Name | File | Manuscript |
Chapter Introduction | lodish8e_ch1_1.html | 56ff1641757a2ea72e000002 |
DLAP questions | lodish8e_ch1_1_dlap.xml | 56ff1641757a2ea72e000002 |
1.1 The Molecules of Life
| lodish8e_ch1_2.html | 56ff1641757a2ea72e000002 |
DLAP questions | lodish8e_ch1_2_dlap.xml | 56ff1641757a2ea72e000002 |
Proteins Give Cells Structure and Perform Most Cellular Tasks
| lodish8e_ch1_3.html | 56ff1641757a2ea72e000002 |
DLAP questions | lodish8e_ch1_3_dlap.xml | 56ff1641757a2ea72e000002 |
Nucleic Acids Carry Coded Information for Making Proteins at the Right Time and Place
| lodish8e_ch1_4.html | 56ff1641757a2ea72e000002 |
DLAP questions | lodish8e_ch1_4_dlap.xml | 56ff1641757a2ea72e000002 |
Phospholipids Are the Conserved Building Blocks of All Cellular Membranes
| lodish8e_ch1_5.html | 56ff1641757a2ea72e000002 |
DLAP questions | lodish8e_ch1_5_dlap.xml | 56ff1641757a2ea72e000002 |
1.2 Prokaryotic Cell Structure and Function
| lodish8e_ch1_6.html | 56ff1641757a2ea72e000002 |
DLAP questions | lodish8e_ch1_6_dlap.xml | 56ff1641757a2ea72e000002 |
Prokaryotes Comprise Two Kingdoms: Archaea and Eubacteria
| lodish8e_ch1_7.html | 56ff1641757a2ea72e000002 |
DLAP questions | lodish8e_ch1_7_dlap.xml | 56ff1641757a2ea72e000002 |
Escherichia coli Is Widely Used in Biological Research
| lodish8e_ch1_8.html | 56ff1641757a2ea72e000002 |
DLAP questions | lodish8e_ch1_8_dlap.xml | 56ff1641757a2ea72e000002 |
1.3 Eukaryotic Cell Structure and Function
| lodish8e_ch1_9.html | 56ff1641757a2ea72e000002 |
DLAP questions | lodish8e_ch1_9_dlap.xml | 56ff1641757a2ea72e000002 |
The Cytoskeleton Has Many Important Functions
| lodish8e_ch1_10.html | 56ff1641757a2ea72e000002 |
DLAP questions | lodish8e_ch1_10_dlap.xml | 56ff1641757a2ea72e000002 |
The Nucleus Contains the DNA Genome, RNA Synthetic Apparatus, and a Fibrous Matrix
| lodish8e_ch1_11.html | 56ff1641757a2ea72e000002 |
DLAP questions | lodish8e_ch1_11_dlap.xml | 56ff1641757a2ea72e000002 |
Eukaryotic Cells Contain a Large Number of Internal Membrane Structures
| lodish8e_ch1_12.html | 56ff1641757a2ea72e000002 |
DLAP questions | lodish8e_ch1_12_dlap.xml | 56ff1641757a2ea72e000002 |
Mitochondria Are the Principal Sites of ATP Production in Aerobic Cells
| lodish8e_ch1_13.html | 56ff1641757a2ea72e000002 |
DLAP questions | lodish8e_ch1_13_dlap.xml | 56ff1641757a2ea72e000002 |
Chloroplasts Contain Internal Compartments in Which Photosynthesis Takes Place
| lodish8e_ch1_14.html | 56ff1641757a2ea72e000002 |
DLAP questions | lodish8e_ch1_14_dlap.xml | 56ff1641757a2ea72e000002 |
All Eukaryotic Cells Use a Similar Cycle to Regulate Their Division
| lodish8e_ch1_15.html | 56ff1641757a2ea72e000002 |
DLAP questions | lodish8e_ch1_15_dlap.xml | 56ff1641757a2ea72e000002 |
1.4 Unicellular Eukaryotic Model Organisms
| lodish8e_ch1_16.html | 56ff1641757a2ea72e000002 |
DLAP questions | lodish8e_ch1_16_dlap.xml | 56ff1641757a2ea72e000002 |
Yeasts Are Used to Study Fundamental Aspects of Eukaryotic Cell Structure and Function
| lodish8e_ch1_17.html | 56ff1641757a2ea72e000002 |
DLAP questions | lodish8e_ch1_17_dlap.xml | 56ff1641757a2ea72e000002 |
Mutations in Yeast Led to the Identification of Key Cell Cycle Proteins
| lodish8e_ch1_18.html | 56ff1641757a2ea72e000002 |
DLAP questions | lodish8e_ch1_18_dlap.xml | 56ff1641757a2ea72e000002 |
Studies in the Alga Chlamydomonas reinhardtii Led to the Development of a Powerful Technique to Study Brain Function
| lodish8e_ch1_19.html | 56ff1641757a2ea72e000002 |
DLAP questions | lodish8e_ch1_19_dlap.xml | 56ff1641757a2ea72e000002 |
The Parasite That Causes Malaria Has Novel Organelles That Allow It to Undergo a Remarkable Life Cycle
| lodish8e_ch1_20.html | 56ff1641757a2ea72e000002 |
DLAP questions | lodish8e_ch1_20_dlap.xml | 56ff1641757a2ea72e000002 |
1.5 Metazoan Structure, Differentiation, and Model Organisms
| lodish8e_ch1_21.html | 56ff1641757a2ea72e000002 |
DLAP questions | lodish8e_ch1_21_dlap.xml | 56ff1641757a2ea72e000002 |
Multicellularity Requires Cell-Cell and Cell-Matrix Adhesions
| lodish8e_ch1_22.html | 56ff1641757a2ea72e000002 |
DLAP questions | lodish8e_ch1_22_dlap.xml | 56ff1641757a2ea72e000002 |
Epithelia Originated Early in Evolution
| lodish8e_ch1_23.html | 56ff1641757a2ea72e000002 |
DLAP questions | lodish8e_ch1_23_dlap.xml | 56ff1641757a2ea72e000002 |
Tissues Are Organized into Organs
| lodish8e_ch1_24.html | 56ff1641757a2ea72e000002 |
DLAP questions | lodish8e_ch1_24_dlap.xml | 56ff1641757a2ea72e000002 |
Genomics Has Revealed Important Aspects of Metazoan Evolution and Cell Function
| lodish8e_ch1_25.html | 56ff1641757a2ea72e000002 |
DLAP questions | lodish8e_ch1_25_dlap.xml | 56ff1641757a2ea72e000002 |
Embryonic Development Uses a Conserved Set of Master Transcription Factors
| lodish8e_ch1_26.html | 56ff1641757a2ea72e000002 |
DLAP questions | lodish8e_ch1_26_dlap.xml | 56ff1641757a2ea72e000002 |
Planaria Are Used to Study Stem Cells and Tissue Regeneration
| lodish8e_ch1_27.html | 56ff1641757a2ea72e000002 |
DLAP questions | lodish8e_ch1_27_dlap.xml | 56ff1641757a2ea72e000002 |
Invertebrates, Fish, Mice, and Other Organisms Serve as Experimental Systems for Study of Human Development and Disease
| lodish8e_ch1_28.html | 56ff1641757a2ea72e000002 |
DLAP questions | lodish8e_ch1_28_dlap.xml | 56ff1641757a2ea72e000002 |
Genetic Diseases Elucidate Important Aspects of Cell Function
| lodish8e_ch1_29.html | 56ff1641757a2ea72e000002 |
DLAP questions | lodish8e_ch1_29_dlap.xml | 56ff1641757a2ea72e000002 |
The Following Chapters Present Much Experimental Data That Explains How We Know What We Know About Cell Structure and Function
| lodish8e_ch1_30.html | 56ff1641757a2ea72e000002 |
DLAP questions | lodish8e_ch1_30_dlap.xml | 56ff1641757a2ea72e000002 |
Chapter Introduction | lodish8e_ch2_1.html | 57223d4c757a2e0053000000 |
DLAP questions | lodish8e_ch2_1_dlap.xml | 57223d4c757a2e0053000000 |
2.1 Covalent Bonds and Noncovalent Interactions
| lodish8e_ch2_2.html | 57223d4c757a2e0053000000 |
DLAP questions | lodish8e_ch2_2_dlap.xml | 57223d4c757a2e0053000000 |
The Electronic Structure of an Atom Determines the Number and Geometry of the Covalent Bonds It Can Make
| lodish8e_ch2_3.html | 57223d4c757a2e0053000000 |
DLAP questions | lodish8e_ch2_3_dlap.xml | 57223d4c757a2e0053000000 |
Electrons May Be Shared Equally or Unequally in Covalent Bonds
| lodish8e_ch2_4.html | 57223d4c757a2e0053000000 |
DLAP questions | lodish8e_ch2_4_dlap.xml | 57223d4c757a2e0053000000 |
Covalent Bonds Are Much Stronger and More Stable Than Noncovalent Interactions
| lodish8e_ch2_5.html | 57223d4c757a2e0053000000 |
DLAP questions | lodish8e_ch2_5_dlap.xml | 57223d4c757a2e0053000000 |
Ionic Interactions Are Attractions Between Oppositely Charged Ions
| lodish8e_ch2_6.html | 57223d4c757a2e0053000000 |
DLAP questions | lodish8e_ch2_6_dlap.xml | 57223d4c757a2e0053000000 |
Hydrogen Bonds Are Noncovalent Interactions That Determine the Water Solubility of Uncharged Molecules
| lodish8e_ch2_7.html | 57223d4c757a2e0053000000 |
DLAP questions | lodish8e_ch2_7_dlap.xml | 57223d4c757a2e0053000000 |
Van der Waals Interactions Are Weak Attractive Interactions Caused by Transient Dipoles
| lodish8e_ch2_8.html | 57223d4c757a2e0053000000 |
DLAP questions | lodish8e_ch2_8_dlap.xml | 57223d4c757a2e0053000000 |
The Hydrophobic Effect Causes Nonpolar Molecules to Adhere to One Another
| lodish8e_ch2_9.html | 57223d4c757a2e0053000000 |
DLAP questions | lodish8e_ch2_9_dlap.xml | 57223d4c757a2e0053000000 |
Molecular Complementarity Due to Noncovalent Interactions Leads to a Lock-and-Key Fit Between Biomolecules
| lodish8e_ch2_10.html | 57223d4c757a2e0053000000 |
DLAP questions | lodish8e_ch2_10_dlap.xml | 57223d4c757a2e0053000000 |
Key Concepts of Section 2.1 | lodish8e_ch2_11.html | 57223d4c757a2e0053000000 |
DLAP questions | lodish8e_ch2_11_dlap.xml | 57223d4c757a2e0053000000 |
2.2 Chemical Building Blocks of Cells
| lodish8e_ch2_12.html | 57223d4c757a2e0053000000 |
DLAP questions | lodish8e_ch2_12_dlap.xml | 57223d4c757a2e0053000000 |
Amino Acids Differing Only in Their Side Chains Compose Proteins
| lodish8e_ch2_13.html | 57223d4c757a2e0053000000 |
DLAP questions | lodish8e_ch2_13_dlap.xml | 57223d4c757a2e0053000000 |
Five Different Nucleotides Are Used to Build Nucleic Acids
| lodish8e_ch2_14.html | 57223d4c757a2e0053000000 |
DLAP questions | lodish8e_ch2_14_dlap.xml | 57223d4c757a2e0053000000 |
Monosaccharides Covalently Assemble into Linear and Branched Polysaccharides
| lodish8e_ch2_15.html | 57223d4c757a2e0053000000 |
DLAP questions | lodish8e_ch2_15_dlap.xml | 57223d4c757a2e0053000000 |
Phospholipids Associate Noncovalently to Form the Basic Bilayer Structure of Biomembranes
| lodish8e_ch2_16.html | 57223d4c757a2e0053000000 |
DLAP questions | lodish8e_ch2_16_dlap.xml | 57223d4c757a2e0053000000 |
Key Concepts of Section 2.2 | lodish8e_ch2_17.html | 57223d4c757a2e0053000000 |
DLAP questions | lodish8e_ch2_17_dlap.xml | 57223d4c757a2e0053000000 |
2.3 Chemical Reactions and Chemical Equilibrium
| lodish8e_ch2_18.html | 57223d4c757a2e0053000000 |
DLAP questions | lodish8e_ch2_18_dlap.xml | 57223d4c757a2e0053000000 |
A Chemical Reaction Is in Equilibrium When the Rates of the Forward and Reverse Reactions Are Equal
| lodish8e_ch2_19.html | 57223d4c757a2e0053000000 |
DLAP questions | lodish8e_ch2_19_dlap.xml | 57223d4c757a2e0053000000 |
The Equilibrium Constant Reflects the Extent of a Chemical Reaction
| lodish8e_ch2_20.html | 57223d4c757a2e0053000000 |
DLAP questions | lodish8e_ch2_20_dlap.xml | 57223d4c757a2e0053000000 |
Chemical Reactions in Cells Are at Steady State
| lodish8e_ch2_21.html | 57223d4c757a2e0053000000 |
DLAP questions | lodish8e_ch2_21_dlap.xml | 57223d4c757a2e0053000000 |
Dissociation Constants of Binding Reactions Reflect the Affinity of Interacting Molecules
| lodish8e_ch2_22.html | 57223d4c757a2e0053000000 |
DLAP questions | lodish8e_ch2_22_dlap.xml | 57223d4c757a2e0053000000 |
Biological Fluids Have Characteristic pH Values
| lodish8e_ch2_23.html | 57223d4c757a2e0053000000 |
DLAP questions | lodish8e_ch2_23_dlap.xml | 57223d4c757a2e0053000000 |
Hydrogen Ions Are Released by Acids and Taken Up by Bases
| lodish8e_ch2_24.html | 57223d4c757a2e0053000000 |
DLAP questions | lodish8e_ch2_24_dlap.xml | 57223d4c757a2e0053000000 |
Buffers Maintain the pH of Intracellular and Extracellular Fluids
| lodish8e_ch2_25.html | 57223d4c757a2e0053000000 |
DLAP questions | lodish8e_ch2_25_dlap.xml | 57223d4c757a2e0053000000 |
Key Concepts of Section 2.3 | lodish8e_ch2_26.html | 57223d4c757a2e0053000000 |
DLAP questions | lodish8e_ch2_26_dlap.xml | 57223d4c757a2e0053000000 |
2.4 Biochemical Energetics
| lodish8e_ch2_27.html | 57223d4c757a2e0053000000 |
DLAP questions | lodish8e_ch2_27_dlap.xml | 57223d4c757a2e0053000000 |
Several Forms of Energy Are Important in Biological Systems
| lodish8e_ch2_28.html | 57223d4c757a2e0053000000 |
DLAP questions | lodish8e_ch2_28_dlap.xml | 57223d4c757a2e0053000000 |
Cells Can Transform One Type of Energy into Another
| lodish8e_ch2_29.html | 57223d4c757a2e0053000000 |
DLAP questions | lodish8e_ch2_29_dlap.xml | 57223d4c757a2e0053000000 |
The Change in Free Energy Determines If a Chemical Reaction Will Occur Spontaneously
| lodish8e_ch2_30.html | 57223d4c757a2e0053000000 |
DLAP questions | lodish8e_ch2_30_dlap.xml | 57223d4c757a2e0053000000 |
The ÎG°Ⲡof a Reaction Can Be Calculated from Its Keq | lodish8e_ch2_31.html | 57223d4c757a2e0053000000 |
DLAP questions | lodish8e_ch2_31_dlap.xml | 57223d4c757a2e0053000000 |
The Rate of a Reaction Depends on the Activation Energy Necessary to Energize the Reactants into a Transition State
| lodish8e_ch2_32.html | 57223d4c757a2e0053000000 |
DLAP questions | lodish8e_ch2_32_dlap.xml | 57223d4c757a2e0053000000 |
Life Depends on the Coupling of Unfavorable Chemical Reactions with Energetically Favorable Ones
| lodish8e_ch2_33.html | 57223d4c757a2e0053000000 |
DLAP questions | lodish8e_ch2_33_dlap.xml | 57223d4c757a2e0053000000 |
Hydrolysis of ATP Releases Substantial Free Energy and Drives Many Cellular Processes
| lodish8e_ch2_34.html | 57223d4c757a2e0053000000 |
DLAP questions | lodish8e_ch2_34_dlap.xml | 57223d4c757a2e0053000000 |
ATP Is Generated During Photosynthesis and Respiration
| lodish8e_ch2_35.html | 57223d4c757a2e0053000000 |
DLAP questions | lodish8e_ch2_35_dlap.xml | 57223d4c757a2e0053000000 |
NAD+ and FAD Couple Many Biological Oxidation and Reduction Reactions
| lodish8e_ch2_36.html | 57223d4c757a2e0053000000 |
DLAP questions | lodish8e_ch2_36_dlap.xml | 57223d4c757a2e0053000000 |
Key Concepts of Section 2.4 | lodish8e_ch2_37.html | 57223d4c757a2e0053000000 |
DLAP questions | lodish8e_ch2_37_dlap.xml | 57223d4c757a2e0053000000 |
Key Terms
| lodish8e_ch2_38.html | 57223d4c757a2e0053000000 |
DLAP questions | lodish8e_ch2_38_dlap.xml | 57223d4c757a2e0053000000 |
Review the Concepts
| lodish8e_ch2_39.html | 57223d4c757a2e0053000000 |
DLAP questions | lodish8e_ch2_39_dlap.xml | 57223d4c757a2e0053000000 |
References
| lodish8e_ch2_40.html | 57223d4c757a2e0053000000 |
DLAP questions | lodish8e_ch2_40_dlap.xml | 57223d4c757a2e0053000000 |
Chapter Introduction | lodish8e_ch3_1.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_1_dlap.xml | 571fba59757a2e5f23000000 |
3.1 Hierarchical Structure of Proteins
| lodish8e_ch3_2.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_2_dlap.xml | 571fba59757a2e5f23000000 |
The Primary Structure of a Protein Is Its Linear Arrangement of Amino Acids
| lodish8e_ch3_3.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_3_dlap.xml | 571fba59757a2e5f23000000 |
Secondary Structures Are the Core Elements of Protein Architecture
| lodish8e_ch3_4.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_4_dlap.xml | 571fba59757a2e5f23000000 |
Tertiary Structure Is the Overall Folding of a Polypeptide Chain
| lodish8e_ch3_5.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_5_dlap.xml | 571fba59757a2e5f23000000 |
There Are Four Broad Structural Categories of Proteins
| lodish8e_ch3_6.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_6_dlap.xml | 571fba59757a2e5f23000000 |
Different Ways of Depicting the Conformation of Proteins Convey Different Types of Information
| lodish8e_ch3_7.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_7_dlap.xml | 571fba59757a2e5f23000000 |
Structural Motifs Are Regular Combinations of Secondary Structures
| lodish8e_ch3_8.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_8_dlap.xml | 571fba59757a2e5f23000000 |
Domains Are Modules of Tertiary Structure
| lodish8e_ch3_9.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_9_dlap.xml | 571fba59757a2e5f23000000 |
Multiple Polypeptides Assemble into Quaternary Structures and Supramolecular Complexes
| lodish8e_ch3_10.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_10_dlap.xml | 571fba59757a2e5f23000000 |
Comparing Protein Sequences and Structures Provides Insight into Protein Function and Evolution
| lodish8e_ch3_11.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_11_dlap.xml | 571fba59757a2e5f23000000 |
Key Concepts of Section 3.1 | lodish8e_ch3_12.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_12_dlap.xml | 571fba59757a2e5f23000000 |
3.2 Protein Folding
| lodish8e_ch3_13.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_13_dlap.xml | 571fba59757a2e5f23000000 |
Planar Peptide Bonds Limit the Shapes into Which Proteins Can Fold
| lodish8e_ch3_14.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_14_dlap.xml | 571fba59757a2e5f23000000 |
The Amino Acid Sequence of a Protein Determines How It Will Fold
| lodish8e_ch3_15.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_15_dlap.xml | 571fba59757a2e5f23000000 |
Folding of Proteins in Vivo Is Promoted by Chaperones
| lodish8e_ch3_16.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_16_dlap.xml | 571fba59757a2e5f23000000 |
Protein Folding Is Promoted by Proline Isomerases
| lodish8e_ch3_17.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_17_dlap.xml | 571fba59757a2e5f23000000 |
Abnormally Folded Proteins Can Form Amyloids That Are Implicated in Diseases
| lodish8e_ch3_18.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_18_dlap.xml | 571fba59757a2e5f23000000 |
Key Concepts of Section 3.2 | lodish8e_ch3_19.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_19_dlap.xml | 571fba59757a2e5f23000000 |
3.3 Protein Binding and Enzyme Catalysis
| lodish8e_ch3_20.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_20_dlap.xml | 571fba59757a2e5f23000000 |
Specific Binding of Ligands Underlies the Functions of Most Proteins
| lodish8e_ch3_21.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_21_dlap.xml | 571fba59757a2e5f23000000 |
Enzymes Are Highly Efficient and Specific Catalysts
| lodish8e_ch3_22.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_22_dlap.xml | 571fba59757a2e5f23000000 |
An Enzymeâs Active Site Binds Substrates and Carries Out Catalysis
| lodish8e_ch3_23.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_23_dlap.xml | 571fba59757a2e5f23000000 |
Serine Proteases Demonstrate How an Enzymeâs Active Site Works
| lodish8e_ch3_24.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_24_dlap.xml | 571fba59757a2e5f23000000 |
Enzymes in a Common Pathway Are Often Physically Associated with One Another
| lodish8e_ch3_25.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_25_dlap.xml | 571fba59757a2e5f23000000 |
Key Concepts of Section 3.3 | lodish8e_ch3_26.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_26_dlap.xml | 571fba59757a2e5f23000000 |
3.4 Regulating Protein Function
| lodish8e_ch3_27.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_27_dlap.xml | 571fba59757a2e5f23000000 |
Regulated Synthesis and Degradation of Proteins Is a Fundamental Property of Cells
| lodish8e_ch3_28.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_28_dlap.xml | 571fba59757a2e5f23000000 |
The Proteasome Is a Molecular Machine Used to Degrade Proteins
| lodish8e_ch3_29.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_29_dlap.xml | 571fba59757a2e5f23000000 |
Ubiquitin Marks Cytosolic Proteins for Degradation in Proteasomes
| lodish8e_ch3_30.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_30_dlap.xml | 571fba59757a2e5f23000000 |
Noncovalent Binding Permits Allosteric, or Cooperative, Regulation of Proteins
| lodish8e_ch3_31.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_31_dlap.xml | 571fba59757a2e5f23000000 |
Noncovalent Binding of Calcium and GTP Are Widely Used as Allosteric Switches to Control Protein Activity
| lodish8e_ch3_32.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_32_dlap.xml | 571fba59757a2e5f23000000 |
Phosphorylation and Dephosphorylation Covalently Regulate Protein Activity
| lodish8e_ch3_33.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_33_dlap.xml | 571fba59757a2e5f23000000 |
Ubiquitinylation and Deubiquitinylation Covalently Regulate Protein Activity
| lodish8e_ch3_34.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_34_dlap.xml | 571fba59757a2e5f23000000 |
Proteolytic Cleavage Irreversibly Activates or Inactivates Some Proteins
| lodish8e_ch3_35.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_35_dlap.xml | 571fba59757a2e5f23000000 |
Higher-Order Regulation Includes Control of Protein Location
| lodish8e_ch3_36.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_36_dlap.xml | 571fba59757a2e5f23000000 |
Key Concepts of Section 3.4 | lodish8e_ch3_37.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_37_dlap.xml | 571fba59757a2e5f23000000 |
3.5 Purifying, Detecting, and Characterizing Proteins
| lodish8e_ch3_38.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_38_dlap.xml | 571fba59757a2e5f23000000 |
Centrifugation Can Separate Particles and Molecules That Differ in Mass or Density
| lodish8e_ch3_39.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_39_dlap.xml | 571fba59757a2e5f23000000 |
