000000 |
Chapter 5 | berg8e_ch102_5.html | 5565e4b3757a2e3b4a000000 |
DLAP questions | berg8e_ch102_5_dlap.xml | 5565e4b3757a2e3b4a000000 |
Chapter 6 | berg8e_ch102_6.html | 5565e4b3757a2e3b4a000000 |
DLAP questions | berg8e_ch102_6_dlap.xml | 5565e4b3757a2e3b4a000000 |
Chapter 7 | berg8e_ch102_7.html | 5565e4b3757a2e3b4a000000 |
DLAP questions | berg8e_ch102_7_dlap.xml | 5565e4b3757a2e3b4a000000 |
Chapter 8 | berg8e_ch102_8.html | 5565e4b3757a2e3b4a000000 |
DLAP questions | berg8e_ch102_8_dlap.xml | 5565e4b3757a2e3b4a000000 |
Chapter 9 | berg8e_ch102_9.html | 5565e4b3757a2e3b4a000000 |
DLAP questions | berg8e_ch102_9_dlap.xml | 5565e4b3757a2e3b4a000000 |
Chapter 10 | berg8e_ch102_10.html | 5565e4b3757a2e3b4a000000 |
DLAP questions | berg8e_ch102_10_dlap.xml | 5565e4b3757a2e3b4a000000 |
Chapter 11 | berg8e_ch102_11.html | 5565e4b3757a2e3b4a000000 |
DLAP questions | berg8e_ch102_11_dlap.xml | 5565e4b3757a2e3b4a000000 |
Chapter 12 | berg8e_ch102_12.html | 5565e4b3757a2e3b4a000000 |
DLAP questions | berg8e_ch102_12_dlap.xml | 5565e4b3757a2e3b4a000000 |
Chapter 13 | berg8e_ch102_13.html | 5565e4b3757a2e3b4a000000 |
DLAP questions | berg8e_ch102_13_dlap.xml | 5565e4b3757a2e3b4a000000 |
Chapter 14 | berg8e_ch102_14.html | 5565e4b3757a2e3b4a000000 |
DLAP questions | berg8e_ch102_14_dlap.xml | 5565e4b3757a2e3b4a000000 |
Chapter 15 | berg8e_ch102_15.html | 5565e4b3757a2e3b4a000000 |
DLAP questions | berg8e_ch102_15_dlap.xml | 5565e4b3757a2e3b4a000000 |
Chapter 16 | berg8e_ch102_16.html | 5565e4b3757a2e3b4a000000 |
DLAP questions | berg8e_ch102_16_dlap.xml | 5565e4b3757a2e3b4a000000 |
Chapter 17 | berg8e_ch102_17.html | 5565e4b3757a2e3b4a000000 |
DLAP questions | berg8e_ch102_17_dlap.xml | 5565e4b3757a2e3b4a000000 |
Chapter 18 | berg8e_ch102_18.html | 5565e4b3757a2e3b4a000000 |
DLAP questions | berg8e_ch102_18_dlap.xml | 5565e4b3757a2e3b4a000000 |
Chapter 19 | berg8e_ch102_19.html | 5565e4b3757a2e3b4a000000 |
DLAP questions | berg8e_ch102_19_dlap.xml | 5565e4b3757a2e3b4a000000 |
Chapter 20 | berg8e_ch102_20.html | 5565e4b3757a2e3b4a000000 |
DLAP questions | berg8e_ch102_20_dlap.xml | 5565e4b3757a2e3b4a000000 |
Chapter 21 | berg8e_ch102_21.html | 5565e4b3757a2e3b4a000000 |
DLAP questions | berg8e_ch102_21_dlap.xml | 5565e4b3757a2e3b4a000000 |
Chapter 22 | berg8e_ch102_22.html | 5565e4b3757a2e3b4a000000 |
DLAP questions | berg8e_ch102_22_dlap.xml | 5565e4b3757a2e3b4a000000 |
Chapter 23 | berg8e_ch102_23.html | 5565e4b3757a2e3b4a000000 |
DLAP questions | berg8e_ch102_23_dlap.xml | 5565e4b3757a2e3b4a000000 |
Chapter 24 | berg8e_ch102_24.html | 5565e4b3757a2e3b4a000000 |
DLAP questions | berg8e_ch102_24_dlap.xml | 5565e4b3757a2e3b4a000000 |
Chapter 25 | berg8e_ch102_25.html | 5565e4b3757a2e3b4a000000 |
DLAP questions | berg8e_ch102_25_dlap.xml | 5565e4b3757a2e3b4a000000 |
Chapter 26 | berg8e_ch102_26.html | 5565e4b3757a2e3b4a000000 |
DLAP questions | berg8e_ch102_26_dlap.xml | 5565e4b3757a2e3b4a000000 |
Chapter 27 | berg8e_ch102_27.html | 5565e4b3757a2e3b4a000000 |
DLAP questions | berg8e_ch102_27_dlap.xml | 5565e4b3757a2e3b4a000000 |
Chapter 28 | berg8e_ch102_28.html | 5565e4b3757a2e3b4a000000 |