Electrophoresis Separates Molecules on the Basis of Their Charge-to-Mass Ratio
| lodish8e_ch3_40.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_40_dlap.xml | 571fba59757a2e5f23000000 |
Liquid Chromatography Resolves Proteins by Mass, Charge, or Affinity
| lodish8e_ch3_41.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_41_dlap.xml | 571fba59757a2e5f23000000 |
Highly Specific Enzyme and Antibody Assays Can Detect Individual Proteins
| lodish8e_ch3_42.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_42_dlap.xml | 571fba59757a2e5f23000000 |
Radioisotopes Are Indispensable Tools for Detecting Biological Molecules
| lodish8e_ch3_43.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_43_dlap.xml | 571fba59757a2e5f23000000 |
Mass Spectrometry Can Determine the Mass and Sequence of Proteins
| lodish8e_ch3_44.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_44_dlap.xml | 571fba59757a2e5f23000000 |
Protein Primary Structure Can Be Determined by Chemical Methods and from Gene Sequences
| lodish8e_ch3_45.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_45_dlap.xml | 571fba59757a2e5f23000000 |
Protein Conformation Is Determined by Sophisticated Physical Methods
| lodish8e_ch3_46.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_46_dlap.xml | 571fba59757a2e5f23000000 |
Key Concepts of Section 3.5 | lodish8e_ch3_47.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_47_dlap.xml | 571fba59757a2e5f23000000 |
3.6 Proteomics
| lodish8e_ch3_48.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_48_dlap.xml | 571fba59757a2e5f23000000 |
Proteomics Is the Study of All or a Large Subset of Proteins in a Biological System
| lodish8e_ch3_49.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_49_dlap.xml | 571fba59757a2e5f23000000 |
Advanced Techniques in Mass Spectrometry Are Critical to Proteomic Analysis
| lodish8e_ch3_50.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_50_dlap.xml | 571fba59757a2e5f23000000 |
Key Concepts of Section 3.6 | lodish8e_ch3_51.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_51_dlap.xml | 571fba59757a2e5f23000000 |
Key Terms
| lodish8e_ch3_52.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_52_dlap.xml | 571fba59757a2e5f23000000 |
Review the Concepts
| lodish8e_ch3_53.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_53_dlap.xml | 571fba59757a2e5f23000000 |
Extended References
| lodish8e_ch3_54.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_54_dlap.xml | 571fba59757a2e5f23000000 |
Perspectives for the Future
| lodish8e_ch3_55.html | 571fba59757a2e5f23000000 |
DLAP questions | lodish8e_ch3_55_dlap.xml | 571fba59757a2e5f23000000 |
Chapter Introduction | lodish8e_ch4_1.html | 572b7f74757a2e962f000007 |
DLAP questions | lodish8e_ch4_1_dlap.xml | 572b7f74757a2e962f000007 |
4.1 Growing and Studying Cells in Culture
| lodish8e_ch4_2.html | 572b7f74757a2e962f000007 |
DLAP questions | lodish8e_ch4_2_dlap.xml | 572b7f74757a2e962f000007 |
Culture of Animal Cells Requires Nutrient-Rich Media and Special Solid Surfaces
| lodish8e_ch4_3.html | 572b7f74757a2e962f000007 |
DLAP questions | lodish8e_ch4_3_dlap.xml | 572b7f74757a2e962f000007 |
Primary Cell Cultures and Cell Strains Have a Finite Life Span
| lodish8e_ch4_4.html | 572b7f74757a2e962f000007 |
DLAP questions | lodish8e_ch4_4_dlap.xml | 572b7f74757a2e962f000007 |
Transformed Cells Can Grow Indefinitely in Culture
| lodish8e_ch4_5.html | 572b7f74757a2e962f000007 |
DLAP questions | lodish8e_ch4_5_dlap.xml | 572b7f74757a2e962f000007 |
Flow Cytometry Separates Different Cell Types
| lodish8e_ch4_6.html | 572b7f74757a2e962f000007 |
DLAP questions | lodish8e_ch4_6_dlap.xml | 572b7f74757a2e962f000007 |
Growth of Cells in Two-Dimensional and Three-Dimensional Culture Mimics the In Vivo Environment
| lodish8e_ch4_7.html | 572b7f74757a2e962f000007 |
DLAP questions | lodish8e_ch4_7_dlap.xml | 572b7f74757a2e962f000007 |
Hybridomas Produce Abundant Monoclonal Antibodies
| lodish8e_ch4_8.html | 572b7f74757a2e962f000007 |
DLAP questions | lodish8e_ch4_8_dlap.xml | 572b7f74757a2e962f000007 |
A Wide Variety of Cell Biological Processes Can Be Studied with Cultured Cells
| lodish8e_ch4_9.html | 572b7f74757a2e962f000007 |
DLAP questions | lodish8e_ch4_9_dlap.xml | 572b7f74757a2e962f000007 |
Drugs Are Commonly Used in Cell Biological Research
| lodish8e_ch4_10.html | 572b7f74757a2e962f000007 |
DLAP questions | lodish8e_ch4_10_dlap.xml | 572b7f74757a2e962f000007 |
Key Concepts of Section 4.1 | lodish8e_ch4_11.html | 572b7f74757a2e962f000007 |
DLAP questions | lodish8e_ch4_11_dlap.xml | 572b7f74757a2e962f000007 |
4.2 Light Microscopy: Exploring Cell Structure and Visualizing Proteins Within Cells
| lodish8e_ch4_12.html | 572b7f74757a2e962f000007 |
DLAP questions | lodish8e_ch4_12_dlap.xml | 572b7f74757a2e962f000007 |
The Resolution of the Conventional Light Microscope Is About 0.2 µm
| lodish8e_ch4_13.html | 572b7f74757a2e962f000007 |
DLAP questions | lodish8e_ch4_13_dlap.xml | 572b7f74757a2e962f000007 |
Phase-Contrast and Differential-Interference-Contrast Microscopy Visualize Unstained Live Cells
| lodish8e_ch4_14.html | 572b7f74757a2e962f000007 |
DLAP questions | lodish8e_ch4_14_dlap.xml | 572b7f74757a2e962f000007 |
Imaging Subcellular Details Often Requires That Specimens Be Fixed, Sectioned, and Stained
| lodish8e_ch4_15.html | 572b7f74757a2e962f000007 |
DLAP questions | lodish8e_ch4_15_dlap.xml | 572b7f74757a2e962f000007 |
Fluorescence Microscopy Can Localize and Quantify Specific Molecules in Live Cells
| lodish8e_ch4_16.html | 572b7f74757a2e962f000007 |
DLAP questions | lodish8e_ch4_16_dlap.xml | 572b7f74757a2e962f000007 |
Intracellular Ion Concentrations Can Be Determined with Ion-Sensitive Fluorescent Dyes
| lodish8e_ch4_17.html | 572b7f74757a2e962f000007 |
DLAP questions | lodish8e_ch4_17_dlap.xml | 572b7f74757a2e962f000007 |
Immunofluorescence Microscopy Can Detect Specific Proteins in Fixed Cells
| lodish8e_ch4_18.html | 572b7f74757a2e962f000007 |
DLAP questions | lodish8e_ch4_18_dlap.xml | 572b7f74757a2e962f000007 |
Tagging with Fluorescent Proteins Allows the Visualization of Specific Proteins in Live Cells
| lodish8e_ch4_19.html | 572b7f74757a2e962f000007 |
DLAP questions | lodish8e_ch4_19_dlap.xml | 572b7f74757a2e962f000007 |
Deconvolution and Confocal Microscopy Enhance Visualization of Three-Dimensional Fluorescent Objects
| lodish8e_ch4_20.html | 572b7f74757a2e962f000007 |
DLAP questions | lodish8e_ch4_20_dlap.xml | 572b7f74757a2e962f000007 |
Two-Photon Excitation Microscopy Allows Imaging Deep into Tissue Samples
| lodish8e_ch4_21.html | 572b7f74757a2e962f000007 |
DLAP questions | lodish8e_ch4_21_dlap.xml | 572b7f74757a2e962f000007 |
TIRF Microscopy Provides Exceptional Imaging in One Focal Plane
| lodish8e_ch4_22.html | 572b7f74757a2e962f000007 |
DLAP questions | lodish8e_ch4_22_dlap.xml | 572b7f74757a2e962f000007 |
FRAP Reveals the Dynamics of Cellular Components
| lodish8e_ch4_23.html | 572b7f74757a2e962f000007 |
DLAP questions | lodish8e_ch4_23_dlap.xml | 572b7f74757a2e962f000007 |
FRET Measures Distance Between Fluorochromes
| lodish8e_ch4_24.html | 572b7f74757a2e962f000007 |
DLAP questions | lodish8e_ch4_24_dlap.xml | 572b7f74757a2e962f000007 |
Super-Resolution Microscopy Can Localize Proteins to Nanometer Accuracy
| lodish8e_ch4_25.html | 572b7f74757a2e962f000007 |
DLAP questions | lodish8e_ch4_25_dlap.xml | 572b7f74757a2e962f000007 |
Light-Sheet Microscopy Can Rapidly Image Cells in Living Tissue
| lodish8e_ch4_26.html | 572b7f74757a2e962f000007 |
DLAP questions | lodish8e_ch4_26_dlap.xml | 572b7f74757a2e962f000007 |
Key Concepts of Section 4.2 | lodish8e_ch4_27.html | 572b7f74757a2e962f000007 |
DLAP questions | lodish8e_ch4_27_dlap.xml | 572b7f74757a2e962f000007 |
4.3 Electron Microscopy: High-Resolution Imaging
| lodish8e_ch4_28.html | 572b7f74757a2e962f000007 |
DLAP questions | lodish8e_ch4_28_dlap.xml | 572b7f74757a2e962f000007 |
Single Molecules or Structures Can Be Imaged Using a Negative Stain or Metal Shadowing
| lodish8e_ch4_29.html | 572b7f74757a2e962f000007 |
DLAP questions | lodish8e_ch4_29_dlap.xml | 572b7f74757a2e962f000007 |
Cells and Tissues Are Cut into Thin Sections for Viewing by Electron Microscopy
| lodish8e_ch4_30.html | 572b7f74757a2e962f000007 |
DLAP questions | lodish8e_ch4_30_dlap.xml | 572b7f74757a2e962f000007 |
Immunoelectron Microscopy Localizes Proteins at the Ultrastructural Level
| lodish8e_ch4_31.html | 572b7f74757a2e962f000007 |
DLAP questions | lodish8e_ch4_31_dlap.xml | 572b7f74757a2e962f000007 |
Cryoelectron Microscopy Allows Visualization of Specimens Without Fixation or Staining
| lodish8e_ch4_32.html | 572b7f74757a2e962f000007 |
DLAP questions | lodish8e_ch4_32_dlap.xml | 572b7f74757a2e962f000007 |
Scanning Electron Microscopy of Metal-Coated Specimens Reveals Surface Features
| lodish8e_ch4_33.html | 572b7f74757a2e962f000007 |
DLAP questions | lodish8e_ch4_33_dlap.xml | 572b7f74757a2e962f000007 |
Key Concepts of Section 4.3 | lodish8e_ch4_34.html | 572b7f74757a2e962f000007 |
DLAP questions | lodish8e_ch4_34_dlap.xml | 572b7f74757a2e962f000007 |
4.4 Isolation of Cell Organelles
| lodish8e_ch4_35.html | 572b7f74757a2e962f000007 |
DLAP questions | lodish8e_ch4_35_dlap.xml | 572b7f74757a2e962f000007 |
Disruption of Cells Releases Their Organelles and Other Contents
| lodish8e_ch4_36.html | 572b7f74757a2e962f000007 |
DLAP questions | lodish8e_ch4_36_dlap.xml | 572b7f74757a2e962f000007 |
Centrifugation Can Separate Many Types of Organelles
| lodish8e_ch4_37.html | 572b7f74757a2e962f000007 |
DLAP questions | lodish8e_ch4_37_dlap.xml | 572b7f74757a2e962f000007 |
Organelle-Specific Antibodies Are Useful in Preparing Highly Purified Organelles
| lodish8e_ch4_38.html | 572b7f74757a2e962f000007 |
DLAP questions | lodish8e_ch4_38_dlap.xml | 572b7f74757a2e962f000007 |
Proteomics Reveals the Protein Composition of Organelles
| lodish8e_ch4_39.html | 572b7f74757a2e962f000007 |
DLAP questions | lodish8e_ch4_39_dlap.xml | 572b7f74757a2e962f000007 |
Key Concepts of Section 4.4 | lodish8e_ch4_40.html | 572b7f74757a2e962f000007 |
DLAP questions | lodish8e_ch4_40_dlap.xml | 572b7f74757a2e962f000007 |
Key Terms
| lodish8e_ch4_41.html | 572b7f74757a2e962f000007 |
DLAP questions | lodish8e_ch4_41_dlap.xml | 572b7f74757a2e962f000007 |
Review the Concepts
| lodish8e_ch4_42.html | 572b7f74757a2e962f000007 |
DLAP questions | lodish8e_ch4_42_dlap.xml | 572b7f74757a2e962f000007 |
Extended References
| lodish8e_ch4_43.html | 572b7f74757a2e962f000007 |
DLAP questions | lodish8e_ch4_43_dlap.xml | 572b7f74757a2e962f000007 |
Perspectives for the Future
| lodish8e_ch4_44.html | 572b7f74757a2e962f000007 |
DLAP questions | lodish8e_ch4_44_dlap.xml | 572b7f74757a2e962f000007 |
Classic Experiment 4-1: Separating Organelles | lodish8e_ch4_45.html | 572b7f74757a2e962f000007 |
DLAP questions | lodish8e_ch4_45_dlap.xml | 572b7f74757a2e962f000007 |
Chapter Introduction | lodish8e_ch5_1.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_1_dlap.xml | 572b8030757a2e1c31000000 |
5.1 Structure of Nucleic Acids
| lodish8e_ch5_2.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_2_dlap.xml | 572b8030757a2e1c31000000 |
A Nucleic Acid Strand Is a Linear Polymer with End-to-End Directionality
| lodish8e_ch5_3.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_3_dlap.xml | 572b8030757a2e1c31000000 |
Native DNA Is a Double Helix of Complementary Antiparallel Strands
| lodish8e_ch5_4.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_4_dlap.xml | 572b8030757a2e1c31000000 |
DNA Can Undergo Reversible Strand Separation
| lodish8e_ch5_5.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_5_dlap.xml | 572b8030757a2e1c31000000 |
Torsional Stress in DNA Is Relieved by Enzymes
| lodish8e_ch5_6.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_6_dlap.xml | 572b8030757a2e1c31000000 |
Different Types of RNA Exhibit Various Conformations Related to Their Functions
| lodish8e_ch5_7.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_7_dlap.xml | 572b8030757a2e1c31000000 |
Key Concepts of Section 5.1 | lodish8e_ch5_8.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_8_dlap.xml | 572b8030757a2e1c31000000 |
5.2 Transcription of Protein-Coding Genes and Formation of Functional mRNA
| lodish8e_ch5_9.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_9_dlap.xml | 572b8030757a2e1c31000000 |
A Template DNA Strand Is Transcribed into a Complementary RNA Chain by RNA Polymerase
| lodish8e_ch5_10.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_10_dlap.xml | 572b8030757a2e1c31000000 |
Organization of Genes Differs in Prokaryotic and Eukaryotic DNA
| lodish8e_ch5_11.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_11_dlap.xml | 572b8030757a2e1c31000000 |
Eukaryotic Precursor mRNAs Are Processed to Form Functional mRNAs
| lodish8e_ch5_12.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_12_dlap.xml | 572b8030757a2e1c31000000 |
Alternative RNA Splicing Increases the Number of Proteins Expressed from a Single Eukaryotic Gene
| lodish8e_ch5_13.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_13_dlap.xml | 572b8030757a2e1c31000000 |
Key Concepts of Section 5.2 | lodish8e_ch5_14.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_14_dlap.xml | 572b8030757a2e1c31000000 |
5.3 The Decoding of mRNA by tRNAs
| lodish8e_ch5_15.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_15_dlap.xml | 572b8030757a2e1c31000000 |
Messenger RNA Carries Information from DNA in a Three-Letter Genetic Code
| lodish8e_ch5_16.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_16_dlap.xml | 572b8030757a2e1c31000000 |
The Folded Structure of tRNA Promotes Its Decoding Functions
| lodish8e_ch5_17.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_17_dlap.xml | 572b8030757a2e1c31000000 |
Nonstandard Base Pairing Often Occurs Between Codons and Anticodons
| lodish8e_ch5_18.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_18_dlap.xml | 572b8030757a2e1c31000000 |
Amino Acids Become Activated When Covalently Linked to tRNAs
| lodish8e_ch5_19.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_19_dlap.xml | 572b8030757a2e1c31000000 |
Key Concepts of Section 5.3 | lodish8e_ch5_20.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_20_dlap.xml | 572b8030757a2e1c31000000 |
5.4 Stepwise Synthesis of Proteins on Ribosomes
| lodish8e_ch5_21.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_21_dlap.xml | 572b8030757a2e1c31000000 |
Ribosomes Are Protein-Synthesizing Machines
| lodish8e_ch5_22.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_22_dlap.xml | 572b8030757a2e1c31000000 |
Methionyl-tRNAiMet Recognizes the AUG Start Codon
| lodish8e_ch5_23.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_23_dlap.xml | 572b8030757a2e1c31000000 |
Eukaryotic Translation Initiation Usually Occurs at the First AUG Downstream from the 5â² End of an mRNA
| lodish8e_ch5_24.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_24_dlap.xml | 572b8030757a2e1c31000000 |
During Chain Elongation Each Incoming Aminoacyl-tRNA Moves Through Three Ribosomal Sites
| lodish8e_ch5_25.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_25_dlap.xml | 572b8030757a2e1c31000000 |
Translation Is Terminated by Release Factors When a Stop Codon Is Reached
| lodish8e_ch5_26.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_26_dlap.xml | 572b8030757a2e1c31000000 |
Polysomes and Rapid Ribosome Recycling Increase the Efficiency of Translation
| lodish8e_ch5_27.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_27_dlap.xml | 572b8030757a2e1c31000000 |
GTPase-Superfamily Proteins Function in Several Quality-Control Steps of Translation
| lodish8e_ch5_28.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_28_dlap.xml | 572b8030757a2e1c31000000 |
Nonsense Mutations Cause Premature Termination of Protein Synthesis
| lodish8e_ch5_29.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_29_dlap.xml | 572b8030757a2e1c31000000 |
Key Concepts of Section 5.4 | lodish8e_ch5_30.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_30_dlap.xml | 572b8030757a2e1c31000000 |
5.5 DNA Replication
| lodish8e_ch5_31.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_31_dlap.xml | 572b8030757a2e1c31000000 |
DNA Polymerases Require a Primer to Initiate Replication
| lodish8e_ch5_32.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_32_dlap.xml | 572b8030757a2e1c31000000 |
Duplex DNA Is Unwound, and Daughter Strands Are Formed at the DNA Replication Fork
| lodish8e_ch5_33.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_33_dlap.xml | 572b8030757a2e1c31000000 |
Several Proteins Participate in DNA Replication
| lodish8e_ch5_34.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_34_dlap.xml | 572b8030757a2e1c31000000 |
DNA Replication Occurs Bidirectionally from Each Origin
| lodish8e_ch5_35.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_35_dlap.xml | 572b8030757a2e1c31000000 |
Key Concepts of Section 5.5 | lodish8e_ch5_36.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_36_dlap.xml | 572b8030757a2e1c31000000 |
5.6 DNA Repair and Recombination
| lodish8e_ch5_37.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_37_dlap.xml | 572b8030757a2e1c31000000 |
DNA Polymerases Introduce Copying Errors and Also Correct Them
| lodish8e_ch5_38.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_38_dlap.xml | 572b8030757a2e1c31000000 |
Chemical and Radiation Damage to DNA Can Lead to Mutations
| lodish8e_ch5_39.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_39_dlap.xml | 572b8030757a2e1c31000000 |
High-Fidelity DNA Excision-Repair Systems Recognize and Repair Damage
| lodish8e_ch5_40.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_40_dlap.xml | 572b8030757a2e1c31000000 |
Base Excision Repairs T-G Mismatches and Damaged Bases
| lodish8e_ch5_41.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_41_dlap.xml | 572b8030757a2e1c31000000 |
Mismatch Excision Repairs Other Mismatches and Small Insertions and Deletions
| lodish8e_ch5_42.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_42_dlap.xml | 572b8030757a2e1c31000000 |
Nucleotide Excision Repairs Chemical Adducts that Distort Normal DNA Shape
| lodish8e_ch5_43.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_43_dlap.xml | 572b8030757a2e1c31000000 |
Two Systems Use Recombination to Repair Double-Strand Breaks in DNA
| lodish8e_ch5_44.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_44_dlap.xml | 572b8030757a2e1c31000000 |
Homologous Recombination Can Repair DNA Damage and Generate Genetic Diversity
| lodish8e_ch5_45.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_45_dlap.xml | 572b8030757a2e1c31000000 |
Key Concepts of Section 5.6 | lodish8e_ch5_46.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_46_dlap.xml | 572b8030757a2e1c31000000 |
5.7 Viruses: Parasites of the Cellular Genetic System
| lodish8e_ch5_47.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_47_dlap.xml | 572b8030757a2e1c31000000 |
Most Viral Host Ranges Are Narrow
| lodish8e_ch5_48.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_48_dlap.xml | 572b8030757a2e1c31000000 |
Viral Capsids Are Regular Arrays of One or a Few Types of Protein
| lodish8e_ch5_49.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_49_dlap.xml | 572b8030757a2e1c31000000 |
Viruses Can Be Cloned and Counted in Plaque Assays
| lodish8e_ch5_50.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_50_dlap.xml | 572b8030757a2e1c31000000 |
Lytic Viral Growth Cycles Lead to Death of Host Cells
| lodish8e_ch5_51.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_51_dlap.xml | 572b8030757a2e1c31000000 |
Viral DNA Is Integrated into the Host-Cell Genome in Some Nonlytic Viral Growth Cycles
| lodish8e_ch5_52.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_52_dlap.xml | 572b8030757a2e1c31000000 |
Key Concepts of Section 5.7 | lodish8e_ch5_53.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_53_dlap.xml | 572b8030757a2e1c31000000 |
Key Terms
| lodish8e_ch5_54.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_54_dlap.xml | 572b8030757a2e1c31000000 |
Review the Concepts
| lodish8e_ch5_55.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_55_dlap.xml | 572b8030757a2e1c31000000 |
Extended References
| lodish8e_ch5_56.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_56_dlap.xml | 572b8030757a2e1c31000000 |
Perspectives for the Future
| lodish8e_ch5_57.html | 572b8030757a2e1c31000000 |
DLAP questions | lodish8e_ch5_57_dlap.xml | 572b8030757a2e1c31000000 |
Chapter Introduction | lodish8e_ch6_1.html | 572b8933757a2e9c31000000 |
DLAP questions | lodish8e_ch6_1_dlap.xml | 572b8933757a2e9c31000000 |
6.1 Genetic Analysis of Mutations to Identify and Study Genes
| lodish8e_ch6_2.html | 572b8933757a2e9c31000000 |
DLAP questions | lodish8e_ch6_2_dlap.xml | 572b8933757a2e9c31000000 |
Recessive and Dominant Mutant Alleles Generally Have Opposite Effects on Gene Function
| lodish8e_ch6_3.html | 572b8933757a2e9c31000000 |
DLAP questions | lodish8e_ch6_3_dlap.xml | 572b8933757a2e9c31000000 |
Segregation of Mutations in Breeding Experiments Reveals Their Dominance or Recessivity
| lodish8e_ch6_4.html | 572b8933757a2e9c31000000 |
DLAP questions | lodish8e_ch6_4_dlap.xml | 572b8933757a2e9c31000000 |
Conditional Mutations Can Be Used to Study Essential Genes in Yeast
| lodish8e_ch6_5.html | 572b8933757a2e9c31000000 |
DLAP questions | lodish8e_ch6_5_dlap.xml | 572b8933757a2e9c31000000 |
Recessive Lethal Mutations in Diploids Can Be Identified by Inbreeding and Maintained in Heterozygotes
| lodish8e_ch6_6.html | 572b8933757a2e9c31000000 |
DLAP questions | lodish8e_ch6_6_dlap.xml | 572b8933757a2e9c31000000 |
Complementation Tests Determine Whether Different Recessive Mutations Are in the Same Gene
| lodish8e_ch6_7.html | 572b8933757a2e9c31000000 |
DLAP questions | lodish8e_ch6_7_dlap.xml | 572b8933757a2e9c31000000 |
Double Mutants Are Useful in Assessing the Order in Which Proteins Function
| lodish8e_ch6_8.html | 572b8933757a2e9c31000000 |
DLAP questions | lodish8e_ch6_8_dlap.xml | 572b8933757a2e9c31000000 |
Genetic Suppression and Synthetic Lethality Can Reveal Interacting or Redundant Proteins
| lodish8e_ch6_9.html | 572b8933757a2e9c31000000 |
DLAP questions | lodish8e_ch6_9_dlap.xml | 572b8933757a2e9c31000000 |
Genes Can Be Identified by Their Map Position on the Chromosome
| lodish8e_ch6_10.html | 572b8933757a2e9c31000000 |
DLAP questions | lodish8e_ch6_10_dlap.xml | 572b8933757a2e9c31000000 |
Key Concepts of Section 6.1 | lodish8e_ch6_11.html | 572b8933757a2e9c31000000 |
DLAP questions | lodish8e_ch6_11_dlap.xml | 572b8933757a2e9c31000000 |
6.2 DNA Cloning and Characterization
| lodish8e_ch6_12.html | 572b8933757a2e9c31000000 |
DLAP questions | lodish8e_ch6_12_dlap.xml | 572b8933757a2e9c31000000 |
Restriction Enzymes and DNA Ligases Allow Insertion of DNA Fragments into Cloning Vectors
| lodish8e_ch6_13.html | 572b8933757a2e9c31000000 |
DLAP questions | lodish8e_ch6_13_dlap.xml | 572b8933757a2e9c31000000 |
Isolated DNA Fragments Can Be Cloned into E. coli Plasmid Vectors
| lodish8e_ch6_14.html | 572b8933757a2e9c31000000 |
DLAP questions | lodish8e_ch6_14_dlap.xml | 572b8933757a2e9c31000000 |
Yeast Genomic Libraries Can Be Constructed with Shuttle Vectors and Screened by Functional Complementation
| lodish8e_ch6_15.html | 572b8933757a2e9c31000000 |
DLAP questions | lodish8e_ch6_15_dlap.xml | 572b8933757a2e9c31000000 |
cDNA Libraries Represent the Sequences of Protein-Coding Genes
| lodish8e_ch6_16.html | 572b8933757a2e9c31000000 |
DLAP questions | lodish8e_ch6_16_dlap.xml | 572b8933757a2e9c31000000 |
The Polymerase Chain Reaction Amplifies a Specific DNA Sequence from a Complex Mixture
| lodish8e_ch6_17.html | 572b8933757a2e9c31000000 |
DLAP questions | lodish8e_ch6_17_dlap.xml | 572b8933757a2e9c31000000 |
Cloned DNA Molecules Can Be Sequenced Rapidly by Methods Based on PCR
| lodish8e_ch6_18.html | 572b8933757a2e9c31000000 |
DLAP questions | lodish8e_ch6_18_dlap.xml | 572b8933757a2e9c31000000 |
Key Concepts of Section 6.2 | lodish8e_ch6_19.html | 572b8933757a2e9c31000000 |
DLAP questions | lodish8e_ch6_19_dlap.xml | 572b8933757a2e9c31000000 |
6.3 Using Cloned DNA Fragments to Study Gene Expression
| lodish8e_ch6_20.html | 572b8933757a2e9c31000000 |
DLAP questions | lodish8e_ch6_20_dlap.xml | 572b8933757a2e9c31000000 |
Hybridization Techniques Permit Detection of Specific DNA Fragments and mRNAs
| lodish8e_ch6_21.html | 572b8933757a2e9c31000000 |
DLAP questions | lodish8e_ch6_21_dlap.xml | 572b8933757a2e9c31000000 |
DNA Microarrays Can Be Used to Evaluate the Expression of Many Genes at One Time
| lodish8e_ch6_22.html | 572b8933757a2e9c31000000 |
DLAP questions | lodish8e_ch6_22_dlap.xml | 572b8933757a2e9c31000000 |
Cluster Analysis of Multiple Expression Experiments Identifies Co-regulated Genes
| lodish8e_ch6_23.html | 572b8933757a2e9c31000000 |
DLAP questions | lodish8e_ch6_23_dlap.xml | 572b8933757a2e9c31000000 |
E. coli Expression Systems Can Produce Large Quantities of Proteins from Cloned Genes
| lodish8e_ch6_24.html | 572b8933757a2e9c31000000 |
DLAP questions | lodish8e_ch6_24_dlap.xml | 572b8933757a2e9c31000000 |
Plasmid Expression Vectors Can Be Designed for Use in Animal Cells
| lodish8e_ch6_25.html | 572b8933757a2e9c31000000 |
DLAP questions | lodish8e_ch6_25_dlap.xml | 572b8933757a2e9c31000000 |
Key Concepts of Section 6.3 | lodish8e_ch6_26.html | 572b8933757a2e9c31000000 |
DLAP questions | lodish8e_ch6_26_dlap.xml | 572b8933757a2e9c31000000 |
6.4 Locating and Identifying Human Disease Genes
| lodish8e_ch6_27.html | 572b8933757a2e9c31000000 |
DLAP questions | lodish8e_ch6_27_dlap.xml | 572b8933757a2e9c31000000 |
Monogenic Diseases Show One of Three Patterns of Inheritance
| lodish8e_ch6_28.html | 572b8933757a2e9c31000000 |
DLAP questions | lodish8e_ch6_28_dlap.xml | 572b8933757a2e9c31000000 |
DNA Polymorphisms Are Used as Markers for Linkage Mapping of Human Mutations
| lodish8e_ch6_29.html | 572b8933757a2e9c31000000 |
DLAP questions | lodish8e_ch6_29_dlap.xml | 572b8933757a2e9c31000000 |
Linkage Studies Can Map Disease Genes with a Resolution of About 1 Centimorgan
| lodish8e_ch6_30.html | 572b8933757a2e9c31000000 |
DLAP questions | lodish8e_ch6_30_dlap.xml | 572b8933757a2e9c31000000 |
Further Analysis Is Needed to Locate a Disease Gene in Cloned DNA
| lodish8e_ch6_31.html | 572b8933757a2e9c31000000 |
DLAP questions | lodish8e_ch6_31_dlap.xml | 572b8933757a2e9c31000000 |
Many Inherited Diseases Result from Multiple Genetic Defects
| lodish8e_ch6_32.html | 572b8933757a2e9c31000000 |
DLAP questions | lodish8e_ch6_32_dlap.xml | 572b8933757a2e9c31000000 |
Key Concepts of Section 6.4 | lodish8e_ch6_33.html | 572b8933757a2e9c31000000 |
DLAP questions | lodish8e_ch6_33_dlap.xml | 572b8933757a2e9c31000000 |
6.5 Inactivating the Function of Specific Genes in Eukaryotes
| lodish8e_ch6_34.html | 572b8933757a2e9c31000000 |
DLAP questions | lodish8e_ch6_34_dlap.xml | 572b8933757a2e9c31000000 |
Normal Yeast Genes Can Be Replaced with Mutant Alleles by Homologous Recombination
| lodish8e_ch6_35.html | 572b8933757a2e9c31000000 |
DLAP questions | lodish8e_ch6_35_dlap.xml | 572b8933757a2e9c31000000 |
Genes Can Be Placed Under the Control of an Experimentally Regulated Promoter
| lodish8e_ch6_36.html | 572b8933757a2e9c31000000 |
DLAP questions | lodish8e_ch6_36_dlap.xml | 572b8933757a2e9c31000000 |
Specific Genes Can Be Permanently Inactivated in the Germ Line of Mice
| lodish8e_ch6_37.html | 572b8933757a2e9c31000000 |
DLAP questions | lodish8e_ch6_37_dlap.xml | 572b8933757a2e9c31000000 |
Somatic Cell Recombination Can Inactivate Genes in Specific Tissues
| lodish8e_ch6_38.html | 572b8933757a2e9c31000000 |
DLAP questions | lodish8e_ch6_38_dlap.xml | 572b8933757a2e9c31000000 |
Dominant-Negative Alleles Can Inhibit the Function of Some Genes
| lodish8e_ch6_39.html | 572b8933757a2e9c31000000 |
DLAP questions | lodish8e_ch6_39_dlap.xml | 572b8933757a2e9c31000000 |
RNA Interference Causes Gene Inactivation by Destroying the Corresponding mRNA
| lodish8e_ch6_40.html | 572b8933757a2e9c31000000 |
DLAP questions | lodish8e_ch6_40_dlap.xml | 572b8933757a2e9c31000000 |
Engineered CRISPRâCas9 Systems Allow Precise Genome Editing
| lodish8e_ch6_41.html | 572b8933757a2e9c31000000 |
DLAP questions | lodish8e_ch6_41_dlap.xml | 572b8933757a2e9c31000000 |
Key Concepts of Section 6.5 | lodish8e_ch6_42.html | 572b8933757a2e9c31000000 |
DLAP questions | lodish8e_ch6_42_dlap.xml | 572b8933757a2e9c31000000 |
Key Terms
| lodish8e_ch6_43.html | 572b8933757a2e9c31000000 |
DLAP questions | lodish8e_ch6_43_dlap.xml | 572b8933757a2e9c31000000 |
Review the Concepts
| lodish8e_ch6_44.html | 572b8933757a2e9c31000000 |
DLAP questions | lodish8e_ch6_44_dlap.xml | 572b8933757a2e9c31000000 |
Extended References
| lodish8e_ch6_45.html | 572b8933757a2e9c31000000 |
DLAP questions | lodish8e_ch6_45_dlap.xml | 572b8933757a2e9c31000000 |
Perspectives for the Future
| lodish8e_ch6_46.html | 572b8933757a2e9c31000000 |
DLAP questions | lodish8e_ch6_46_dlap.xml | 572b8933757a2e9c31000000 |
Chapter Introduction | lodish8e_ch7_1.html | 572b8980757a2eab31000000 |
DLAP questions | lodish8e_ch7_1_dlap.xml | 572b8980757a2eab31000000 |
7.1 The Lipid Bilayer: Composition and Structural Organization
| lodish8e_ch7_2.html | 572b8980757a2eab31000000 |
DLAP questions | lodish8e_ch7_2_dlap.xml | 572b8980757a2eab31000000 |
Phospholipids Spontaneously Form Bilayers
| lodish8e_ch7_3.html | 572b8980757a2eab31000000 |
DLAP questions | lodish8e_ch7_3_dlap.xml | 572b8980757a2eab31000000 |
Phospholipid Bilayers Form a Sealed Compartment Surrounding an Internal Aqueous Space
| lodish8e_ch7_4.html | 572b8980757a2eab31000000 |
DLAP questions | lodish8e_ch7_4_dlap.xml | 572b8980757a2eab31000000 |
Biomembranes Contain Three Principal Classes of Lipids
| lodish8e_ch7_5.html | 572b8980757a2eab31000000 |
DLAP questions | lodish8e_ch7_5_dlap.xml | 572b8980757a2eab31000000 |
Most Lipids and Many Proteins Are Laterally Mobile in Biomembranes
| lodish8e_ch7_6.html | 572b8980757a2eab31000000 |
DLAP questions | lodish8e_ch7_6_dlap.xml | 572b8980757a2eab31000000 |
Lipid Composition Influences the Physical Properties of Membranes
| lodish8e_ch7_7.html | 572b8980757a2eab31000000 |
DLAP questions | lodish8e_ch7_7_dlap.xml | 572b8980757a2eab31000000 |
Lipid Composition Is Different in the Exoplasmic and Cytosolic Leaflets
| lodish8e_ch7_8.html | 572b8980757a2eab31000000 |
DLAP questions | lodish8e_ch7_8_dlap.xml | 572b8980757a2eab31000000 |
Cholesterol and Sphingolipids Cluster with Specific Proteins in Membrane Microdomains
| lodish8e_ch7_9.html | 572b8980757a2eab31000000 |
DLAP questions | lodish8e_ch7_9_dlap.xml | 572b8980757a2eab31000000 |
Cells Store Excess Lipids in Lipid Droplets
| lodish8e_ch7_10.html | 572b8980757a2eab31000000 |
DLAP questions | lodish8e_ch7_10_dlap.xml | 572b8980757a2eab31000000 |
Key Concepts of Section 7.1 | lodish8e_ch7_11.html | 572b8980757a2eab31000000 |
DLAP questions | lodish8e_ch7_11_dlap.xml | 572b8980757a2eab31000000 |
7.2 Membrane Proteins: Structure and Basic Functions
| lodish8e_ch7_12.html | 572b8980757a2eab31000000 |
DLAP questions | lodish8e_ch7_12_dlap.xml | 572b8980757a2eab31000000 |
Proteins Interact with Membranes in Three Different Ways
| lodish8e_ch7_13.html | 572b8980757a2eab31000000 |
DLAP questions | lodish8e_ch7_13_dlap.xml | 572b8980757a2eab31000000 |
Most Transmembrane Proteins Have Membrane-Spanning α Helices
| lodish8e_ch7_14.html | 572b8980757a2eab31000000 |
DLAP questions | lodish8e_ch7_14_dlap.xml | 572b8980757a2eab31000000 |
Multiple β Strands in Porins Form Membrane-Spanning âBarrelsâ
| lodish8e_ch7_15.html | 572b8980757a2eab31000000 |
DLAP questions | lodish8e_ch7_15_dlap.xml | 572b8980757a2eab31000000 |
Covalently Attached Lipids Anchor Some Proteins to Membranes
| lodish8e_ch7_16.html | 572b8980757a2eab31000000 |
DLAP questions | lodish8e_ch7_16_dlap.xml | 572b8980757a2eab31000000 |
All Transmembrane Proteins and Glycolipids Are Asymmetrically Oriented in the Bilayer
| lodish8e_ch7_17.html | 572b8980757a2eab31000000 |
DLAP questions | lodish8e_ch7_17_dlap.xml | 572b8980757a2eab31000000 |
Lipid-Binding Motifs Help Target Peripheral Proteins to the Membrane
| lodish8e_ch7_18.html | 572b8980757a2eab31000000 |
DLAP questions | lodish8e_ch7_18_dlap.xml | 572b8980757a2eab31000000 |
Proteins Can Be Removed from Membranes by Detergents or High-Salt Solutions
| lodish8e_ch7_19.html | 572b8980757a2eab31000000 |
DLAP questions | lodish8e_ch7_19_dlap.xml | 572b8980757a2eab31000000 |
Key Concepts of Section 7.2 | lodish8e_ch7_20.html | 572b8980757a2eab31000000 |
DLAP questions | lodish8e_ch7_20_dlap.xml | 572b8980757a2eab31000000 |
7.3 Phospholipids, Sphingolipids, and Cholesterol: Synthesis and Intracellular Movement
| lodish8e_ch7_21.html | 572b8980757a2eab31000000 |
DLAP questions | lodish8e_ch7_21_dlap.xml | 572b8980757a2eab31000000 |
Fatty Acids Are Assembled from Two-Carbon Building Blocks by Several Important Enzymes
| lodish8e_ch7_22.html | 572b8980757a2eab31000000 |
DLAP questions | lodish8e_ch7_22_dlap.xml | 572b8980757a2eab31000000 |
Small Cytosolic Proteins Facilitate Movement of Fatty Acids
| lodish8e_ch7_23.html | 572b8980757a2eab31000000 |
DLAP questions | lodish8e_ch7_23_dlap.xml | 572b8980757a2eab31000000 |
Fatty Acids Are Incorporated into Phospholipids Primarily on the ER Membrane
| lodish8e_ch7_24.html | 572b8980757a2eab31000000 |
DLAP questions | lodish8e_ch7_24_dlap.xml | 572b8980757a2eab31000000 |
Flippases Move Phospholipids from One Membrane Leaflet to the Opposite Leaflet
| lodish8e_ch7_25.html | 572b8980757a2eab31000000 |
DLAP questions | lodish8e_ch7_25_dlap.xml | 572b8980757a2eab31000000 |
Cholesterol Is Synthesized by Enzymes in the Cytosol and ER Membrane
| lodish8e_ch7_26.html | 572b8980757a2eab31000000 |
DLAP questions | lodish8e_ch7_26_dlap.xml | 572b8980757a2eab31000000 |
Cholesterol and Phospholipids Are Transported Between Organelles by Several Mechanisms
| lodish8e_ch7_27.html | 572b8980757a2eab31000000 |
DLAP questions | lodish8e_ch7_27_dlap.xml | 572b8980757a2eab31000000 |
Key Concepts of Section 7.3 | lodish8e_ch7_28.html | 572b8980757a2eab31000000 |
DLAP questions | lodish8e_ch7_28_dlap.xml | 572b8980757a2eab31000000 |
Key Terms
| lodish8e_ch7_29.html | 572b8980757a2eab31000000 |
DLAP questions | lodish8e_ch7_29_dlap.xml | 572b8980757a2eab31000000 |
Review the Concepts
| lodish8e_ch7_30.html | 572b8980757a2eab31000000 |
DLAP questions | lodish8e_ch7_30_dlap.xml | 572b8980757a2eab31000000 |
References
| lodish8e_ch7_31.html | 572b8980757a2eab31000000 |
DLAP questions | lodish8e_ch7_31_dlap.xml | 572b8980757a2eab31000000 |
Perspectives for the Future
| lodish8e_ch7_32.html | 572b8980757a2eab31000000 |
DLAP questions | lodish8e_ch7_32_dlap.xml | 572b8980757a2eab31000000 |
Chapter Introduction | lodish8e_ch8_1.html | 572b89de757a2ece31000000 |
DLAP questions | lodish8e_ch8_1_dlap.xml | 572b89de757a2ece31000000 |
8.1 Eukaryotic Gene Structure
| lodish8e_ch8_2.html | 572b89de757a2ece31000000 |
DLAP questions | lodish8e_ch8_2_dlap.xml | 572b89de757a2ece31000000 |
Most Eukaryotic Genes Contain Introns and Produce mRNAs Encoding Single Proteins
| lodish8e_ch8_3.html | 572b89de757a2ece31000000 |
DLAP questions | lodish8e_ch8_3_dlap.xml | 572b89de757a2ece31000000 |
Simple and Complex Transcription Units Are Found in Eukaryotic Genomes
| lodish8e_ch8_4.html | 572b89de757a2ece31000000 |
DLAP questions | lodish8e_ch8_4_dlap.xml | 572b89de757a2ece31000000 |
Protein-Coding Genes May Be Solitary or Belong to a Gene Family
| lodish8e_ch8_5.html | 572b89de757a2ece31000000 |
DLAP questions | lodish8e_ch8_5_dlap.xml | 572b89de757a2ece31000000 |
Heavily Used Gene Products Are Encoded by Multiple Copies of Genes
| lodish8e_ch8_6.html | 572b89de757a2ece31000000 |
DLAP questions | lodish8e_ch8_6_dlap.xml | 572b89de757a2ece31000000 |
Nonprotein-Coding Genes Encode Functional RNAs
| lodish8e_ch8_7.html | 572b89de757a2ece31000000 |
DLAP questions | lodish8e_ch8_7_dlap.xml | 572b89de757a2ece31000000 |
Key Concepts of Section 8.1 | lodish8e_ch8_8.html | 572b89de757a2ece31000000 |
DLAP questions | lodish8e_ch8_8_dlap.xml | 572b89de757a2ece31000000 |
8.2 Chromosomal Organization of Genes and Noncoding DNA
| lodish8e_ch8_9.html | 572b89de757a2ece31000000 |
DLAP questions | lodish8e_ch8_9_dlap.xml | 572b89de757a2ece31000000 |
Genomes of Many Organisms Contain Nonfunctional DNA
| lodish8e_ch8_10.html | 572b89de757a2ece31000000 |
DLAP questions | lodish8e_ch8_10_dlap.xml | 572b89de757a2ece31000000 |
Most Simple-Sequence DNAs Are Concentrated in Specific Chromosomal Locations
| lodish8e_ch8_11.html | 572b89de757a2ece31000000 |
DLAP questions | lodish8e_ch8_11_dlap.xml | 572b89de757a2ece31000000 |
DNA Fingerprinting Depends on Differences in Length of Simple-Sequence DNAs
| lodish8e_ch8_12.html | 572b89de757a2ece31000000 |
DLAP questions | lodish8e_ch8_12_dlap.xml | 572b89de757a2ece31000000 |
Unclassified Intergenic DNA Occupies a Significant Portion of the Genome
| lodish8e_ch8_13.html | 572b89de757a2ece31000000 |
DLAP questions | lodish8e_ch8_13_dlap.xml | 572b89de757a2ece31000000 |
Key Concepts of Section 8.2 | lodish8e_ch8_14.html | 572b89de757a2ece31000000 |
DLAP questions | lodish8e_ch8_14_dlap.xml | 572b89de757a2ece31000000 |
8.3 Transposable (Mobile) DNA Elements
| lodish8e_ch8_15.html | 572b89de757a2ece31000000 |
DLAP questions | lodish8e_ch8_15_dlap.xml | 572b89de757a2ece31000000 |
Movement of Mobile Elements Involves a DNA or an RNA Intermediate
| lodish8e_ch8_16.html | 572b89de757a2ece31000000 |
DLAP questions | lodish8e_ch8_16_dlap.xml | 572b89de757a2ece31000000 |
DNA Transposons Are Present in Prokaryotes and Eukaryotes
| lodish8e_ch8_17.html | 572b89de757a2ece31000000 |
DLAP questions | lodish8e_ch8_17_dlap.xml | 572b89de757a2ece31000000 |
LTR Retrotransposons Behave Like Intracellular Retroviruses
| lodish8e_ch8_18.html | 572b89de757a2ece31000000 |
DLAP questions | lodish8e_ch8_18_dlap.xml | 572b89de757a2ece31000000 |
Non-LTR Retrotransposons Transpose by a Distinct Mechanism
| lodish8e_ch8_19.html | 572b89de757a2ece31000000 |
DLAP questions | lodish8e_ch8_19_dlap.xml | 572b89de757a2ece31000000 |
Other Retroposed RNAs Are Found in Genomic DNA
| lodish8e_ch8_20.html | 572b89de757a2ece31000000 |
DLAP questions | lodish8e_ch8_20_dlap.xml | 572b89de757a2ece31000000 |
Mobile DNA Elements Have Significantly Influenced Evolution
| lodish8e_ch8_21.html | 572b89de757a2ece31000000 |
DLAP questions | lodish8e_ch8_21_dlap.xml | 572b89de757a2ece31000000 |
Key Concepts of Section 8.3 | lodish8e_ch8_22.html | 572b89de757a2ece31000000 |
DLAP questions | lodish8e_ch8_22_dlap.xml | 572b89de757a2ece31000000 |
8.4 Genomics: Genome-Wide Analysis of Gene Structure and Function
| lodish8e_ch8_23.html | 572b89de757a2ece31000000 |
DLAP questions | lodish8e_ch8_23_dlap.xml | 572b89de757a2ece31000000 |
Stored Sequences Suggest Functions of Newly Identified Genes and Proteins
| lodish8e_ch8_24.html | 572b89de757a2ece31000000 |
DLAP questions | lodish8e_ch8_24_dlap.xml | 572b89de757a2ece31000000 |
Comparison of Related Sequences from Different Species Can Give Clues to Evolutionary Relationships Among Proteins
| lodish8e_ch8_25.html | 572b89de757a2ece31000000 |
DLAP questions | lodish8e_ch8_25_dlap.xml | 572b89de757a2ece31000000 |
Genes Can Be Identified Within Genomic DNA Sequences
| lodish8e_ch8_26.html | 572b89de757a2ece31000000 |
DLAP questions | lodish8e_ch8_26_dlap.xml | 572b89de757a2ece31000000 |
The Number of Protein-Coding Genes in an Organismâs Genome Is Not Directly Related to Its Biological Complexity
| lodish8e_ch8_27.html | 572b89de757a2ece31000000 |
DLAP questions | lodish8e_ch8_27_dlap.xml | 572b89de757a2ece31000000 |
Key Concepts of Section 8.4 | lodish8e_ch8_28.html | 572b89de757a2ece31000000 |