DLAP questions | berg8e_ch102_28_dlap.xml | 5565e4b3757a2e3b4a000000 |
Chapter 29 | berg8e_ch102_29.html | 5565e4b3757a2e3b4a000000 |
DLAP questions | berg8e_ch102_29_dlap.xml | 5565e4b3757a2e3b4a000000 |
Chapter 30 | berg8e_ch102_30.html | 5565e4b3757a2e3b4a000000 |
DLAP questions | berg8e_ch102_30_dlap.xml | 5565e4b3757a2e3b4a000000 |
Chapter 31 | berg8e_ch102_31.html | 5565e4b3757a2e3b4a000000 |
DLAP questions | berg8e_ch102_31_dlap.xml | 5565e4b3757a2e3b4a000000 |
Chapter 32 | berg8e_ch102_32.html | 5565e4b3757a2e3b4a000000 |
DLAP questions | berg8e_ch102_32_dlap.xml | 5565e4b3757a2e3b4a000000 |
Chapter 33 | berg8e_ch102_33.html | 5565e4b3757a2e3b4a000000 |
DLAP questions | berg8e_ch102_33_dlap.xml | 5565e4b3757a2e3b4a000000 |
Chapter 34 | berg8e_ch102_34.html | 5565e4b3757a2e3b4a000000 |
DLAP questions | berg8e_ch102_34_dlap.xml | 5565e4b3757a2e3b4a000000 |
Chapter 35 | berg8e_ch102_35.html | 5565e4b3757a2e3b4a000000 |
DLAP questions | berg8e_ch102_35_dlap.xml | 5565e4b3757a2e3b4a000000 |
Chapter 36 | berg8e_ch102_36.html | 5565e4b3757a2e3b4a000000 |
DLAP questions | berg8e_ch102_36_dlap.xml | 5565e4b3757a2e3b4a000000 |
Chapter Introduction | berg8e_ch103_1.html | 55673083757a2e752e000000 |
DLAP questions | berg8e_ch103_1_dlap.xml | 55673083757a2e752e000000 |
Chapter 3 | berg8e_ch103_2.html | 55673083757a2e752e000000 |
DLAP questions | berg8e_ch103_2_dlap.xml | 55673083757a2e752e000000 |
Chapter 4 | berg8e_ch103_3.html | 55673083757a2e752e000000 |
DLAP questions | berg8e_ch103_3_dlap.xml | 55673083757a2e752e000000 |
Chapter 5 | berg8e_ch103_4.html | 55673083757a2e752e000000 |
DLAP questions | berg8e_ch103_4_dlap.xml | 55673083757a2e752e000000 |
Chapter 6 | berg8e_ch103_5.html | 55673083757a2e752e000000 |
DLAP questions | berg8e_ch103_5_dlap.xml | 55673083757a2e752e000000 |
Chapter 7 | berg8e_ch103_6.html | 55673083757a2e752e000000 |
DLAP questions | berg8e_ch103_6_dlap.xml | 55673083757a2e752e000000 |
Chapter 8 | berg8e_ch103_7.html | 55673083757a2e752e000000 |
DLAP questions | berg8e_ch103_7_dlap.xml | 55673083757a2e752e000000 |
Chapter 9 | berg8e_ch103_8.html | 55673083757a2e752e000000 |
DLAP questions | berg8e_ch103_8_dlap.xml | 55673083757a2e752e000000 |
Chapter 10 | berg8e_ch103_9.html | 55673083757a2e752e000000 |
DLAP questions | berg8e_ch103_9_dlap.xml | 55673083757a2e752e000000 |
Chapter 11 | berg8e_ch103_10.html | 55673083757a2e752e000000 |
DLAP questions | berg8e_ch103_10_dlap.xml | 55673083757a2e752e000000 |
Chapter 12 | berg8e_ch103_11.html | 55673083757a2e752e000000 |
DLAP questions | berg8e_ch103_11_dlap.xml | 55673083757a2e752e000000 |
Chapter 13 | berg8e_ch103_12.html | 55673083757a2e752e000000 |
DLAP questions | berg8e_ch103_12_dlap.xml | 55673083757a2e752e000000 |
Chapter 14 | berg8e_ch103_13.html | 55673083757a2e752e000000 |
DLAP questions | berg8e_ch103_13_dlap.xml | 55673083757a2e752e000000 |
Chapter 15 | berg8e_ch103_14.html | 55673083757a2e752e000000 |
DLAP questions | berg8e_ch103_14_dlap.xml | 55673083757a2e752e000000 |
Chapter 16 | berg8e_ch103_15.html | 55673083757a2e752e000000 |
DLAP questions | berg8e_ch103_15_dlap.xml | 55673083757a2e752e000000 |