DLAP questions | lodish8e_ch8_28_dlap.xml | 572b89de757a2ece31000000 |
8.5 Structural Organization of Eukaryotic Chromosomes
| lodish8e_ch8_29.html | 572b89de757a2ece31000000 |
DLAP questions | lodish8e_ch8_29_dlap.xml | 572b89de757a2ece31000000 |
Chromatin Exists in Extended and Condensed Forms
| lodish8e_ch8_30.html | 572b89de757a2ece31000000 |
DLAP questions | lodish8e_ch8_30_dlap.xml | 572b89de757a2ece31000000 |
Modifications of Histone Tails Control Chromatin Condensation and Function
| lodish8e_ch8_31.html | 572b89de757a2ece31000000 |
DLAP questions | lodish8e_ch8_31_dlap.xml | 572b89de757a2ece31000000 |
Nonhistone Proteins Organize Long Chromatin Loops
| lodish8e_ch8_32.html | 572b89de757a2ece31000000 |
DLAP questions | lodish8e_ch8_32_dlap.xml | 572b89de757a2ece31000000 |
Additional Nonhistone Proteins Regulate Transcription and Replication
| lodish8e_ch8_33.html | 572b89de757a2ece31000000 |
DLAP questions | lodish8e_ch8_33_dlap.xml | 572b89de757a2ece31000000 |
Key Concepts of Section 8.5 | lodish8e_ch8_34.html | 572b89de757a2ece31000000 |
DLAP questions | lodish8e_ch8_34_dlap.xml | 572b89de757a2ece31000000 |
8.6 Morphology and Functional Elements of Eukaryotic Chromosomes
| lodish8e_ch8_35.html | 572b89de757a2ece31000000 |
DLAP questions | lodish8e_ch8_35_dlap.xml | 572b89de757a2ece31000000 |
Chromosome Number, Size, and Shape at Metaphase Are Species-Specific
| lodish8e_ch8_36.html | 572b89de757a2ece31000000 |
DLAP questions | lodish8e_ch8_36_dlap.xml | 572b89de757a2ece31000000 |
During Metaphase, Chromosomes Can Be Distinguished by Banding Patterns and Chromosome Painting
| lodish8e_ch8_37.html | 572b89de757a2ece31000000 |
DLAP questions | lodish8e_ch8_37_dlap.xml | 572b89de757a2ece31000000 |
Chromosome Painting and DNA Sequencing Reveal the Evolution of Chromosomes
| lodish8e_ch8_38.html | 572b89de757a2ece31000000 |
DLAP questions | lodish8e_ch8_38_dlap.xml | 572b89de757a2ece31000000 |
Interphase Polytene Chromosomes Arise by DNA Amplification
| lodish8e_ch8_39.html | 572b89de757a2ece31000000 |
DLAP questions | lodish8e_ch8_39_dlap.xml | 572b89de757a2ece31000000 |
Three Functional Elements Are Required for Replication and Stable Inheritance of Chromosomes
| lodish8e_ch8_40.html | 572b89de757a2ece31000000 |
DLAP questions | lodish8e_ch8_40_dlap.xml | 572b89de757a2ece31000000 |
Centromere Sequences Vary Greatly in Length and Complexity
| lodish8e_ch8_41.html | 572b89de757a2ece31000000 |
DLAP questions | lodish8e_ch8_41_dlap.xml | 572b89de757a2ece31000000 |
Addition of Telomeric Sequences by Telomerase Prevents Shortening of Chromosomes
| lodish8e_ch8_42.html | 572b89de757a2ece31000000 |
DLAP questions | lodish8e_ch8_42_dlap.xml | 572b89de757a2ece31000000 |
Key Concepts of Section 8.6 | lodish8e_ch8_43.html | 572b89de757a2ece31000000 |
DLAP questions | lodish8e_ch8_43_dlap.xml | 572b89de757a2ece31000000 |
Key Terms
| lodish8e_ch8_44.html | 572b89de757a2ece31000000 |
DLAP questions | lodish8e_ch8_44_dlap.xml | 572b89de757a2ece31000000 |
Review the Concepts
| lodish8e_ch8_45.html | 572b89de757a2ece31000000 |
DLAP questions | lodish8e_ch8_45_dlap.xml | 572b89de757a2ece31000000 |
Extended References
| lodish8e_ch8_46.html | 572b89de757a2ece31000000 |
DLAP questions | lodish8e_ch8_46_dlap.xml | 572b89de757a2ece31000000 |
Perspectives for the Future
| lodish8e_ch8_47.html | 572b89de757a2ece31000000 |
DLAP questions | lodish8e_ch8_47_dlap.xml | 572b89de757a2ece31000000 |
Chapter Introduction | lodish8e_ch9_1.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_1_dlap.xml | 572b8a14757a2ed531000000 |
9.1 Control of Gene Expression in Bacteria
| lodish8e_ch9_2.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_2_dlap.xml | 572b8a14757a2ed531000000 |
Transcription Initiation by Bacterial RNA Polymerase Requires Association with a Sigma Factor
| lodish8e_ch9_3.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_3_dlap.xml | 572b8a14757a2ed531000000 |
Initiation of lac Operon Transcription Can Be Repressed or Activated
| lodish8e_ch9_4.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_4_dlap.xml | 572b8a14757a2ed531000000 |
Small Molecules Regulate Expression of Many Bacterial Genes via DNA-Binding Repressors and Activators
| lodish8e_ch9_5.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_5_dlap.xml | 572b8a14757a2ed531000000 |
Transcription Initiation from Some Promoters Requires Alternative Sigma Factors
| lodish8e_ch9_6.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_6_dlap.xml | 572b8a14757a2ed531000000 |
Transcription by Ï54-RNA Polymerase Is Controlled by Activators That Bind Far from the Promoter
| lodish8e_ch9_7.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_7_dlap.xml | 572b8a14757a2ed531000000 |
Many Bacterial Responses Are Controlled by Two-Component Regulatory Systems
| lodish8e_ch9_8.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_8_dlap.xml | 572b8a14757a2ed531000000 |
Expression of Many Bacterial Operons Is Controlled by Regulation of Transcriptional Elongation
| lodish8e_ch9_9.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_9_dlap.xml | 572b8a14757a2ed531000000 |
Key Concepts of Section 9.1 | lodish8e_ch9_10.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_10_dlap.xml | 572b8a14757a2ed531000000 |
9.2 Overview of Eukaryotic Gene Control
| lodish8e_ch9_11.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_11_dlap.xml | 572b8a14757a2ed531000000 |
Regulatory Elements in Eukaryotic DNA Are Found Both Close to and Many Kilobases Away from Transcription Start Sites
| lodish8e_ch9_12.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_12_dlap.xml | 572b8a14757a2ed531000000 |
Three Eukaryotic RNA Polymerases Catalyze Formation of Different RNAs
| lodish8e_ch9_13.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_13_dlap.xml | 572b8a14757a2ed531000000 |
The Largest Subunit in RNA Polymerase II Has an Essential Carboxy-Terminal Repeat
| lodish8e_ch9_14.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_14_dlap.xml | 572b8a14757a2ed531000000 |
Key Concepts of Section 9.2 | lodish8e_ch9_15.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_15_dlap.xml | 572b8a14757a2ed531000000 |
9.3 RNA Polymerase II Promoters and General Transcription Factors
| lodish8e_ch9_16.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_16_dlap.xml | 572b8a14757a2ed531000000 |
RNA Polymerase II Initiates Transcription at DNA Sequences Corresponding to the 5â² Cap of mRNAs
| lodish8e_ch9_17.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_17_dlap.xml | 572b8a14757a2ed531000000 |
The TATA Box, Initiators, and CpG Islands Function as Promoters in Eukaryotic DNA
| lodish8e_ch9_18.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_18_dlap.xml | 572b8a14757a2ed531000000 |
General Transcription Factors Position RNA Polymerase II at Start Sites and Assist in Initiation
| lodish8e_ch9_19.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_19_dlap.xml | 572b8a14757a2ed531000000 |
Elongation Factors Regulate the Initial Stages of Transcription in the Promoter-Proximal Region
| lodish8e_ch9_20.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_20_dlap.xml | 572b8a14757a2ed531000000 |
Key Concepts of Section 9.3 | lodish8e_ch9_21.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_21_dlap.xml | 572b8a14757a2ed531000000 |
9.4 Regulatory Sequences in Protein-Coding Genes and the Proteins Through Which They Function
| lodish8e_ch9_22.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_22_dlap.xml | 572b8a14757a2ed531000000 |
Promoter-Proximal Elements Help Regulate Eukaryotic Genes
| lodish8e_ch9_23.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_23_dlap.xml | 572b8a14757a2ed531000000 |
Distant Enhancers Often Stimulate Transcription by RNA Polymerase II
| lodish8e_ch9_24.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_24_dlap.xml | 572b8a14757a2ed531000000 |
Most Eukaryotic Genes Are Regulated by Multiple Transcription-Control Elements
| lodish8e_ch9_25.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_25_dlap.xml | 572b8a14757a2ed531000000 |
DNase I Footprinting and EMSA Detect Protein-DNA Interactions
| lodish8e_ch9_26.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_26_dlap.xml | 572b8a14757a2ed531000000 |
Activators Are Composed of Distinct Functional Domains
| lodish8e_ch9_27.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_27_dlap.xml | 572b8a14757a2ed531000000 |
Repressors Are the Functional Converse of Activators
| lodish8e_ch9_28.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_28_dlap.xml | 572b8a14757a2ed531000000 |
DNA-Binding Domains Can Be Classified into Numerous Structural Types
| lodish8e_ch9_29.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_29_dlap.xml | 572b8a14757a2ed531000000 |
Structurally Diverse Activation and Repression Domains Regulate Transcription
| lodish8e_ch9_30.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_30_dlap.xml | 572b8a14757a2ed531000000 |
Transcription Factor Interactions Increase Gene-Control Options
| lodish8e_ch9_31.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_31_dlap.xml | 572b8a14757a2ed531000000 |
Multiprotein Complexes Form on Enhancers
| lodish8e_ch9_32.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_32_dlap.xml | 572b8a14757a2ed531000000 |
Key Concepts of Section 9.4 | lodish8e_ch9_33.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_33_dlap.xml | 572b8a14757a2ed531000000 |
9.5 Molecular Mechanisms of Transcription Repression and Activation
| lodish8e_ch9_34.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_34_dlap.xml | 572b8a14757a2ed531000000 |
Formation of Heterochromatin Silences Gene Expression at Telomeres, near Centromeres, and in Other Regions
| lodish8e_ch9_35.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_35_dlap.xml | 572b8a14757a2ed531000000 |
Repressors Can Direct Histone Deacetylation at Specific Genes
| lodish8e_ch9_36.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_36_dlap.xml | 572b8a14757a2ed531000000 |
Activators Can Direct Histone Acetylation at Specific Genes
| lodish8e_ch9_37.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_37_dlap.xml | 572b8a14757a2ed531000000 |
Chromatin-Remodeling Complexes Help Activate or Repress Transcription
| lodish8e_ch9_38.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_38_dlap.xml | 572b8a14757a2ed531000000 |
Pioneer Transcription Factors Initiate the Process of Gene Activation During Cellular Differentiation
| lodish8e_ch9_39.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_39_dlap.xml | 572b8a14757a2ed531000000 |
The Mediator Complex Forms a Molecular Bridge Between Activation Domains and Pol II
| lodish8e_ch9_40.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_40_dlap.xml | 572b8a14757a2ed531000000 |
Key Concepts of Section 9.5 | lodish8e_ch9_41.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_41_dlap.xml | 572b8a14757a2ed531000000 |
9.6 Regulation of Transcription-Factor Activity
| lodish8e_ch9_42.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_42_dlap.xml | 572b8a14757a2ed531000000 |
DNase I Hypersensitive Sites Reflect the Developmental History of Cellular Differentiation
| lodish8e_ch9_43.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_43_dlap.xml | 572b8a14757a2ed531000000 |
Nuclear Receptors Are Regulated by Extracellular Signals
| lodish8e_ch9_44.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_44_dlap.xml | 572b8a14757a2ed531000000 |
All Nuclear Receptors Share a Common Domain Structure
| lodish8e_ch9_45.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_45_dlap.xml | 572b8a14757a2ed531000000 |
Nuclear-Receptor Response Elements Contain Inverted or Direct Repeats
| lodish8e_ch9_46.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_46_dlap.xml | 572b8a14757a2ed531000000 |
Hormone Binding to a Nuclear Receptor Regulates Its Activity as a Transcription Factor
| lodish8e_ch9_47.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_47_dlap.xml | 572b8a14757a2ed531000000 |
Metazoans Regulate the RNA Polymerase II Transition from Initiation to Elongation
| lodish8e_ch9_48.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_48_dlap.xml | 572b8a14757a2ed531000000 |
Termination of Transcription Is Also Regulated
| lodish8e_ch9_49.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_49_dlap.xml | 572b8a14757a2ed531000000 |
Key Concepts of Section 9.6 | lodish8e_ch9_50.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_50_dlap.xml | 572b8a14757a2ed531000000 |
9.7 Epigenetic Regulation of Transcription
| lodish8e_ch9_51.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_51_dlap.xml | 572b8a14757a2ed531000000 |
DNA Methylation Represses Transcription
| lodish8e_ch9_52.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_52_dlap.xml | 572b8a14757a2ed531000000 |
Methylation of Specific Histone Lysines Is Linked to Epigenetic Mechanisms of Gene Repression
| lodish8e_ch9_53.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_53_dlap.xml | 572b8a14757a2ed531000000 |
Epigenetic Control by Polycomb and Trithorax Complexes
| lodish8e_ch9_54.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_54_dlap.xml | 572b8a14757a2ed531000000 |
Long Noncoding RNAs Direct Epigenetic Repression in Metazoans
| lodish8e_ch9_55.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_55_dlap.xml | 572b8a14757a2ed531000000 |
Key Concepts of Section 9.7 | lodish8e_ch9_56.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_56_dlap.xml | 572b8a14757a2ed531000000 |
9.8 Other Eukaryotic Transcription Systems
| lodish8e_ch9_57.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_57_dlap.xml | 572b8a14757a2ed531000000 |
Transcription Initiation by Pol I and Pol III Is Analogous to That by Pol II
| lodish8e_ch9_58.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_58_dlap.xml | 572b8a14757a2ed531000000 |
Key Concepts of Section 9.8 | lodish8e_ch9_59.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_59_dlap.xml | 572b8a14757a2ed531000000 |
Key Terms
| lodish8e_ch9_60.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_60_dlap.xml | 572b8a14757a2ed531000000 |
Review the Concepts
| lodish8e_ch9_61.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_61_dlap.xml | 572b8a14757a2ed531000000 |
Extended References
| lodish8e_ch9_62.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_62_dlap.xml | 572b8a14757a2ed531000000 |
Perspectives for the Future
| lodish8e_ch9_63.html | 572b8a14757a2ed531000000 |
DLAP questions | lodish8e_ch9_63_dlap.xml | 572b8a14757a2ed531000000 |
Chapter Introduction | lodish8e_ch10_1.html | 572b8a8b757a2ea731000001 |
DLAP questions | lodish8e_ch10_1_dlap.xml | 572b8a8b757a2ea731000001 |
10.1 Processing of Eukaryotic Pre-mRNA
| lodish8e_ch10_2.html | 572b8a8b757a2ea731000001 |
DLAP questions | lodish8e_ch10_2_dlap.xml | 572b8a8b757a2ea731000001 |
The 5â² Cap Is Added to Nascent RNAs Shortly After Transcription Initiation
| lodish8e_ch10_3.html | 572b8a8b757a2ea731000001 |
DLAP questions | lodish8e_ch10_3_dlap.xml | 572b8a8b757a2ea731000001 |
A Diverse Set of Proteins with Conserved RNA-Binding Domains Associate with Pre-mRNAs
| lodish8e_ch10_4.html | 572b8a8b757a2ea731000001 |
DLAP questions | lodish8e_ch10_4_dlap.xml | 572b8a8b757a2ea731000001 |
Splicing Occurs at Short, Conserved Sequences in Pre-mRNAs via Two Transesterification Reactions
| lodish8e_ch10_5.html | 572b8a8b757a2ea731000001 |
DLAP questions | lodish8e_ch10_5_dlap.xml | 572b8a8b757a2ea731000001 |
During Splicing, snRNAs Base-Pair with Pre-mRNA
| lodish8e_ch10_6.html | 572b8a8b757a2ea731000001 |
DLAP questions | lodish8e_ch10_6_dlap.xml | 572b8a8b757a2ea731000001 |
Spliceosomes, Assembled from snRNPs and a Pre-mRNA, Carry Out Splicing
| lodish8e_ch10_7.html | 572b8a8b757a2ea731000001 |
DLAP questions | lodish8e_ch10_7_dlap.xml | 572b8a8b757a2ea731000001 |
Chain Elongation by RNA Polymerase II Is Coupled to the Presence of RNA-Processing Factors
| lodish8e_ch10_8.html | 572b8a8b757a2ea731000001 |
DLAP questions | lodish8e_ch10_8_dlap.xml | 572b8a8b757a2ea731000001 |
SR Proteins Contribute to Exon Definition in Long Pre-mRNAs
| lodish8e_ch10_9.html | 572b8a8b757a2ea731000001 |
DLAP questions | lodish8e_ch10_9_dlap.xml | 572b8a8b757a2ea731000001 |
Self-Splicing Group II Introns Provide Clues to the Evolution of snRNAs
| lodish8e_ch10_10.html | 572b8a8b757a2ea731000001 |
DLAP questions | lodish8e_ch10_10_dlap.xml | 572b8a8b757a2ea731000001 |
3â² Cleavage and Polyadenylation of Pre-mRNAs Are Tightly Coupled
| lodish8e_ch10_11.html | 572b8a8b757a2ea731000001 |
DLAP questions | lodish8e_ch10_11_dlap.xml | 572b8a8b757a2ea731000001 |
Nuclear Exoribonucleases Degrade RNA That Is Processed Out of Pre-mRNAs
| lodish8e_ch10_12.html | 572b8a8b757a2ea731000001 |
DLAP questions | lodish8e_ch10_12_dlap.xml | 572b8a8b757a2ea731000001 |
RNA Processing Solves the Problem of Pervasive Transcription of the Genome in Metazoans
| lodish8e_ch10_13.html | 572b8a8b757a2ea731000001 |
DLAP questions | lodish8e_ch10_13_dlap.xml | 572b8a8b757a2ea731000001 |
Key Concepts of Section 10.1 | lodish8e_ch10_14.html | 572b8a8b757a2ea731000001 |
DLAP questions | lodish8e_ch10_14_dlap.xml | 572b8a8b757a2ea731000001 |
10.2 Regulation of Pre-mRNA Processing
| lodish8e_ch10_15.html | 572b8a8b757a2ea731000001 |
DLAP questions | lodish8e_ch10_15_dlap.xml | 572b8a8b757a2ea731000001 |
Alternative Splicing Generates Transcripts with Different Combinations of Exons
| lodish8e_ch10_16.html | 572b8a8b757a2ea731000001 |
DLAP questions | lodish8e_ch10_16_dlap.xml | 572b8a8b757a2ea731000001 |
A Cascade of Regulated RNA Splicing Controls Drosophila Sexual Differentiation
| lodish8e_ch10_17.html | 572b8a8b757a2ea731000001 |
DLAP questions | lodish8e_ch10_17_dlap.xml | 572b8a8b757a2ea731000001 |
Splicing Repressors and Activators Control Splicing at Alternative Sites
| lodish8e_ch10_18.html | 572b8a8b757a2ea731000001 |
DLAP questions | lodish8e_ch10_18_dlap.xml | 572b8a8b757a2ea731000001 |
RNA Editing Alters the Sequences of Some Pre-mRNAs
| lodish8e_ch10_19.html | 572b8a8b757a2ea731000001 |
DLAP questions | lodish8e_ch10_19_dlap.xml | 572b8a8b757a2ea731000001 |
Key Concepts of Section 10.2 | lodish8e_ch10_20.html | 572b8a8b757a2ea731000001 |
DLAP questions | lodish8e_ch10_20_dlap.xml | 572b8a8b757a2ea731000001 |
10.3 Transport of mRNA Across the Nuclear Envelope
| lodish8e_ch10_21.html | 572b8a8b757a2ea731000001 |
DLAP questions | lodish8e_ch10_21_dlap.xml | 572b8a8b757a2ea731000001 |
Phosphorylation and Dephosphorylation of SR Proteins Imposes Directionality on mRNP Export Across the Nuclear Pore Complex
| lodish8e_ch10_22.html | 572b8a8b757a2ea731000001 |
DLAP questions | lodish8e_ch10_22_dlap.xml | 572b8a8b757a2ea731000001 |
Balbiani Rings in Insect Larval Salivary Glands Allow Direct Visualization of mRNP Export Through NPCs
| lodish8e_ch10_23.html | 572b8a8b757a2ea731000001 |
DLAP questions | lodish8e_ch10_23_dlap.xml | 572b8a8b757a2ea731000001 |
Pre-mRNAs in Spliceosomes Are Not Exported from the Nucleus
| lodish8e_ch10_24.html | 572b8a8b757a2ea731000001 |
DLAP questions | lodish8e_ch10_24_dlap.xml | 572b8a8b757a2ea731000001 |
HIV Rev Protein Regulates the Transport of Unspliced Viral mRNAs
| lodish8e_ch10_25.html | 572b8a8b757a2ea731000001 |
DLAP questions | lodish8e_ch10_25_dlap.xml | 572b8a8b757a2ea731000001 |
Key Concepts of Section 10.3 | lodish8e_ch10_26.html | 572b8a8b757a2ea731000001 |
DLAP questions | lodish8e_ch10_26_dlap.xml | 572b8a8b757a2ea731000001 |
10.4 Cytoplasmic Mechanisms of Post-transcriptional Control
| lodish8e_ch10_27.html | 572b8a8b757a2ea731000001 |
DLAP questions | lodish8e_ch10_27_dlap.xml | 572b8a8b757a2ea731000001 |
Degradation of mRNAs in the Cytoplasm Occurs by Several Mechanisms
| lodish8e_ch10_28.html | 572b8a8b757a2ea731000001 |
DLAP questions | lodish8e_ch10_28_dlap.xml | 572b8a8b757a2ea731000001 |
Adenines in mRNAs and lncRNAs May Be Post-transcriptionally Modified by N6 Methylation
| lodish8e_ch10_29.html | 572b8a8b757a2ea731000001 |
DLAP questions | lodish8e_ch10_29_dlap.xml | 572b8a8b757a2ea731000001 |
Micro-RNAs Repress Translation and Induce Degradation of Specific mRNAs
| lodish8e_ch10_30.html | 572b8a8b757a2ea731000001 |
DLAP questions | lodish8e_ch10_30_dlap.xml | 572b8a8b757a2ea731000001 |
Alternative Polyadenylation Increases miRNA Control Options
| lodish8e_ch10_31.html | 572b8a8b757a2ea731000001 |
DLAP questions | lodish8e_ch10_31_dlap.xml | 572b8a8b757a2ea731000001 |
RNA Interference Induces Degradation of Precisely Complementary mRNAs
| lodish8e_ch10_32.html | 572b8a8b757a2ea731000001 |
DLAP questions | lodish8e_ch10_32_dlap.xml | 572b8a8b757a2ea731000001 |
Cytoplasmic Polyadenylation Promotes Translation of Some mRNAs
| lodish8e_ch10_33.html | 572b8a8b757a2ea731000001 |
DLAP questions | lodish8e_ch10_33_dlap.xml | 572b8a8b757a2ea731000001 |
Protein Synthesis Can Be Globally Regulated
| lodish8e_ch10_34.html | 572b8a8b757a2ea731000001 |
DLAP questions | lodish8e_ch10_34_dlap.xml | 572b8a8b757a2ea731000001 |
Sequence-Specific RNA-Binding Proteins Control Translation of Specific mRNAs
| lodish8e_ch10_35.html | 572b8a8b757a2ea731000001 |
DLAP questions | lodish8e_ch10_35_dlap.xml | 572b8a8b757a2ea731000001 |
Surveillance Mechanisms Prevent Translation of Improperly Processed mRNAs
| lodish8e_ch10_36.html | 572b8a8b757a2ea731000001 |
DLAP questions | lodish8e_ch10_36_dlap.xml | 572b8a8b757a2ea731000001 |
Localization of mRNAs Permits Production of Proteins at Specific Regions Within the Cytoplasm
| lodish8e_ch10_37.html | 572b8a8b757a2ea731000001 |
DLAP questions | lodish8e_ch10_37_dlap.xml | 572b8a8b757a2ea731000001 |
Key Concepts of Section 10.4 | lodish8e_ch10_38.html | 572b8a8b757a2ea731000001 |
DLAP questions | lodish8e_ch10_38_dlap.xml | 572b8a8b757a2ea731000001 |
10.5 Processing of rRNA and tRNA
| lodish8e_ch10_39.html | 572b8a8b757a2ea731000001 |
DLAP questions | lodish8e_ch10_39_dlap.xml | 572b8a8b757a2ea731000001 |
Pre-rRNA Genes Function as Nucleolar Organizers
| lodish8e_ch10_40.html | 572b8a8b757a2ea731000001 |
DLAP questions | lodish8e_ch10_40_dlap.xml | 572b8a8b757a2ea731000001 |
Small Nucleolar RNAs Assist in Processing Pre-rRNAs
| lodish8e_ch10_41.html | 572b8a8b757a2ea731000001 |
DLAP questions | lodish8e_ch10_41_dlap.xml | 572b8a8b757a2ea731000001 |
Self-Splicing Group I Introns Were the First Examples of Catalytic RNA
| lodish8e_ch10_42.html | 572b8a8b757a2ea731000001 |
DLAP questions | lodish8e_ch10_42_dlap.xml | 572b8a8b757a2ea731000001 |
Pre-tRNAs Undergo Extensive Modification in the Nucleus
| lodish8e_ch10_43.html | 572b8a8b757a2ea731000001 |
DLAP questions | lodish8e_ch10_43_dlap.xml | 572b8a8b757a2ea731000001 |
Nuclear Bodies Are Functionally Specialized Nuclear Domains
| lodish8e_ch10_44.html | 572b8a8b757a2ea731000001 |
DLAP questions | lodish8e_ch10_44_dlap.xml | 572b8a8b757a2ea731000001 |
Key Concepts of Section 10.5 | lodish8e_ch10_45.html | 572b8a8b757a2ea731000001 |
DLAP questions | lodish8e_ch10_45_dlap.xml | 572b8a8b757a2ea731000001 |
Key Terms
| lodish8e_ch10_46.html | 572b8a8b757a2ea731000001 |
DLAP questions | lodish8e_ch10_46_dlap.xml | 572b8a8b757a2ea731000001 |
Review the Concepts
| lodish8e_ch10_47.html | 572b8a8b757a2ea731000001 |
DLAP questions | lodish8e_ch10_47_dlap.xml | 572b8a8b757a2ea731000001 |
Extended References
| lodish8e_ch10_48.html | 572b8a8b757a2ea731000001 |
DLAP questions | lodish8e_ch10_48_dlap.xml | 572b8a8b757a2ea731000001 |
Perspectives for the Future
| lodish8e_ch10_49.html | 572b8a8b757a2ea731000001 |
DLAP questions | lodish8e_ch10_49_dlap.xml | 572b8a8b757a2ea731000001 |
Chapter Introduction | lodish8e_ch11_1.html | 572b8b0d757a2efc31000000 |
DLAP questions | lodish8e_ch11_1_dlap.xml | 572b8b0d757a2efc31000000 |
11.1 Overview of Transmembrane Transport
| lodish8e_ch11_2.html | 572b8b0d757a2efc31000000 |
DLAP questions | lodish8e_ch11_2_dlap.xml | 572b8b0d757a2efc31000000 |
Only Gases and Small Uncharged Molecules Cross Membranes by Simple Diffusion
| lodish8e_ch11_3.html | 572b8b0d757a2efc31000000 |
DLAP questions | lodish8e_ch11_3_dlap.xml | 572b8b0d757a2efc31000000 |
Three Main Classes of Membrane Proteins Transport Molecules and Ions Across Cellular Membranes
| lodish8e_ch11_4.html | 572b8b0d757a2efc31000000 |
DLAP questions | lodish8e_ch11_4_dlap.xml | 572b8b0d757a2efc31000000 |
Key Concepts of Section 11.1 | lodish8e_ch11_5.html | 572b8b0d757a2efc31000000 |
DLAP questions | lodish8e_ch11_5_dlap.xml | 572b8b0d757a2efc31000000 |
11.2 Facilitated Transport of Glucose and Water
| lodish8e_ch11_6.html | 572b8b0d757a2efc31000000 |
DLAP questions | lodish8e_ch11_6_dlap.xml | 572b8b0d757a2efc31000000 |
Uniport Transport Is Faster and More Specific than Simple Diffusion
| lodish8e_ch11_7.html | 572b8b0d757a2efc31000000 |
DLAP questions | lodish8e_ch11_7_dlap.xml | 572b8b0d757a2efc31000000 |
The Low Km of the GLUT1 Uniporter Enables It to Transport Glucose into Most Mammalian Cells
| lodish8e_ch11_8.html | 572b8b0d757a2efc31000000 |
DLAP questions | lodish8e_ch11_8_dlap.xml | 572b8b0d757a2efc31000000 |
The Human Genome Encodes a Family of Sugar-Transporting GLUT Proteins
| lodish8e_ch11_9.html | 572b8b0d757a2efc31000000 |
DLAP questions | lodish8e_ch11_9_dlap.xml | 572b8b0d757a2efc31000000 |
Transport Proteins Can Be Studied Using Artificial Membranes and Recombinant Cells
| lodish8e_ch11_10.html | 572b8b0d757a2efc31000000 |
DLAP questions | lodish8e_ch11_10_dlap.xml | 572b8b0d757a2efc31000000 |
Osmotic Pressure Causes Water to Move Across Membranes
| lodish8e_ch11_11.html | 572b8b0d757a2efc31000000 |
DLAP questions | lodish8e_ch11_11_dlap.xml | 572b8b0d757a2efc31000000 |
Aquaporins Increase the Water Permeability of Cellular Membranes
| lodish8e_ch11_12.html | 572b8b0d757a2efc31000000 |
DLAP questions | lodish8e_ch11_12_dlap.xml | 572b8b0d757a2efc31000000 |
Key Concepts of Section 11.2 | lodish8e_ch11_13.html | 572b8b0d757a2efc31000000 |
DLAP questions | lodish8e_ch11_13_dlap.xml | 572b8b0d757a2efc31000000 |
11.3 ATP-Powered Pumps and the Intracellular Ionic Environment
| lodish8e_ch11_14.html | 572b8b0d757a2efc31000000 |
DLAP questions | lodish8e_ch11_14_dlap.xml | 572b8b0d757a2efc31000000 |
There Are Four Main Classes of ATP-Powered Pumps
| lodish8e_ch11_15.html | 572b8b0d757a2efc31000000 |
DLAP questions | lodish8e_ch11_15_dlap.xml | 572b8b0d757a2efc31000000 |
ATP-Powered Ion Pumps Generate and Maintain Ionic Gradients Across Cellular Membranes
| lodish8e_ch11_16.html | 572b8b0d757a2efc31000000 |
DLAP questions | lodish8e_ch11_16_dlap.xml | 572b8b0d757a2efc31000000 |
Muscle Relaxation Depends on Ca2+ ATPases That Pump Ca2+ from the Cytosol into the Sarcoplasmic Reticulum
| lodish8e_ch11_17.html | 572b8b0d757a2efc31000000 |
DLAP questions | lodish8e_ch11_17_dlap.xml | 572b8b0d757a2efc31000000 |
The Mechanism of Action of the Ca2+ Pump Is Known in Detail
| lodish8e_ch11_18.html | 572b8b0d757a2efc31000000 |
DLAP questions | lodish8e_ch11_18_dlap.xml | 572b8b0d757a2efc31000000 |
Calmodulin Regulates the Plasma-Membrane Pumps That Control Cytosolic Ca2+ Concentrations
| lodish8e_ch11_19.html | 572b8b0d757a2efc31000000 |
DLAP questions | lodish8e_ch11_19_dlap.xml | 572b8b0d757a2efc31000000 |
The Na+/K+ ATPase Maintains the Intracellular Na+ and K+ Concentrations in Animal Cells
| lodish8e_ch11_20.html | 572b8b0d757a2efc31000000 |
DLAP questions | lodish8e_ch11_20_dlap.xml | 572b8b0d757a2efc31000000 |
V-Class H+ ATPases Maintain the Acidity of Lysosomes and Vacuoles
| lodish8e_ch11_21.html | 572b8b0d757a2efc31000000 |
DLAP questions | lodish8e_ch11_21_dlap.xml | 572b8b0d757a2efc31000000 |
ABC Proteins Export a Wide Variety of Drugs and Toxins from the Cell
| lodish8e_ch11_22.html | 572b8b0d757a2efc31000000 |
DLAP questions | lodish8e_ch11_22_dlap.xml | 572b8b0d757a2efc31000000 |
Certain ABC Proteins âFlipâ Phospholipids and Other Lipid-Soluble Substrates from One Membrane Leaflet to the Other
| lodish8e_ch11_23.html | 572b8b0d757a2efc31000000 |
DLAP questions | lodish8e_ch11_23_dlap.xml | 572b8b0d757a2efc31000000 |
The ABC Cystic Fibrosis Transmembrane Regulator Is a Chloride Channel, Not a Pump
| lodish8e_ch11_24.html | 572b8b0d757a2efc31000000 |
DLAP questions | lodish8e_ch11_24_dlap.xml | 572b8b0d757a2efc31000000 |
Key Concepts of Section 11.3 | lodish8e_ch11_25.html | 572b8b0d757a2efc31000000 |
DLAP questions | lodish8e_ch11_25_dlap.xml | 572b8b0d757a2efc31000000 |
11.4 Nongated Ion Channels and the Resting Membrane Potential
| lodish8e_ch11_26.html | 572b8b0d757a2efc31000000 |
DLAP questions | lodish8e_ch11_26_dlap.xml | 572b8b0d757a2efc31000000 |
Selective Movement of Ions Creates a Transmembrane Electric Gradient
| lodish8e_ch11_27.html | 572b8b0d757a2efc31000000 |
DLAP questions | lodish8e_ch11_27_dlap.xml | 572b8b0d757a2efc31000000 |
The Resting Membrane Potential in Animal Cells Depends Largely on the Outward Flow of K+ Ions Through Open K+ Channels
| lodish8e_ch11_28.html | 572b8b0d757a2efc31000000 |
DLAP questions | lodish8e_ch11_28_dlap.xml | 572b8b0d757a2efc31000000 |
Ion Channels Are Selective for Certain Ions by Virtue of a Molecular âSelectivity Filterâ
| lodish8e_ch11_29.html | 572b8b0d757a2efc31000000 |
DLAP questions | lodish8e_ch11_29_dlap.xml | 572b8b0d757a2efc31000000 |
Patch Clamps Permit Measurement of Ion Movements Through Single Channels
| lodish8e_ch11_30.html | 572b8b0d757a2efc31000000 |
DLAP questions | lodish8e_ch11_30_dlap.xml | 572b8b0d757a2efc31000000 |
Novel Ion Channels Can Be Characterized by a Combination of Oocyte Expression and Patch Clamping
| lodish8e_ch11_31.html | 572b8b0d757a2efc31000000 |
DLAP questions | lodish8e_ch11_31_dlap.xml | 572b8b0d757a2efc31000000 |
Key Concepts of Section 11.4 | lodish8e_ch11_32.html | 572b8b0d757a2efc31000000 |
DLAP questions | lodish8e_ch11_32_dlap.xml | 572b8b0d757a2efc31000000 |
11.5 Cotransport by Symporters and Antiporters
| lodish8e_ch11_33.html | 572b8b0d757a2efc31000000 |
DLAP questions | lodish8e_ch11_33_dlap.xml | 572b8b0d757a2efc31000000 |
Na+ Entry into Mammalian Cells Is Thermodynamically Favored
| lodish8e_ch11_34.html | 572b8b0d757a2efc31000000 |
DLAP questions | lodish8e_ch11_34_dlap.xml | 572b8b0d757a2efc31000000 |
Na+-Linked Symporters Enable Animal Cells to Import Glucose and Amino Acids Against High Concentration Gradients
| lodish8e_ch11_35.html | 572b8b0d757a2efc31000000 |
DLAP questions | lodish8e_ch11_35_dlap.xml | 572b8b0d757a2efc31000000 |
A Bacterial Na+/Amino Acid Symporter Reveals How Symport Works
| lodish8e_ch11_36.html | 572b8b0d757a2efc31000000 |
DLAP questions | lodish8e_ch11_36_dlap.xml | 572b8b0d757a2efc31000000 |
A Na+-Linked Ca2+ Antiporter Regulates the Strength of Cardiac Muscle Contraction
| lodish8e_ch11_37.html | 572b8b0d757a2efc31000000 |
DLAP questions | lodish8e_ch11_37_dlap.xml | 572b8b0d757a2efc31000000 |
Several Cotransporters Regulate Cytosolic pH
| lodish8e_ch11_38.html | 572b8b0d757a2efc31000000 |
DLAP questions | lodish8e_ch11_38_dlap.xml | 572b8b0d757a2efc31000000 |
An Anion Antiporter Is Essential for Transport of CO2 by Erythrocytes
| lodish8e_ch11_39.html | 572b8b0d757a2efc31000000 |
DLAP questions | lodish8e_ch11_39_dlap.xml | 572b8b0d757a2efc31000000 |
Numerous Transport Proteins Enable Plant Vacuoles to Accumulate Metabolites and Ions
| lodish8e_ch11_40.html | 572b8b0d757a2efc31000000 |
DLAP questions | lodish8e_ch11_40_dlap.xml | 572b8b0d757a2efc31000000 |
Key Concepts of Section 11.5 | lodish8e_ch11_41.html | 572b8b0d757a2efc31000000 |
DLAP questions | lodish8e_ch11_41_dlap.xml | 572b8b0d757a2efc31000000 |
11.6 Transcellular Transport
| lodish8e_ch11_42.html | 572b8b0d757a2efc31000000 |
DLAP questions | lodish8e_ch11_42_dlap.xml | 572b8b0d757a2efc31000000 |
Multiple Transport Proteins Are Needed to Move Glucose and Amino Acids Across Epithelia
| lodish8e_ch11_43.html | 572b8b0d757a2efc31000000 |
DLAP questions | lodish8e_ch11_43_dlap.xml | 572b8b0d757a2efc31000000 |
Simple Rehydration Therapy Depends on the Osmotic Gradient Created by Absorption of Glucose and Na+ | lodish8e_ch11_44.html | 572b8b0d757a2efc31000000 |
DLAP questions | lodish8e_ch11_44_dlap.xml | 572b8b0d757a2efc31000000 |
Parietal Cells Acidify the Stomach Contents While Maintaining a Neutral Cytosolic pH
| lodish8e_ch11_45.html | 572b8b0d757a2efc31000000 |
DLAP questions | lodish8e_ch11_45_dlap.xml | 572b8b0d757a2efc31000000 |
Bone Resorption Requires the Coordinated Function of a V-Class Proton Pump and a Specific Chloride Channel
| lodish8e_ch11_46.html | 572b8b0d757a2efc31000000 |
DLAP questions | lodish8e_ch11_46_dlap.xml | 572b8b0d757a2efc31000000 |
Key Concepts of Section 11.6 | lodish8e_ch11_47.html | 572b8b0d757a2efc31000000 |
DLAP questions | lodish8e_ch11_47_dlap.xml | 572b8b0d757a2efc31000000 |
Key Terms
| lodish8e_ch11_48.html | 572b8b0d757a2efc31000000 |
DLAP questions | lodish8e_ch11_48_dlap.xml | 572b8b0d757a2efc31000000 |
Review the Concepts
| lodish8e_ch11_49.html | 572b8b0d757a2efc31000000 |
DLAP questions | lodish8e_ch11_49_dlap.xml | 572b8b0d757a2efc31000000 |
Extended References
| lodish8e_ch11_50.html | 572b8b0d757a2efc31000000 |
DLAP questions | lodish8e_ch11_50_dlap.xml | 572b8b0d757a2efc31000000 |
Perspectives for the Future
| lodish8e_ch11_51.html | 572b8b0d757a2efc31000000 |
DLAP questions | lodish8e_ch11_51_dlap.xml | 572b8b0d757a2efc31000000 |
Classic Experiment 11-1: Stumbling upon Active Transport | lodish8e_ch11_52.html | 572b8b0d757a2efc31000000 |
DLAP questions | lodish8e_ch11_52_dlap.xml | 572b8b0d757a2efc31000000 |
Chapter Introduction | lodish8e_ch12_1.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_1_dlap.xml | 572b8b9d757a2e9231000000 |
12.1 First Step of Harvesting Energy from Glucose: Glycolysis
| lodish8e_ch12_2.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_2_dlap.xml | 572b8b9d757a2e9231000000 |
During Glycolysis (Stage I), Cytosolic Enzymes Convert Glucose to Pyruvate
| lodish8e_ch12_3.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_3_dlap.xml | 572b8b9d757a2e9231000000 |
The Rate of Glycolysis Is Adjusted to Meet the Cellâs Need for ATP
| lodish8e_ch12_4.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_4_dlap.xml | 572b8b9d757a2e9231000000 |
Glucose Is Fermented When Oxygen Is Scarce
| lodish8e_ch12_5.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_5_dlap.xml | 572b8b9d757a2e9231000000 |
Key Concepts of Section 12.1 | lodish8e_ch12_6.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_6_dlap.xml | 572b8b9d757a2e9231000000 |
12.2 The Structure and Functions of Mitochondria
| lodish8e_ch12_7.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_7_dlap.xml | 572b8b9d757a2e9231000000 |
Mitochondria Are Multifunctional Organelles
| lodish8e_ch12_8.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_8_dlap.xml | 572b8b9d757a2e9231000000 |
Mitochondria Have Two Structurally and Functionally Distinct Membranes
| lodish8e_ch12_9.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_9_dlap.xml | 572b8b9d757a2e9231000000 |
Mitochondria Contain DNA Located in the Matrix
| lodish8e_ch12_10.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_10_dlap.xml | 572b8b9d757a2e9231000000 |
The Size, Structure, and Coding Capacity of mtDNA Vary Considerably Among Organisms
| lodish8e_ch12_11.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_11_dlap.xml | 572b8b9d757a2e9231000000 |
Products of Mitochondrial Genes Are Not Exported
| lodish8e_ch12_12.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_12_dlap.xml | 572b8b9d757a2e9231000000 |
Mitochondria Evolved from a Single Endosymbiotic Event Involving a Rickettsia-Like Bacterium
| lodish8e_ch12_13.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_13_dlap.xml | 572b8b9d757a2e9231000000 |
Mitochondrial Genetic Codes Differ from the Standard Nuclear Code
| lodish8e_ch12_14.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_14_dlap.xml | 572b8b9d757a2e9231000000 |
Mutations in Mitochondrial DNA Cause Several Genetic Diseases in Humans
| lodish8e_ch12_15.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_15_dlap.xml | 572b8b9d757a2e9231000000 |
Mitochondria Are Dynamic Organelles That Interact Directly with One Another
| lodish8e_ch12_16.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_16_dlap.xml | 572b8b9d757a2e9231000000 |
Mitochondria Are Influenced by Direct Contacts with the Endoplasmic Reticulum
| lodish8e_ch12_17.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_17_dlap.xml | 572b8b9d757a2e9231000000 |
Key Concepts of Section 12.2 | lodish8e_ch12_18.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_18_dlap.xml | 572b8b9d757a2e9231000000 |
12.3 The Citric Acid Cycle and Fatty Acid Oxidation
| lodish8e_ch12_19.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_19_dlap.xml | 572b8b9d757a2e9231000000 |
In the First Part of Stage II, Pyruvate Is Converted to Acetyl CoA and High-Energy Electrons
| lodish8e_ch12_20.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_20_dlap.xml | 572b8b9d757a2e9231000000 |
In the Second Part of Stage II, the Citric Acid Cycle Oxidizes the Acetyl Group in Acetyl CoA to CO2 and Generates High-Energy Electrons
| lodish8e_ch12_21.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_21_dlap.xml | 572b8b9d757a2e9231000000 |
Transporters in the Inner Mitochondrial Membrane Help Maintain Appropriate Cytosolic and Matrix Concentrations of NAD+ and NADH
| lodish8e_ch12_22.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_22_dlap.xml | 572b8b9d757a2e9231000000 |
Mitochondrial Oxidation of Fatty Acids Generates ATP
| lodish8e_ch12_23.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_23_dlap.xml | 572b8b9d757a2e9231000000 |
Peroxisomal Oxidation of Fatty Acids Generates No ATP
| lodish8e_ch12_24.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_24_dlap.xml | 572b8b9d757a2e9231000000 |
Key Concepts of Section 12.3 | lodish8e_ch12_25.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_25_dlap.xml | 572b8b9d757a2e9231000000 |
12.4 The Electron-Transport Chain and Generation of the Proton-Motive Force
| lodish8e_ch12_26.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_26_dlap.xml | 572b8b9d757a2e9231000000 |
Oxidation of NADH and FADH2 Releases a Significant Amount of Energy
| lodish8e_ch12_27.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_27_dlap.xml | 572b8b9d757a2e9231000000 |
Electron Transport in Mitochondria Is Coupled to Proton Pumping
| lodish8e_ch12_28.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_28_dlap.xml | 572b8b9d757a2e9231000000 |
Electrons Flow âDownhillâ Through a Series of Electron Carriers
| lodish8e_ch12_29.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_29_dlap.xml | 572b8b9d757a2e9231000000 |
Four Large Multiprotein Complexes Couple Electron Transport to Proton Pumping Across the Inner Mitochondrial Membrane
| lodish8e_ch12_30.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_30_dlap.xml | 572b8b9d757a2e9231000000 |
The Reduction Potentials of Electron Carriers in the Electron-Transport Chain Favor Electron Flow from NADH to O2 | lodish8e_ch12_31.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_31_dlap.xml | 572b8b9d757a2e9231000000 |
The Multiprotein Complexes of the Electron-Transport Chain Assemble into Supercomplexes
| lodish8e_ch12_32.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_32_dlap.xml | 572b8b9d757a2e9231000000 |
Reactive Oxygen Species Are By-Products of Electron Transport
| lodish8e_ch12_33.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_33_dlap.xml | 572b8b9d757a2e9231000000 |
Experiments Using Purified Electron-Transport Chain Complexes Established the Stoichiometry of Proton Pumping
| lodish8e_ch12_34.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_34_dlap.xml | 572b8b9d757a2e9231000000 |
The Proton-Motive Force in Mitochondria Is Due Largely to a Voltage Gradient Across the Inner Membrane