Chapter 17 | berg8e_ch103_16.html | 55673083757a2e752e000000 |
DLAP questions | berg8e_ch103_16_dlap.xml | 55673083757a2e752e000000 |
Chapter 18 | berg8e_ch103_17.html | 55673083757a2e752e000000 |
DLAP questions | berg8e_ch103_17_dlap.xml | 55673083757a2e752e000000 |
Chapter 19 | berg8e_ch103_18.html | 55673083757a2e752e000000 |
DLAP questions | berg8e_ch103_18_dlap.xml | 55673083757a2e752e000000 |
Chapter 20 | berg8e_ch103_19.html | 55673083757a2e752e000000 |
DLAP questions | berg8e_ch103_19_dlap.xml | 55673083757a2e752e000000 |
Chapter 21 | berg8e_ch103_20.html | 55673083757a2e752e000000 |
DLAP questions | berg8e_ch103_20_dlap.xml | 55673083757a2e752e000000 |
Chapter 22 | berg8e_ch103_21.html | 55673083757a2e752e000000 |
DLAP questions | berg8e_ch103_21_dlap.xml | 55673083757a2e752e000000 |
Chapter 23 | berg8e_ch103_22.html | 55673083757a2e752e000000 |
DLAP questions | berg8e_ch103_22_dlap.xml | 55673083757a2e752e000000 |
Chapter 24 | berg8e_ch103_23.html | 55673083757a2e752e000000 |
DLAP questions | berg8e_ch103_23_dlap.xml | 55673083757a2e752e000000 |
Chapter 25 | berg8e_ch103_24.html | 55673083757a2e752e000000 |
DLAP questions | berg8e_ch103_24_dlap.xml | 55673083757a2e752e000000 |
Chapter 26 | berg8e_ch103_25.html | 55673083757a2e752e000000 |
DLAP questions | berg8e_ch103_25_dlap.xml | 55673083757a2e752e000000 |
Chapter 27 | berg8e_ch103_26.html | 55673083757a2e752e000000 |
DLAP questions | berg8e_ch103_26_dlap.xml | 55673083757a2e752e000000 |
Chapter 28 | berg8e_ch103_27.html | 55673083757a2e752e000000 |
DLAP questions | berg8e_ch103_27_dlap.xml | 55673083757a2e752e000000 |
Chapter 29 | berg8e_ch103_28.html | 55673083757a2e752e000000 |
DLAP questions | berg8e_ch103_28_dlap.xml | 55673083757a2e752e000000 |
Chapter 30 | berg8e_ch103_29.html | 55673083757a2e752e000000 |
DLAP questions | berg8e_ch103_29_dlap.xml | 55673083757a2e752e000000 |
Chapter 31 | berg8e_ch103_30.html | 55673083757a2e752e000000 |
DLAP questions | berg8e_ch103_30_dlap.xml | 55673083757a2e752e000000 |
Chapter 32 | berg8e_ch103_31.html | 55673083757a2e752e000000 |
DLAP questions | berg8e_ch103_31_dlap.xml | 55673083757a2e752e000000 |
Chapter 33 | berg8e_ch103_32.html | 55673083757a2e752e000000 |
DLAP questions | berg8e_ch103_32_dlap.xml | 55673083757a2e752e000000 |
Chapter 34 | berg8e_ch103_33.html | 55673083757a2e752e000000 |
DLAP questions | berg8e_ch103_33_dlap.xml | 55673083757a2e752e000000 |
Chapter 35 | berg8e_ch103_34.html | 55673083757a2e752e000000 |
DLAP questions | berg8e_ch103_34_dlap.xml | 55673083757a2e752e000000 |
Chapter 36 | berg8e_ch103_35.html | 55673083757a2e752e000000 |
DLAP questions | berg8e_ch103_35_dlap.xml | 55673083757a2e752e000000 |
Chapter Introduction | berg8e_ch104_1.html | 556774cf757a2eb56c000000 |
DLAP questions | berg8e_ch104_1_dlap.xml | 556774cf757a2eb56c000000 |
Chapter Introduction | berg8e_ch105_1.html | 55677e82757a2e7b72000000 |
DLAP questions | berg8e_ch105_1_dlap.xml | 55677e82757a2e7b72000000 |
STANDARD BOND LENGTHS | berg8e_ch105_2.html | 55677e82757a2e7b72000000 |
DLAP questions | berg8e_ch105_2_dlap.xml | 55677e82757a2e7b72000000 |