| lodish8e_ch12_35.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_35_dlap.xml | 572b8b9d757a2e9231000000 |
Key Concepts of Section 12.4 | lodish8e_ch12_36.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_36_dlap.xml | 572b8b9d757a2e9231000000 |
12.5 Harnessing the Proton-Motive Force to Synthesize ATP
| lodish8e_ch12_37.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_37_dlap.xml | 572b8b9d757a2e9231000000 |
The Mechanism of ATP Synthesis Is Shared Among Bacteria, Mitochondria, and Chloroplasts
| lodish8e_ch12_38.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_38_dlap.xml | 572b8b9d757a2e9231000000 |
ATP Synthase Comprises F0 and F1 Multiprotein Complexes
| lodish8e_ch12_39.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_39_dlap.xml | 572b8b9d757a2e9231000000 |
Rotation of the F1 γ Subunit, Driven by Proton Movement Through F0, Powers ATP Synthesis
| lodish8e_ch12_40.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_40_dlap.xml | 572b8b9d757a2e9231000000 |
Multiple Protons Must Pass Through ATP Synthase to Synthesize One ATP
| lodish8e_ch12_41.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_41_dlap.xml | 572b8b9d757a2e9231000000 |
F0 c Ring Rotation Is Driven by Protons Flowing Through Transmembrane Channels
| lodish8e_ch12_42.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_42_dlap.xml | 572b8b9d757a2e9231000000 |
ATP-ADP Exchange Across the Inner Mitochondrial Membrane Is Powered by the Proton-Motive Force
| lodish8e_ch12_43.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_43_dlap.xml | 572b8b9d757a2e9231000000 |
The Rate of Mitochondrial Oxidation Normally Depends on ADP Levels
| lodish8e_ch12_44.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_44_dlap.xml | 572b8b9d757a2e9231000000 |
Mitochondria in Brown Fat Use the Proton-Motive Force to Generate Heat
| lodish8e_ch12_45.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_45_dlap.xml | 572b8b9d757a2e9231000000 |
Key Concepts of Section 12.5 | lodish8e_ch12_46.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_46_dlap.xml | 572b8b9d757a2e9231000000 |
12.6 Photosynthesis and Light-Absorbing Pigments
| lodish8e_ch12_47.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_47_dlap.xml | 572b8b9d757a2e9231000000 |
Thylakoid Membranes in Chloroplasts Are the Sites of Photosynthesis in Plants
| lodish8e_ch12_48.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_48_dlap.xml | 572b8b9d757a2e9231000000 |
Chloroplasts Contain Large DNAs Often Encoding More Than a Hundred Proteins
| lodish8e_ch12_49.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_49_dlap.xml | 572b8b9d757a2e9231000000 |
Three of the Four Stages in Photosynthesis Occur Only During Illumination
| lodish8e_ch12_50.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_50_dlap.xml | 572b8b9d757a2e9231000000 |
Photosystems Comprise a Reaction Center and Associated Light-Harvesting Complexes
| lodish8e_ch12_51.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_51_dlap.xml | 572b8b9d757a2e9231000000 |
Photoelectron Transport from Energized Reaction-Center Chlorophyll a Produces a Charge Separation
| lodish8e_ch12_52.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_52_dlap.xml | 572b8b9d757a2e9231000000 |
Internal Antennas and Light-Harvesting Complexes Increase the Efficiency of Photosynthesis
| lodish8e_ch12_53.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_53_dlap.xml | 572b8b9d757a2e9231000000 |
Key Concepts of Section 12.6 | lodish8e_ch12_54.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_54_dlap.xml | 572b8b9d757a2e9231000000 |
12.7 Molecular Analysis of Photosystems
| lodish8e_ch12_55.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_55_dlap.xml | 572b8b9d757a2e9231000000 |
The Single Photosystem of Purple Bacteria Generates a Proton-Motive Force but No O2 | lodish8e_ch12_56.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_56_dlap.xml | 572b8b9d757a2e9231000000 |
Chloroplasts Contain Two Functionally and Spatially Distinct Photosystems
| lodish8e_ch12_57.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_57_dlap.xml | 572b8b9d757a2e9231000000 |
Linear Electron Flow Through Both Plant Photosystems Generates a Proton-Motive Force, O2, and NADPH
| lodish8e_ch12_58.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_58_dlap.xml | 572b8b9d757a2e9231000000 |
An Oxygen-Evolving Complex Is Located on the Luminal Surface of the PSII Reaction Center
| lodish8e_ch12_59.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_59_dlap.xml | 572b8b9d757a2e9231000000 |
Multiple Mechanisms Protect Cells Against Damage from Reactive Oxygen Species During Photoelectron Transport
| lodish8e_ch12_60.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_60_dlap.xml | 572b8b9d757a2e9231000000 |
Cyclic Electron Flow Through PSI Generates a Proton-Motive Force but No NADPH or O2 | lodish8e_ch12_61.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_61_dlap.xml | 572b8b9d757a2e9231000000 |
Relative Activities of Photosystems I and II Are Regulated
| lodish8e_ch12_62.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_62_dlap.xml | 572b8b9d757a2e9231000000 |
Key Concepts of Section 12.7 | lodish8e_ch12_63.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_63_dlap.xml | 572b8b9d757a2e9231000000 |
12.8 CO2 Metabolism During Photosynthesis
| lodish8e_ch12_64.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_64_dlap.xml | 572b8b9d757a2e9231000000 |
Rubisco Fixes CO2 in the Chloroplast Stroma
| lodish8e_ch12_65.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_65_dlap.xml | 572b8b9d757a2e9231000000 |
Synthesis of Sucrose Using Fixed CO2 Is Completed in the Cytosol
| lodish8e_ch12_66.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_66_dlap.xml | 572b8b9d757a2e9231000000 |
Light and Rubisco Activase Stimulate CO2 Fixation
| lodish8e_ch12_67.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_67_dlap.xml | 572b8b9d757a2e9231000000 |
Photorespiration Competes with Carbon Fixation and Is Reduced in C4 Plants
| lodish8e_ch12_68.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_68_dlap.xml | 572b8b9d757a2e9231000000 |
Key Concepts of Section 12.8 | lodish8e_ch12_69.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_69_dlap.xml | 572b8b9d757a2e9231000000 |
Key Terms
| lodish8e_ch12_70.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_70_dlap.xml | 572b8b9d757a2e9231000000 |
Review the Concepts
| lodish8e_ch12_71.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_71_dlap.xml | 572b8b9d757a2e9231000000 |
Extended References
| lodish8e_ch12_72.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_72_dlap.xml | 572b8b9d757a2e9231000000 |
Perspectives for the Future
| lodish8e_ch12_73.html | 572b8b9d757a2e9231000000 |
DLAP questions | lodish8e_ch12_73_dlap.xml | 572b8b9d757a2e9231000000 |
Chapter Introduction | lodish8e_ch13_1.html | 56e9963a757a2e9e52000000 |
DLAP questions | lodish8e_ch13_1_dlap.xml | 56e9963a757a2e9e52000000 |
13.1 Targeting Proteins To and Across the ER Membrane
| lodish8e_ch13_2.html | 56e9963a757a2e9e52000000 |
DLAP questions | lodish8e_ch13_2_dlap.xml | 56e9963a757a2e9e52000000 |
Pulse-Chase Experiments with Purified ER Membranes Demonstrated That Secreted Proteins Cross the ER Membrane
| lodish8e_ch13_3.html | 56e9963a757a2e9e52000000 |
DLAP questions | lodish8e_ch13_3_dlap.xml | 56e9963a757a2e9e52000000 |
A Hydrophobic N-Terminal Signal Sequence Targets Nascent Secretory Proteins to the ER
| lodish8e_ch13_4.html | 56e9963a757a2e9e52000000 |
DLAP questions | lodish8e_ch13_4_dlap.xml | 56e9963a757a2e9e52000000 |
Cotranslational Translocation Is Initiated by Two GTP-Hydrolyzing Proteins
| lodish8e_ch13_5.html | 56e9963a757a2e9e52000000 |
DLAP questions | lodish8e_ch13_5_dlap.xml | 56e9963a757a2e9e52000000 |
Passage of Growing Polypeptides Through the Translocon Is Driven by Translation
| lodish8e_ch13_6.html | 56e9963a757a2e9e52000000 |
DLAP questions | lodish8e_ch13_6_dlap.xml | 56e9963a757a2e9e52000000 |
ATP Hydrolysis Powers Post-translational Translocation of Some Secretory Proteins in Yeast
| lodish8e_ch13_7.html | 56e9963a757a2e9e52000000 |
DLAP questions | lodish8e_ch13_7_dlap.xml | 56e9963a757a2e9e52000000 |
Key Concepts of Section 13.1 | lodish8e_ch13_8.html | 56e9963a757a2e9e52000000 |
DLAP questions | lodish8e_ch13_8_dlap.xml | 56e9963a757a2e9e52000000 |
13.2 Insertion of Membrane Proteins into the ER
| lodish8e_ch13_9.html | 56e9963a757a2e9e52000000 |
DLAP questions | lodish8e_ch13_9_dlap.xml | 56e9963a757a2e9e52000000 |
Several Topological Classes of Integral Membrane Proteins Are Synthesized on the ER
| lodish8e_ch13_10.html | 56e9963a757a2e9e52000000 |
DLAP questions | lodish8e_ch13_10_dlap.xml | 56e9963a757a2e9e52000000 |
Internal Stop-Transfer Anchor and Signal-Anchor Sequences Determine Topology of Single-Pass Proteins
| lodish8e_ch13_11.html | 56e9963a757a2e9e52000000 |
DLAP questions | lodish8e_ch13_11_dlap.xml | 56e9963a757a2e9e52000000 |
Multipass Proteins Have Multiple Internal Topogenic Sequences
| lodish8e_ch13_12.html | 56e9963a757a2e9e52000000 |
DLAP questions | lodish8e_ch13_12_dlap.xml | 56e9963a757a2e9e52000000 |
A Phospholipid Anchor Tethers Some Cell-Surface Proteins to the Membrane
| lodish8e_ch13_13.html | 56e9963a757a2e9e52000000 |
DLAP questions | lodish8e_ch13_13_dlap.xml | 56e9963a757a2e9e52000000 |
The Topology of a Membrane Protein Can Often Be Deduced from Its Sequence
| lodish8e_ch13_14.html | 56e9963a757a2e9e52000000 |
DLAP questions | lodish8e_ch13_14_dlap.xml | 56e9963a757a2e9e52000000 |
Key Concepts of Section 13.2 | lodish8e_ch13_15.html | 56e9963a757a2e9e52000000 |
DLAP questions | lodish8e_ch13_15_dlap.xml | 56e9963a757a2e9e52000000 |
13.3 Protein Modifications, Folding, and Quality Control in the ER
| lodish8e_ch13_16.html | 56e9963a757a2e9e52000000 |
DLAP questions | lodish8e_ch13_16_dlap.xml | 56e9963a757a2e9e52000000 |
A Preformed N-Linked Oligosaccharide Is Added to Many Proteins in the Rough ER
| lodish8e_ch13_17.html | 56e9963a757a2e9e52000000 |
DLAP questions | lodish8e_ch13_17_dlap.xml | 56e9963a757a2e9e52000000 |
Oligosaccharide Side Chains May Promote Folding and Stability of Glycoproteins
| lodish8e_ch13_18.html | 56e9963a757a2e9e52000000 |
DLAP questions | lodish8e_ch13_18_dlap.xml | 56e9963a757a2e9e52000000 |
Disulfide Bonds Are Formed and Rearranged by Proteins in the ER Lumen
| lodish8e_ch13_19.html | 56e9963a757a2e9e52000000 |
DLAP questions | lodish8e_ch13_19_dlap.xml | 56e9963a757a2e9e52000000 |
Chaperones and Other ER Proteins Facilitate Folding and Assembly of Proteins
| lodish8e_ch13_20.html | 56e9963a757a2e9e52000000 |
DLAP questions | lodish8e_ch13_20_dlap.xml | 56e9963a757a2e9e52000000 |
Improperly Folded Proteins in the ER Induce Expression of Protein-Folding Catalysts
| lodish8e_ch13_21.html | 56e9963a757a2e9e52000000 |
DLAP questions | lodish8e_ch13_21_dlap.xml | 56e9963a757a2e9e52000000 |
Unassembled or Misfolded Proteins in the ER Are Often Transported to the Cytosol for Degradation
| lodish8e_ch13_22.html | 56e9963a757a2e9e52000000 |
DLAP questions | lodish8e_ch13_22_dlap.xml | 56e9963a757a2e9e52000000 |
Key Concepts of Section 13.3 | lodish8e_ch13_23.html | 56e9963a757a2e9e52000000 |
DLAP questions | lodish8e_ch13_23_dlap.xml | 56e9963a757a2e9e52000000 |
13.4 Targeting of Proteins to Mitochondria and Chloroplasts
| lodish8e_ch13_24.html | 56e9963a757a2e9e52000000 |
DLAP questions | lodish8e_ch13_24_dlap.xml | 56e9963a757a2e9e52000000 |
Amphipathic N-Terminal Targeting Sequences Direct Proteins to the Mitochondrial Matrix
| lodish8e_ch13_25.html | 56e9963a757a2e9e52000000 |
DLAP questions | lodish8e_ch13_25_dlap.xml | 56e9963a757a2e9e52000000 |
Mitochondrial Protein Import Requires Outer-Membrane Receptors and Translocons in Both Membranes
| lodish8e_ch13_26.html | 56e9963a757a2e9e52000000 |
DLAP questions | lodish8e_ch13_26_dlap.xml | 56e9963a757a2e9e52000000 |
Studies with Chimeric Proteins Demonstrate Important Features of Mitochondrial Protein Import
| lodish8e_ch13_27.html | 56e9963a757a2e9e52000000 |
DLAP questions | lodish8e_ch13_27_dlap.xml | 56e9963a757a2e9e52000000 |
Three Energy Inputs Are Needed to Import Proteins into Mitochondria
| lodish8e_ch13_28.html | 56e9963a757a2e9e52000000 |
DLAP questions | lodish8e_ch13_28_dlap.xml | 56e9963a757a2e9e52000000 |
Multiple Signals and Pathways Target Proteins to Submitochondrial Compartments
| lodish8e_ch13_29.html | 56e9963a757a2e9e52000000 |
DLAP questions | lodish8e_ch13_29_dlap.xml | 56e9963a757a2e9e52000000 |
Import of Chloroplast Stromal Proteins Is Similar to Import of Mitochondrial Matrix Proteins
| lodish8e_ch13_30.html | 56e9963a757a2e9e52000000 |
DLAP questions | lodish8e_ch13_30_dlap.xml | 56e9963a757a2e9e52000000 |
Proteins Are Targeted to Thylakoids by Mechanisms Related to Bacterial Protein Translocation
| lodish8e_ch13_31.html | 56e9963a757a2e9e52000000 |
DLAP questions | lodish8e_ch13_31_dlap.xml | 56e9963a757a2e9e52000000 |
Key Concepts of Section 13.4 | lodish8e_ch13_32.html | 56e9963a757a2e9e52000000 |
DLAP questions | lodish8e_ch13_32_dlap.xml | 56e9963a757a2e9e52000000 |
13.5 Targeting of Peroxisomal Proteins
| lodish8e_ch13_33.html | 56e9963a757a2e9e52000000 |
DLAP questions | lodish8e_ch13_33_dlap.xml | 56e9963a757a2e9e52000000 |
A Cytosolic Receptor Targets Proteins with an SKL Sequence at the C-Terminus to the Peroxisomal Matrix
| lodish8e_ch13_34.html | 56e9963a757a2e9e52000000 |
DLAP questions | lodish8e_ch13_34_dlap.xml | 56e9963a757a2e9e52000000 |
Peroxisomal Membrane and Matrix Proteins Are Incorporated by Different Pathways
| lodish8e_ch13_35.html | 56e9963a757a2e9e52000000 |
DLAP questions | lodish8e_ch13_35_dlap.xml | 56e9963a757a2e9e52000000 |
Key Concepts of Section 13.5 | lodish8e_ch13_36.html | 56e9963a757a2e9e52000000 |
DLAP questions | lodish8e_ch13_36_dlap.xml | 56e9963a757a2e9e52000000 |
13.6 Transport Into and Out of the Nucleus
| lodish8e_ch13_37.html | 56e9963a757a2e9e52000000 |
DLAP questions | lodish8e_ch13_37_dlap.xml | 56e9963a757a2e9e52000000 |
Large and Small Molecules Enter and Leave the Nucleus via Nuclear Pore Complexes
| lodish8e_ch13_38.html | 56e9963a757a2e9e52000000 |
DLAP questions | lodish8e_ch13_38_dlap.xml | 56e9963a757a2e9e52000000 |
Nuclear Transport Receptors Escort Proteins Containing Nuclear-Localization Signals into the Nucleus
| lodish8e_ch13_39.html | 56e9963a757a2e9e52000000 |
DLAP questions | lodish8e_ch13_39_dlap.xml | 56e9963a757a2e9e52000000 |
A Second Type of Nuclear Transport Receptor Escorts Proteins Containing Nuclear-Export Signals Out of the Nucleus
| lodish8e_ch13_40.html | 56e9963a757a2e9e52000000 |
DLAP questions | lodish8e_ch13_40_dlap.xml | 56e9963a757a2e9e52000000 |
Most mRNAs Are Exported from the Nucleus by a Ran-Independent Mechanism
| lodish8e_ch13_41.html | 56e9963a757a2e9e52000000 |
DLAP questions | lodish8e_ch13_41_dlap.xml | 56e9963a757a2e9e52000000 |
Key Concepts of Section 13.6 | lodish8e_ch13_42.html | 56e9963a757a2e9e52000000 |
DLAP questions | lodish8e_ch13_42_dlap.xml | 56e9963a757a2e9e52000000 |
Key Terms
| lodish8e_ch13_43.html | 56e9963a757a2e9e52000000 |
DLAP questions | lodish8e_ch13_43_dlap.xml | 56e9963a757a2e9e52000000 |
Review the Concepts
| lodish8e_ch13_44.html | 56e9963a757a2e9e52000000 |
DLAP questions | lodish8e_ch13_44_dlap.xml | 56e9963a757a2e9e52000000 |
References
| lodish8e_ch13_45.html | 56e9963a757a2e9e52000000 |
DLAP questions | lodish8e_ch13_45_dlap.xml | 56e9963a757a2e9e52000000 |
Perspectives for the Future
| lodish8e_ch13_46.html | 56e9963a757a2e9e52000000 |
DLAP questions | lodish8e_ch13_46_dlap.xml | 56e9963a757a2e9e52000000 |
Chapter Introduction | lodish8e_ch14_1.html | 572b8bf1757a2e0432000000 |
DLAP questions | lodish8e_ch14_1_dlap.xml | 572b8bf1757a2e0432000000 |
14.1 Techniques for Studying the Secretory Pathway
| lodish8e_ch14_2.html | 572b8bf1757a2e0432000000 |
DLAP questions | lodish8e_ch14_2_dlap.xml | 572b8bf1757a2e0432000000 |
Transport of a Protein Through the Secretory Pathway Can Be Assayed in Live Cells
| lodish8e_ch14_3.html | 572b8bf1757a2e0432000000 |
DLAP questions | lodish8e_ch14_3_dlap.xml | 572b8bf1757a2e0432000000 |
Yeast Mutants Define Major Stages and Many Components in Vesicular Transport
| lodish8e_ch14_4.html | 572b8bf1757a2e0432000000 |
DLAP questions | lodish8e_ch14_4_dlap.xml | 572b8bf1757a2e0432000000 |
Cell-Free Transport Assays Allow Dissection of Individual Steps in Vesicular Transport
| lodish8e_ch14_5.html | 572b8bf1757a2e0432000000 |
DLAP questions | lodish8e_ch14_5_dlap.xml | 572b8bf1757a2e0432000000 |
Key Concepts of Section 14.1 | lodish8e_ch14_6.html | 572b8bf1757a2e0432000000 |
DLAP questions | lodish8e_ch14_6_dlap.xml | 572b8bf1757a2e0432000000 |
14.2 Molecular Mechanisms of Vesicle Budding and Fusion
| lodish8e_ch14_7.html | 572b8bf1757a2e0432000000 |
DLAP questions | lodish8e_ch14_7_dlap.xml | 572b8bf1757a2e0432000000 |
Assembly of a Protein Coat Drives Vesicle Formation and Selection of Cargo Molecules
| lodish8e_ch14_8.html | 572b8bf1757a2e0432000000 |
DLAP questions | lodish8e_ch14_8_dlap.xml | 572b8bf1757a2e0432000000 |
A Conserved Set of GTPase Switch Proteins Controls the Assembly of Different Vesicle Coats
| lodish8e_ch14_9.html | 572b8bf1757a2e0432000000 |
DLAP questions | lodish8e_ch14_9_dlap.xml | 572b8bf1757a2e0432000000 |
Targeting Sequences on Cargo Proteins Make Specific Molecular Contacts with Coat Proteins
| lodish8e_ch14_10.html | 572b8bf1757a2e0432000000 |
DLAP questions | lodish8e_ch14_10_dlap.xml | 572b8bf1757a2e0432000000 |
Rab GTPases Control Docking of Vesicles on Target Membranes
| lodish8e_ch14_11.html | 572b8bf1757a2e0432000000 |
DLAP questions | lodish8e_ch14_11_dlap.xml | 572b8bf1757a2e0432000000 |
Paired Sets of SNARE Proteins Mediate Fusion of Vesicles with Target Membranes
| lodish8e_ch14_12.html | 572b8bf1757a2e0432000000 |
DLAP questions | lodish8e_ch14_12_dlap.xml | 572b8bf1757a2e0432000000 |
Dissociation of SNARE Complexes After Membrane Fusion Is Driven by ATP Hydrolysis
| lodish8e_ch14_13.html | 572b8bf1757a2e0432000000 |
DLAP questions | lodish8e_ch14_13_dlap.xml | 572b8bf1757a2e0432000000 |
Key Concepts of Section 14.2 | lodish8e_ch14_14.html | 572b8bf1757a2e0432000000 |
DLAP questions | lodish8e_ch14_14_dlap.xml | 572b8bf1757a2e0432000000 |
14.3 Early Stages of the Secretory Pathway
| lodish8e_ch14_15.html | 572b8bf1757a2e0432000000 |
DLAP questions | lodish8e_ch14_15_dlap.xml | 572b8bf1757a2e0432000000 |
COPII Vesicles Mediate Transport from the ER to the Golgi
| lodish8e_ch14_16.html | 572b8bf1757a2e0432000000 |
DLAP questions | lodish8e_ch14_16_dlap.xml | 572b8bf1757a2e0432000000 |
COPI Vesicles Mediate Retrograde Transport Within the Golgi and from the Golgi to the ER
| lodish8e_ch14_17.html | 572b8bf1757a2e0432000000 |
DLAP questions | lodish8e_ch14_17_dlap.xml | 572b8bf1757a2e0432000000 |
Anterograde Transport Through the Golgi Occurs by Cisternal Maturation
| lodish8e_ch14_18.html | 572b8bf1757a2e0432000000 |
DLAP questions | lodish8e_ch14_18_dlap.xml | 572b8bf1757a2e0432000000 |
Key Concepts of Section 14.3 | lodish8e_ch14_19.html | 572b8bf1757a2e0432000000 |
DLAP questions | lodish8e_ch14_19_dlap.xml | 572b8bf1757a2e0432000000 |
14.4 Later Stages of the Secretory Pathway
| lodish8e_ch14_20.html | 572b8bf1757a2e0432000000 |
DLAP questions | lodish8e_ch14_20_dlap.xml | 572b8bf1757a2e0432000000 |
Vesicles Coated with Clathrin and Adapter Proteins Mediate Transport from the trans-Golgi
| lodish8e_ch14_21.html | 572b8bf1757a2e0432000000 |
DLAP questions | lodish8e_ch14_21_dlap.xml | 572b8bf1757a2e0432000000 |
Dynamin Is Required for Pinching Off of Clathrin-Coated Vesicles
| lodish8e_ch14_22.html | 572b8bf1757a2e0432000000 |
DLAP questions | lodish8e_ch14_22_dlap.xml | 572b8bf1757a2e0432000000 |
Mannose 6-Phosphate Residues Target Soluble Proteins to Lysosomes
| lodish8e_ch14_23.html | 572b8bf1757a2e0432000000 |
DLAP questions | lodish8e_ch14_23_dlap.xml | 572b8bf1757a2e0432000000 |
Study of Lysosomal Storage Diseases Revealed Key Components of the Lysosomal Sorting Pathway
| lodish8e_ch14_24.html | 572b8bf1757a2e0432000000 |
DLAP questions | lodish8e_ch14_24_dlap.xml | 572b8bf1757a2e0432000000 |
Protein Aggregation in the trans-Golgi May Function in Sorting Proteins to Regulated Secretory Vesicles
| lodish8e_ch14_25.html | 572b8bf1757a2e0432000000 |
DLAP questions | lodish8e_ch14_25_dlap.xml | 572b8bf1757a2e0432000000 |
Some Proteins Undergo Proteolytic Processing After Leaving the trans-Golgi
| lodish8e_ch14_26.html | 572b8bf1757a2e0432000000 |
DLAP questions | lodish8e_ch14_26_dlap.xml | 572b8bf1757a2e0432000000 |
Several Pathways Sort Membrane Proteins to the Apical or Basolateral Region of Polarized Cells
| lodish8e_ch14_27.html | 572b8bf1757a2e0432000000 |
DLAP questions | lodish8e_ch14_27_dlap.xml | 572b8bf1757a2e0432000000 |
Key Concepts of Section 14.4 | lodish8e_ch14_28.html | 572b8bf1757a2e0432000000 |
DLAP questions | lodish8e_ch14_28_dlap.xml | 572b8bf1757a2e0432000000 |
14.5 Receptor-Mediated Endocytosis
| lodish8e_ch14_29.html | 572b8bf1757a2e0432000000 |
DLAP questions | lodish8e_ch14_29_dlap.xml | 572b8bf1757a2e0432000000 |
Cells Take Up Lipids from the Blood in the Form of Large, Well-Defined Lipoprotein Complexes
| lodish8e_ch14_30.html | 572b8bf1757a2e0432000000 |
DLAP questions | lodish8e_ch14_30_dlap.xml | 572b8bf1757a2e0432000000 |
Receptors for Macromolecular Ligands Contain Sorting Signals That Target Them for Endocytosis
| lodish8e_ch14_31.html | 572b8bf1757a2e0432000000 |
DLAP questions | lodish8e_ch14_31_dlap.xml | 572b8bf1757a2e0432000000 |
The Acidic pH of Late Endosomes Causes Most Receptor-Ligand Complexes to Dissociate
| lodish8e_ch14_32.html | 572b8bf1757a2e0432000000 |
DLAP questions | lodish8e_ch14_32_dlap.xml | 572b8bf1757a2e0432000000 |
The Endocytic Pathway Delivers Iron to Cells Without Dissociation of the TransferrinâTransferrin Receptor Complex in Endosomes
| lodish8e_ch14_33.html | 572b8bf1757a2e0432000000 |
DLAP questions | lodish8e_ch14_33_dlap.xml | 572b8bf1757a2e0432000000 |
Key Concepts of Section 14.5 | lodish8e_ch14_34.html | 572b8bf1757a2e0432000000 |
DLAP questions | lodish8e_ch14_34_dlap.xml | 572b8bf1757a2e0432000000 |
14.6 Directing Membrane Proteins and Cytosolic Materials to the Lysosome
| lodish8e_ch14_35.html | 572b8bf1757a2e0432000000 |
DLAP questions | lodish8e_ch14_35_dlap.xml | 572b8bf1757a2e0432000000 |
Multivesicular Endosomes Segregate Membrane Proteins Destined for the Lysosomal Membrane from Proteins Destined for Lysosomal Degradation
| lodish8e_ch14_36.html | 572b8bf1757a2e0432000000 |
DLAP questions | lodish8e_ch14_36_dlap.xml | 572b8bf1757a2e0432000000 |
Retroviruses Bud from the Plasma Membrane by a Process Similar to Formation of Multivesicular Endosomes
| lodish8e_ch14_37.html | 572b8bf1757a2e0432000000 |
DLAP questions | lodish8e_ch14_37_dlap.xml | 572b8bf1757a2e0432000000 |
The Autophagic Pathway Delivers Cytosolic Proteins or Entire Organelles to Lysosomes
| lodish8e_ch14_38.html | 572b8bf1757a2e0432000000 |
DLAP questions | lodish8e_ch14_38_dlap.xml | 572b8bf1757a2e0432000000 |
Key Concepts of Section 14.6 | lodish8e_ch14_39.html | 572b8bf1757a2e0432000000 |
DLAP questions | lodish8e_ch14_39_dlap.xml | 572b8bf1757a2e0432000000 |
Key Terms
| lodish8e_ch14_40.html | 572b8bf1757a2e0432000000 |
DLAP questions | lodish8e_ch14_40_dlap.xml | 572b8bf1757a2e0432000000 |
Review the Concepts
| lodish8e_ch14_41.html | 572b8bf1757a2e0432000000 |
DLAP questions | lodish8e_ch14_41_dlap.xml | 572b8bf1757a2e0432000000 |
References
| lodish8e_ch14_42.html | 572b8bf1757a2e0432000000 |
DLAP questions | lodish8e_ch14_42_dlap.xml | 572b8bf1757a2e0432000000 |
Classic Experiment 14-1: Following a Protein Out of the Cell | lodish8e_ch14_43.html | 572b8bf1757a2e0432000000 |
DLAP questions | lodish8e_ch14_43_dlap.xml | 572b8bf1757a2e0432000000 |
Chapter Introduction | lodish8e_ch15_1.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_1_dlap.xml | 572b8c37757a2eeb31000000 |
15.1 Signal Transduction: From Extracellular Signal to Cellular Response
| lodish8e_ch15_2.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_2_dlap.xml | 572b8c37757a2eeb31000000 |
Signaling Molecules Can Act Locally or at a Distance
| lodish8e_ch15_3.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_3_dlap.xml | 572b8c37757a2eeb31000000 |
Receptors Bind Only a Single Type of Hormone or a Group of Closely Related Hormones
| lodish8e_ch15_4.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_4_dlap.xml | 572b8c37757a2eeb31000000 |
Protein Kinases and Phosphatases Are Employed in Many Signaling Pathways
| lodish8e_ch15_5.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_5_dlap.xml | 572b8c37757a2eeb31000000 |
GTP-Binding Proteins Are Frequently Used in Signal Transduction Pathways as On/Off Switches
| lodish8e_ch15_6.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_6_dlap.xml | 572b8c37757a2eeb31000000 |
Intracellular âSecond Messengersâ Transmit Signals from Many Receptors
| lodish8e_ch15_7.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_7_dlap.xml | 572b8c37757a2eeb31000000 |
Signal Transduction Pathways Can Amplify the Effects of Extracellular Signals
| lodish8e_ch15_8.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_8_dlap.xml | 572b8c37757a2eeb31000000 |
Key Concepts of Section 15.1 | lodish8e_ch15_9.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_9_dlap.xml | 572b8c37757a2eeb31000000 |
15.2 Studying Cell-Surface Receptors and Signal Transduction Proteins
| lodish8e_ch15_10.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_10_dlap.xml | 572b8c37757a2eeb31000000 |
The Dissociation Constant Is a Measure of the Affinity of a Receptor for Its Ligand
| lodish8e_ch15_11.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_11_dlap.xml | 572b8c37757a2eeb31000000 |
Binding Assays Are Used to Detect Receptors and Determine Their Affinity and Specificity for Ligands
| lodish8e_ch15_12.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_12_dlap.xml | 572b8c37757a2eeb31000000 |
Near-Maximal Cellular Response to a Signaling Molecule Usually Does Not Require Activation of All Receptors
| lodish8e_ch15_13.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_13_dlap.xml | 572b8c37757a2eeb31000000 |
Sensitivity of a Cell to External Signals Is Determined by the Number of Cell-Surface Receptors and Their Affinity for Ligand
| lodish8e_ch15_14.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_14_dlap.xml | 572b8c37757a2eeb31000000 |
Hormone Analogs Are Widely Used as Drugs
| lodish8e_ch15_15.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_15_dlap.xml | 572b8c37757a2eeb31000000 |
Receptors Can Be Purified by Affinity Chromatography Techniques
| lodish8e_ch15_16.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_16_dlap.xml | 572b8c37757a2eeb31000000 |
Immunoprecipitation Assays and Affinity Techniques Can Be Used to Study the Activity of Signal Transduction Proteins
| lodish8e_ch15_17.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_17_dlap.xml | 572b8c37757a2eeb31000000 |
Key Concepts of Section 15.2 | lodish8e_ch15_18.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_18_dlap.xml | 572b8c37757a2eeb31000000 |
15.3 G ProteinâCoupled Receptors: Structure and Mechanism
| lodish8e_ch15_19.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_19_dlap.xml | 572b8c37757a2eeb31000000 |
All G ProteinâCoupled Receptors Share the Same Basic Structure
| lodish8e_ch15_20.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_20_dlap.xml | 572b8c37757a2eeb31000000 |
Ligand-Activated G ProteinâCoupled Receptors Catalyze Exchange of GTP for GDP on the α Subunit of a Heterotrimeric G Protein
| lodish8e_ch15_21.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_21_dlap.xml | 572b8c37757a2eeb31000000 |
Different G Proteins Are Activated by Different GPCRs and In Turn Regulate Different Effector Proteins
| lodish8e_ch15_22.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_22_dlap.xml | 572b8c37757a2eeb31000000 |
Key Concepts of Section 15.3 | lodish8e_ch15_23.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_23_dlap.xml | 572b8c37757a2eeb31000000 |
15.4 G ProteinâCoupled Receptors That Regulate Ion Channels
| lodish8e_ch15_24.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_24_dlap.xml | 572b8c37757a2eeb31000000 |
Acetylcholine Receptors in the Heart Muscle Activate a G Protein That Opens K+ Channels
| lodish8e_ch15_25.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_25_dlap.xml | 572b8c37757a2eeb31000000 |
Light Activates Rhodopsin in Rod Cells of the Eye
| lodish8e_ch15_26.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_26_dlap.xml | 572b8c37757a2eeb31000000 |
Activation of Rhodopsin by Light Leads to Closing of cGMP-Gated Cation Channels
| lodish8e_ch15_27.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_27_dlap.xml | 572b8c37757a2eeb31000000 |
Signal Amplification Makes the Rhodopsin Signal Transduction Pathway Exquisitely Sensitive
| lodish8e_ch15_28.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_28_dlap.xml | 572b8c37757a2eeb31000000 |
Rapid Termination of the Rhodopsin Signal Transduction Pathway Is Essential for the Temporal Resolution of Vision
| lodish8e_ch15_29.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_29_dlap.xml | 572b8c37757a2eeb31000000 |
Rod Cells Adapt to Varying Levels of Ambient Light by Intracellular Trafficking of Arrestin and Transducin
| lodish8e_ch15_30.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_30_dlap.xml | 572b8c37757a2eeb31000000 |
Key Concepts of Section 15.4 | lodish8e_ch15_31.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_31_dlap.xml | 572b8c37757a2eeb31000000 |
15.5 G ProteinâCoupled Receptors That Activate or Inhibit Adenylyl Cyclase
| lodish8e_ch15_32.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_32_dlap.xml | 572b8c37757a2eeb31000000 |
Adenylyl Cyclase Is Stimulated and Inhibited by Different Receptor-Ligand Complexes
| lodish8e_ch15_33.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_33_dlap.xml | 572b8c37757a2eeb31000000 |
Structural Studies Established How Gαs·GTP Binds to and Activates Adenylyl Cyclase
| lodish8e_ch15_34.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_34_dlap.xml | 572b8c37757a2eeb31000000 |
cAMP Activates Protein Kinase A by Releasing Inhibitory Subunits
| lodish8e_ch15_35.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_35_dlap.xml | 572b8c37757a2eeb31000000 |
Glycogen Metabolism Is Regulated by Hormone-Induced Activation of PKA
| lodish8e_ch15_36.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_36_dlap.xml | 572b8c37757a2eeb31000000 |
cAMP-Mediated Activation of PKA Produces Diverse Responses in Different Cell Types
| lodish8e_ch15_37.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_37_dlap.xml | 572b8c37757a2eeb31000000 |
Signal Amplification Occurs in the cAMP-PKA Pathway
| lodish8e_ch15_38.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_38_dlap.xml | 572b8c37757a2eeb31000000 |
CREB Links cAMP and PKA to Activation of Gene Transcription
| lodish8e_ch15_39.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_39_dlap.xml | 572b8c37757a2eeb31000000 |
Anchoring Proteins Localize Effects of cAMP to Specific Regions of the Cell
| lodish8e_ch15_40.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_40_dlap.xml | 572b8c37757a2eeb31000000 |
Multiple Mechanisms Suppress Signaling from the GPCR/cAMP/PKA Pathway
| lodish8e_ch15_41.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_41_dlap.xml | 572b8c37757a2eeb31000000 |
Key Concepts of Section 15.5 | lodish8e_ch15_42.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_42_dlap.xml | 572b8c37757a2eeb31000000 |
15.6 G ProteinâCoupled Receptors That Trigger Elevations in Cytosolic and Mitochondrial Calcium
| lodish8e_ch15_43.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_43_dlap.xml | 572b8c37757a2eeb31000000 |
Calcium Concentrations in the Mitochondrial Matrix, ER, and Cytosol Can Be Measured with Targeted Fluorescent Proteins
| lodish8e_ch15_44.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_44_dlap.xml | 572b8c37757a2eeb31000000 |
Activated Phospholipase C Generates Two Key Second Messengers Derived from the Membrane Lipid Phosphatidylinositol 4,5-Bisphosphate
| lodish8e_ch15_45.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_45_dlap.xml | 572b8c37757a2eeb31000000 |
The Ca2+-Calmodulin Complex Mediates Many Cellular Responses to External Signals
| lodish8e_ch15_46.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_46_dlap.xml | 572b8c37757a2eeb31000000 |
DAG Activates Protein Kinase C
| lodish8e_ch15_47.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_47_dlap.xml | 572b8c37757a2eeb31000000 |
Integration of Ca2+ and cAMP Second Messengers Regulates Glycogenolysis
| lodish8e_ch15_48.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_48_dlap.xml | 572b8c37757a2eeb31000000 |
Signal-Induced Relaxation of Vascular Smooth Muscle Is Mediated by a Ca2+-Nitric Oxide-cGMP-Activated Protein Kinase G Pathway
| lodish8e_ch15_49.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_49_dlap.xml | 572b8c37757a2eeb31000000 |
Key Concepts of Section 15.6 | lodish8e_ch15_50.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_50_dlap.xml | 572b8c37757a2eeb31000000 |
Key Terms
| lodish8e_ch15_51.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_51_dlap.xml | 572b8c37757a2eeb31000000 |
Review the Concepts
| lodish8e_ch15_52.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_52_dlap.xml | 572b8c37757a2eeb31000000 |
References
| lodish8e_ch15_53.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_53_dlap.xml | 572b8c37757a2eeb31000000 |
Perspectives for the Future
| lodish8e_ch15_54.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_54_dlap.xml | 572b8c37757a2eeb31000000 |
Classic Experiment 15-1: The Infancy of Signal Transduction Studies: GTP Stimulation of cAMP Synthesis | lodish8e_ch15_55.html | 572b8c37757a2eeb31000000 |
DLAP questions | lodish8e_ch15_55_dlap.xml | 572b8c37757a2eeb31000000 |
Chapter Introduction | lodish8e_ch16_1.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_1_dlap.xml | 572b8d22757a2e1932000000 |
16.1 Receptor Serine Kinases That Activate Smads
| lodish8e_ch16_2.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_2_dlap.xml | 572b8d22757a2e1932000000 |
TGF-β Proteins Are Stored in an Inactive Form in the Extracellular Matrix
| lodish8e_ch16_3.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_3_dlap.xml | 572b8d22757a2e1932000000 |
Three Separate TGF-β Receptor Proteins Participate in Binding TGF-β and Activating Signal Transduction
| lodish8e_ch16_4.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_4_dlap.xml | 572b8d22757a2e1932000000 |
Activated TGF-β Receptors Phosphorylate Smad Transcription Factors
| lodish8e_ch16_5.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_5_dlap.xml | 572b8d22757a2e1932000000 |
The Smad3/Smad4 Complex Activates Expression of Different Genes in Different Cell Types
| lodish8e_ch16_6.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_6_dlap.xml | 572b8d22757a2e1932000000 |
Negative Feedback Loops Regulate TGF-β/Smad Signaling
| lodish8e_ch16_7.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_7_dlap.xml | 572b8d22757a2e1932000000 |
Key Concepts of Section 16.1 | lodish8e_ch16_8.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_8_dlap.xml | 572b8d22757a2e1932000000 |
16.2 Cytokine Receptors and the JAK/STAT Signaling Pathway
| lodish8e_ch16_9.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_9_dlap.xml | 572b8d22757a2e1932000000 |
Cytokines Influence the Development of Many Cell Types
| lodish8e_ch16_10.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_10_dlap.xml | 572b8d22757a2e1932000000 |
Binding of a Cytokine to Its Receptor Activates One or More Tightly Bound JAK Protein Tyrosine Kinases
| lodish8e_ch16_11.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_11_dlap.xml | 572b8d22757a2e1932000000 |
Phosphotyrosine Residues Are Binding Surfaces for Multiple Proteins with Conserved Domains
| lodish8e_ch16_12.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_12_dlap.xml | 572b8d22757a2e1932000000 |
SH2 Domains in Action: JAK Kinases Activate STAT Transcription Factors
| lodish8e_ch16_13.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_13_dlap.xml | 572b8d22757a2e1932000000 |
Multiple Mechanisms Down-Regulate Signaling from Cytokine Receptors
| lodish8e_ch16_14.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_14_dlap.xml | 572b8d22757a2e1932000000 |
Key Concepts of Section 16.2 | lodish8e_ch16_15.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_15_dlap.xml | 572b8d22757a2e1932000000 |
16.3 Receptor Tyrosine Kinases
| lodish8e_ch16_16.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_16_dlap.xml | 572b8d22757a2e1932000000 |
Binding of Ligand Promotes Dimerization of an RTK and Leads to Activation of Its Intrinsic Tyrosine Kinase
| lodish8e_ch16_17.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_17_dlap.xml | 572b8d22757a2e1932000000 |
Homo- and Hetero-oligomers of Epidermal Growth Factor Receptors Bind Members of the Epidermal Growth Factor Family
| lodish8e_ch16_18.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_18_dlap.xml | 572b8d22757a2e1932000000 |
Activation of the EGF Receptor Results in the Formation of an Asymmetric Active Kinase Dimer
| lodish8e_ch16_19.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_19_dlap.xml | 572b8d22757a2e1932000000 |
Multiple Mechanisms Down-Regulate Signaling from RTKs
| lodish8e_ch16_20.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_20_dlap.xml | 572b8d22757a2e1932000000 |
Key Concepts of Section 16.3 | lodish8e_ch16_21.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_21_dlap.xml | 572b8d22757a2e1932000000 |
16.4 The Ras/MAP Kinase Pathway
| lodish8e_ch16_22.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_22_dlap.xml | 572b8d22757a2e1932000000 |
Ras, a GTPase Switch Protein, Operates Downstream of Most RTKs and Cytokine Receptors
| lodish8e_ch16_23.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_23_dlap.xml | 572b8d22757a2e1932000000 |
Genetic Studies in Drosophila Identified Key Signal-Transducing Proteins in the Ras/MAP Kinase Pathway
| lodish8e_ch16_24.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_24_dlap.xml | 572b8d22757a2e1932000000 |
Receptor Tyrosine Kinases Are Linked to Ras by Adapter Proteins
| lodish8e_ch16_25.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_25_dlap.xml | 572b8d22757a2e1932000000 |
Binding of Sos to Inactive Ras Causes a Conformational Change That Triggers an Exchange of GTP for GDP
| lodish8e_ch16_26.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_26_dlap.xml | 572b8d22757a2e1932000000 |
Signals Pass from Activated Ras to a Cascade of Protein Kinases Ending with MAP Kinase
| lodish8e_ch16_27.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_27_dlap.xml | 572b8d22757a2e1932000000 |
Phosphorylation of MAP Kinase Results in a Conformational Change That Enhances Its Catalytic Activity and Promotes Its Dimerization
| lodish8e_ch16_28.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_28_dlap.xml | 572b8d22757a2e1932000000 |
MAP Kinase Regulates the Activity of Many Transcription Factors Controlling Early Response Genes
| lodish8e_ch16_29.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_29_dlap.xml | 572b8d22757a2e1932000000 |
G ProteinâCoupled Receptors Transmit Signals to MAP Kinase in Yeast Mating Pathways
| lodish8e_ch16_30.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_30_dlap.xml | 572b8d22757a2e1932000000 |
Scaffold Proteins Separate Multiple MAP Kinase Pathways in Eukaryotic Cells
| lodish8e_ch16_31.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_31_dlap.xml | 572b8d22757a2e1932000000 |
Key Concepts of Section 16.4 | lodish8e_ch16_32.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_32_dlap.xml | 572b8d22757a2e1932000000 |
16.5 Phosphoinositide Signaling Pathways
| lodish8e_ch16_33.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_33_dlap.xml | 572b8d22757a2e1932000000 |
Phospholipase Cγ Is Activated by Some RTKs and Cytokine Receptors
| lodish8e_ch16_34.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_34_dlap.xml | 572b8d22757a2e1932000000 |
Recruitment of PI-3 Kinase to Activated Receptors Leads to Synthesis of Three Phosphorylated Phosphatidylinositols
| lodish8e_ch16_35.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_35_dlap.xml | 572b8d22757a2e1932000000 |
Accumulation of PI 3-Phosphates in the Plasma Membrane Leads to Activation of Several Kinases
| lodish8e_ch16_36.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_36_dlap.xml | 572b8d22757a2e1932000000 |
Activated Protein Kinase B Induces Many Cellular Responses
| lodish8e_ch16_37.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_37_dlap.xml | 572b8d22757a2e1932000000 |
The PI-3 Kinase Pathway Is Negatively Regulated by PTEN Phosphatase
| lodish8e_ch16_38.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_38_dlap.xml | 572b8d22757a2e1932000000 |
Key Concepts of Section 16.5 | lodish8e_ch16_39.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_39_dlap.xml | 572b8d22757a2e1932000000 |
16.6 Signaling Pathways Controlled by Ubiquitinylation and Protein Degradation: Wnt, Hedgehog, and NF-κB
| lodish8e_ch16_40.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_40_dlap.xml | 572b8d22757a2e1932000000 |
Wnt Signaling Triggers Release of a Transcription Factor from a Cytosolic Protein Complex
| lodish8e_ch16_41.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_41_dlap.xml | 572b8d22757a2e1932000000 |
Concentration Gradients of Wnt Protein Are Essential for Many Steps in Development
| lodish8e_ch16_42.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_42_dlap.xml | 572b8d22757a2e1932000000 |
Hedgehog Signaling Relieves Repression of Target Genes
| lodish8e_ch16_43.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_43_dlap.xml | 572b8d22757a2e1932000000 |
Hedgehog Signaling in Vertebrates Requires Primary Cilia
| lodish8e_ch16_44.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_44_dlap.xml | 572b8d22757a2e1932000000 |
Degradation of an Inhibitor Protein Activates the NF-κB Transcription Factor
| lodish8e_ch16_45.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_45_dlap.xml | 572b8d22757a2e1932000000 |
Polyubiquitin Chains Serve as Scaffolds Linking Receptors to Downstream Proteins in the NF-κB Pathway
| lodish8e_ch16_46.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_46_dlap.xml | 572b8d22757a2e1932000000 |
Key Concepts of Section 16.6 | lodish8e_ch16_47.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_47_dlap.xml | 572b8d22757a2e1932000000 |
16.7 Signaling Pathways Controlled by Protein Cleavage: Notch/Delta, SREBP, and Alzheimerâs Disease
| lodish8e_ch16_48.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_48_dlap.xml | 572b8d22757a2e1932000000 |
On Binding Delta, the Notch Receptor Is Cleaved, Releasing a Component Transcription Factor
| lodish8e_ch16_49.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_49_dlap.xml | 572b8d22757a2e1932000000 |
Matrix Metalloproteases Catalyze Cleavage of Many Signaling Proteins from the Cell Surface
| lodish8e_ch16_50.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_50_dlap.xml | 572b8d22757a2e1932000000 |
Inappropriate Cleavage of Amyloid Precursor Protein Can Lead to Alzheimerâs Disease
| lodish8e_ch16_51.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_51_dlap.xml | 572b8d22757a2e1932000000 |
Regulated Intramembrane Proteolysis of SREBPs Releases a Transcription Factor That Acts to Maintain Phospholipid and Cholesterol Levels
| lodish8e_ch16_52.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_52_dlap.xml | 572b8d22757a2e1932000000 |
Key Concepts of Section 16.7 | lodish8e_ch16_53.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_53_dlap.xml | 572b8d22757a2e1932000000 |
16.8 Integration of Cellular Responses to Multiple Signaling Pathways: Insulin Action
| lodish8e_ch16_54.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_54_dlap.xml | 572b8d22757a2e1932000000 |
Insulin and Glucagon Work Together to Maintain a Stable Blood Glucose Level
| lodish8e_ch16_55.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_55_dlap.xml | 572b8d22757a2e1932000000 |
A Rise in Blood Glucose Triggers Insulin Secretion from the β Islet Cells
| lodish8e_ch16_56.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_56_dlap.xml | 572b8d22757a2e1932000000 |
In Fat and Muscle Cells, Insulin Triggers Fusion of Intracellular Vesicles Containing the GLUT4 Glucose Transporter to the Plasma Membrane
| lodish8e_ch16_57.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_57_dlap.xml | 572b8d22757a2e1932000000 |
Insulin Inhibits Glucose Synthesis and Enhances Storage of Glucose as Glycogen
| lodish8e_ch16_58.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_58_dlap.xml | 572b8d22757a2e1932000000 |
Multiple Signal Transduction Pathways Interact to Regulate Adipocyte Differentiation Through PPARγ, the Master Transcriptional Regulator
| lodish8e_ch16_59.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_59_dlap.xml | 572b8d22757a2e1932000000 |
Inflammatory Hormones Cause Derangement of Adipose Cell Function in Obesity
| lodish8e_ch16_60.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_60_dlap.xml | 572b8d22757a2e1932000000 |
Key Concepts of Section 16.8 | lodish8e_ch16_61.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_61_dlap.xml | 572b8d22757a2e1932000000 |
Key Terms
| lodish8e_ch16_62.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_62_dlap.xml | 572b8d22757a2e1932000000 |
Review the Concepts
| lodish8e_ch16_63.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_63_dlap.xml | 572b8d22757a2e1932000000 |
References
| lodish8e_ch16_64.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_64_dlap.xml | 572b8d22757a2e1932000000 |
Perspectives for the Future
| lodish8e_ch16_65.html | 572b8d22757a2e1932000000 |
DLAP questions | lodish8e_ch16_65_dlap.xml | 572b8d22757a2e1932000000 |
Chapter Introduction | lodish8e_ch17_1.html | 572b8d8b757a2e2232000000 |
DLAP questions | lodish8e_ch17_1_dlap.xml | 572b8d8b757a2e2232000000 |
17.1 Microfilaments and Actin Structures
| lodish8e_ch17_2.html | 572b8d8b757a2e2232000000 |
DLAP questions | lodish8e_ch17_2_dlap.xml | 572b8d8b757a2e2232000000 |
Actin Is Ancient, Abundant, and Highly Conserved
| lodish8e_ch17_3.html | 572b8d8b757a2e2232000000 |
DLAP questions | lodish8e_ch17_3_dlap.xml | 572b8d8b757a2e2232000000 |
G-Actin Monomers Assemble into Long, Helical F-Actin Polymers
| lodish8e_ch17_4.html | 572b8d8b757a2e2232000000 |
DLAP questions | lodish8e_ch17_4_dlap.xml | 572b8d8b757a2e2232000000 |
F-Actin Has Structural and Functional Polarity
| lodish8e_ch17_5.html | 572b8d8b757a2e2232000000 |
DLAP questions | lodish8e_ch17_5_dlap.xml | 572b8d8b757a2e2232000000 |
Key Concepts of Section 17.1 | lodish8e_ch17_6.html | 572b8d8b757a2e2232000000 |
DLAP questions | lodish8e_ch17_6_dlap.xml | 572b8d8b757a2e2232000000 |
17.2 Dynamics of Actin Filaments
| lodish8e_ch17_7.html | 572b8d8b757a2e2232000000 |
DLAP questions | lodish8e_ch17_7_dlap.xml | 572b8d8b757a2e2232000000 |
Actin Polymerization In Vitro Proceeds in Three Steps
| lodish8e_ch17_8.html | 572b8d8b757a2e2232000000 |
DLAP questions | lodish8e_ch17_8_dlap.xml | 572b8d8b757a2e2232000000 |
Actin Filaments Grow Faster at (+) Ends Than at (â) Ends
| lodish8e_ch17_9.html | 572b8d8b757a2e2232000000 |
DLAP questions | lodish8e_ch17_9_dlap.xml | 572b8d8b757a2e2232000000 |
Actin Filament Treadmilling Is Accelerated by Profilin and Cofilin
| lodish8e_ch17_10.html | 572b8d8b757a2e2232000000 |
DLAP questions | lodish8e_ch17_10_dlap.xml | 572b8d8b757a2e2232000000 |
Thymosin-β4 Provides a Reservoir of Actin for Polymerization
| lodish8e_ch17_11.html | 572b8d8b757a2e2232000000 |
DLAP questions | lodish8e_ch17_11_dlap.xml | 572b8d8b757a2e2232000000 |
Capping Proteins Block Assembly and Disassembly at Actin Filament Ends
| lodish8e_ch17_12.html | 572b8d8b757a2e2232000000 |
DLAP questions | lodish8e_ch17_12_dlap.xml | 572b8d8b757a2e2232000000 |
Key Concepts of Section 17.2 | lodish8e_ch17_13.html | 572b8d8b757a2e2232000000 |
DLAP questions | lodish8e_ch17_13_dlap.xml | 572b8d8b757a2e2232000000 |
17.3 Mechanisms of Actin Filament Assembly
| lodish8e_ch17_14.html | 572b8d8b757a2e2232000000 |
DLAP questions | lodish8e_ch17_14_dlap.xml | 572b8d8b757a2e2232000000 |
Formins Assemble Unbranched Filaments
| lodish8e_ch17_15.html | 572b8d8b757a2e2232000000 |
DLAP questions | lodish8e_ch17_15_dlap.xml | 572b8d8b757a2e2232000000 |
The Arp2/3 Complex Nucleates Branched Filament Assembly
| lodish8e_ch17_16.html | 572b8d8b757a2e2232000000 |
DLAP questions | lodish8e_ch17_16_dlap.xml | 572b8d8b757a2e2232000000 |
Intracellular Movements Can Be Powered by Actin Polymerization
| lodish8e_ch17_17.html | 572b8d8b757a2e2232000000 |
DLAP questions | lodish8e_ch17_17_dlap.xml | 572b8d8b757a2e2232000000 |
Microfilaments Function in Endocytosis
| lodish8e_ch17_18.html | 572b8d8b757a2e2232000000 |
DLAP questions | lodish8e_ch17_18_dlap.xml | 572b8d8b757a2e2232000000 |
Toxins That Perturb the Pool of Actin Monomers Are Useful for Studying Actin Dynamics
| lodish8e_ch17_19.html | 572b8d8b757a2e2232000000 |
DLAP questions | lodish8e_ch17_19_dlap.xml | 572b8d8b757a2e2232000000 |
Key Concepts of Section 17.3 | lodish8e_ch17_20.html | 572b8d8b757a2e2232000000 |
DLAP questions | lodish8e_ch17_20_dlap.xml | 572b8d8b757a2e2232000000 |
17.4 Organization of Actin-Based Cellular Structures
| lodish8e_ch17_21.html | 572b8d8b757a2e2232000000 |
DLAP questions | lodish8e_ch17_21_dlap.xml | 572b8d8b757a2e2232000000 |
Cross-Linking Proteins Organize Actin Filaments into Bundles or Networks
| lodish8e_ch17_22.html | 572b8d8b757a2e2232000000 |
DLAP questions | lodish8e_ch17_22_dlap.xml | 572b8d8b757a2e2232000000 |
Adapter Proteins Link Actin Filaments to Membranes
| lodish8e_ch17_23.html | 572b8d8b757a2e2232000000 |
DLAP questions | lodish8e_ch17_23_dlap.xml | 572b8d8b757a2e2232000000 |
Key Concepts of Section 17.4 | lodish8e_ch17_24.html | 572b8d8b757a2e2232000000 |
DLAP questions | lodish8e_ch17_24_dlap.xml | 572b8d8b757a2e2232000000 |
17.5 Myosins: Actin-Based Motor Proteins
| lodish8e_ch17_25.html | 572b8d8b757a2e2232000000 |
DLAP questions | lodish8e_ch17_25_dlap.xml | 572b8d8b757a2e2232000000 |
Myosins Have Head, Neck, and Tail Domains with Distinct Functions
| lodish8e_ch17_26.html | 572b8d8b757a2e2232000000 |
DLAP questions | lodish8e_ch17_26_dlap.xml | 572b8d8b757a2e2232000000 |
Myosins Make Up a Large Family of Mechanochemical Motor Proteins
| lodish8e_ch17_27.html | 572b8d8b757a2e2232000000 |
DLAP questions | lodish8e_ch17_27_dlap.xml | 572b8d8b757a2e2232000000 |
Conformational Changes in the Myosin Head Couple ATP Hydrolysis to Movement
| lodish8e_ch17_28.html | 572b8d8b757a2e2232000000 |
DLAP questions | lodish8e_ch17_28_dlap.xml | 572b8d8b757a2e2232000000 |
Myosin Heads Take Discrete Steps Along Actin Filaments
| lodish8e_ch17_29.html | 572b8d8b757a2e2232000000 |
DLAP questions | lodish8e_ch17_29_dlap.xml | 572b8d8b757a2e2232000000 |
Key Concepts of Section 17.5 | lodish8e_ch17_30.html | 572b8d8b757a2e2232000000 |
DLAP questions | lodish8e_ch17_30_dlap.xml | 572b8d8b757a2e2232000000 |
17.6 Myosin-Powered Movements
| lodish8e_ch17_31.html | 572b8d8b757a2e2232000000 |
DLAP questions | lodish8e_ch17_31_dlap.xml | 572b8d8b757a2e2232000000 |
Myosin Thick Filaments and Actin Thin Filaments in Skeletal Muscle Slide Past Each Other During Contraction
| lodish8e_ch17_32.html | 572b8d8b757a2e2232000000 |
DLAP questions | lodish8e_ch17_32_dlap.xml | 572b8d8b757a2e2232000000 |
Skeletal Muscle Is Structured by Stabilizing and Scaffolding Proteins
| lodish8e_ch17_33.html | 572b8d8b757a2e2232000000 |
DLAP questions | lodish8e_ch17_33_dlap.xml | 572b8d8b757a2e2232000000 |
Contraction of Skeletal Muscle Is Regulated by Ca2+ and Actin-Binding Proteins
| lodish8e_ch17_34.html | 572b8d8b757a2e2232000000 |
DLAP questions | lodish8e_ch17_34_dlap.xml | 572b8d8b757a2e2232000000 |
Actin and Myosin II Form Contractile Bundles in Nonmuscle Cells
| lodish8e_ch17_35.html | 572b8d8b757a2e2232000000 |
DLAP questions | lodish8e_ch17_35_dlap.xml | 572b8d8b757a2e2232000000 |
Myosin-Dependent Mechanisms Regulate Contraction in Smooth Muscle and Nonmuscle Cells
| lodish8e_ch17_36.html | 572b8d8b757a2e2232000000 |
DLAP questions | lodish8e_ch17_36_dlap.xml | 572b8d8b757a2e2232000000 |
Myosin VâBound Vesicles Are Carried Along Actin Filaments
| lodish8e_ch17_37.html | 572b8d8b757a2e2232000000 |
DLAP questions | lodish8e_ch17_37_dlap.xml | 572b8d8b757a2e2232000000 |
Key Concepts of Section 17.6 | lodish8e_ch17_38.html | 572b8d8b757a2e2232000000 |
DLAP questions | lodish8e_ch17_38_dlap.xml | 572b8d8b757a2e2232000000 |
17.7 Cell Migration: Mechanism, Signaling, and Chemotaxis
| lodish8e_ch17_39.html | 572b8d8b757a2e2232000000 |
DLAP questions | lodish8e_ch17_39_dlap.xml | 572b8d8b757a2e2232000000 |
Cell Migration Coordinates Force Generation with Cell Adhesion and Membrane Recycling
| lodish8e_ch17_40.html | 572b8d8b757a2e2232000000 |
DLAP questions | lodish8e_ch17_40_dlap.xml | 572b8d8b757a2e2232000000 |
The Small GTP-Binding Proteins Cdc42, Rac, and Rho Control Actin Organization
| lodish8e_ch17_41.html | 572b8d8b757a2e2232000000 |
DLAP questions | lodish8e_ch17_41_dlap.xml | 572b8d8b757a2e2232000000 |
Cell Migration Involves the Coordinate Regulation of Cdc42, Rac, and Rho
| lodish8e_ch17_42.html | 572b8d8b757a2e2232000000 |
DLAP questions | lodish8e_ch17_42_dlap.xml | 572b8d8b757a2e2232000000 |
Migrating Cells Are Steered by Chemotactic Molecules
| lodish8e_ch17_43.html | 572b8d8b757a2e2232000000 |
DLAP questions | lodish8e_ch17_43_dlap.xml | 572b8d8b757a2e2232000000 |
Key Concepts of Section 17.7 | lodish8e_ch17_44.html | 572b8d8b757a2e2232000000 |
DLAP questions | lodish8e_ch17_44_dlap.xml | 572b8d8b757a2e2232000000 |
Key Terms
| lodish8e_ch17_45.html | 572b8d8b757a2e2232000000 |
DLAP questions | lodish8e_ch17_45_dlap.xml | 572b8d8b757a2e2232000000 |
Review the Concepts
| lodish8e_ch17_46.html | 572b8d8b757a2e2232000000 |
DLAP questions | lodish8e_ch17_46_dlap.xml | 572b8d8b757a2e2232000000 |
Extended References
| lodish8e_ch17_47.html | 572b8d8b757a2e2232000000 |
DLAP questions | lodish8e_ch17_47_dlap.xml | 572b8d8b757a2e2232000000 |
Perspectives for the Future
| lodish8e_ch17_48.html | 572b8d8b757a2e2232000000 |
DLAP questions | lodish8e_ch17_48_dlap.xml | 572b8d8b757a2e2232000000 |
Classic Experiment 17-1: Looking at Muscle Contraction | lodish8e_ch17_49.html | 572b8d8b757a2e2232000000 |
DLAP questions | lodish8e_ch17_49_dlap.xml | 572b8d8b757a2e2232000000 |
Classic Experiment 17-2: Sensing Chemotactic Gradients | lodish8e_ch17_50.html | 572b8d8b757a2e2232000000 |
DLAP questions | lodish8e_ch17_50_dlap.xml | 572b8d8b757a2e2232000000 |
Chapter Introduction | lodish8e_ch18_1.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_1_dlap.xml | 572b8dc6757a2e1932000001 |
18.1 Microtubule Structure and Organization
| lodish8e_ch18_2.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_2_dlap.xml | 572b8dc6757a2e1932000001 |
Microtubule Walls Are Polarized Structures Built from αβ-Tubulin Dimers
| lodish8e_ch18_3.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_3_dlap.xml | 572b8dc6757a2e1932000001 |
Microtubules Are Assembled from MTOCs to Generate Diverse Configurations
| lodish8e_ch18_4.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_4_dlap.xml | 572b8dc6757a2e1932000001 |
Key Concepts of Section 18.1 | lodish8e_ch18_5.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_5_dlap.xml | 572b8dc6757a2e1932000001 |
18.2 Microtubule Dynamics
| lodish8e_ch18_6.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_6_dlap.xml | 572b8dc6757a2e1932000001 |
Individual Microtubules Exhibit Dynamic Instability
| lodish8e_ch18_7.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_7_dlap.xml | 572b8dc6757a2e1932000001 |
Localized Assembly and âSearch and Captureâ Help Organize Microtubules
| lodish8e_ch18_8.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_8_dlap.xml | 572b8dc6757a2e1932000001 |
Drugs Affecting Tubulin Polymerization Are Useful Experimentally and in Treatment of Diseases
| lodish8e_ch18_9.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_9_dlap.xml | 572b8dc6757a2e1932000001 |
Key Concepts of Section 18.2 | lodish8e_ch18_10.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_10_dlap.xml | 572b8dc6757a2e1932000001 |
18.3 Regulation of Microtubule Structure and Dynamics
| lodish8e_ch18_11.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_11_dlap.xml | 572b8dc6757a2e1932000001 |
Microtubules Are Stabilized by Side-Binding Proteins
| lodish8e_ch18_12.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_12_dlap.xml | 572b8dc6757a2e1932000001 |
+TIPs Regulate the Properties and Functions of the Microtubule (+) End
| lodish8e_ch18_13.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_13_dlap.xml | 572b8dc6757a2e1932000001 |
Other End-Binding Proteins Regulate Microtubule Disassembly
| lodish8e_ch18_14.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_14_dlap.xml | 572b8dc6757a2e1932000001 |
Key Concepts of Section 18.3 | lodish8e_ch18_15.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_15_dlap.xml | 572b8dc6757a2e1932000001 |
18.4 Kinesins and Dyneins: Microtubule-Based Motor Proteins
| lodish8e_ch18_16.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_16_dlap.xml | 572b8dc6757a2e1932000001 |
Organelles in Axons Are Transported Along Microtubules in Both Directions
| lodish8e_ch18_17.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_17_dlap.xml | 572b8dc6757a2e1932000001 |
Kinesin-1 Powers Anterograde Transport of Vesicles Down Axons Toward the (+) Ends of Microtubules
| lodish8e_ch18_18.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_18_dlap.xml | 572b8dc6757a2e1932000001 |
The Kinesins Form a Large Protein Superfamily with Diverse Functions
| lodish8e_ch18_19.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_19_dlap.xml | 572b8dc6757a2e1932000001 |
Kinesin-1 Is a Highly Processive Motor
| lodish8e_ch18_20.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_20_dlap.xml | 572b8dc6757a2e1932000001 |
Dynein Motors Transport Organelles Toward the (â) Ends of Microtubules
| lodish8e_ch18_21.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_21_dlap.xml | 572b8dc6757a2e1932000001 |
Kinesins and Dyneins Cooperate in the Transport of Organelles Throughout the Cell
| lodish8e_ch18_22.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_22_dlap.xml | 572b8dc6757a2e1932000001 |
Tubulin Modifications Distinguish Different Classes of Microtubules and Their Accessibility to Motors
| lodish8e_ch18_23.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_23_dlap.xml | 572b8dc6757a2e1932000001 |
Key Concepts of Section 18.4 | lodish8e_ch18_24.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_24_dlap.xml | 572b8dc6757a2e1932000001 |
18.5 Cilia and Flagella: Microtubule-Based Surface Structures
| lodish8e_ch18_25.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_25_dlap.xml | 572b8dc6757a2e1932000001 |
Eukaryotic Cilia and Flagella Contain Long Doublet Microtubules Bridged by Dynein Motors
| lodish8e_ch18_26.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_26_dlap.xml | 572b8dc6757a2e1932000001 |
Ciliary and Flagellar Beating Are Produced by Controlled Sliding of Outer Doublet Microtubules
| lodish8e_ch18_27.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_27_dlap.xml | 572b8dc6757a2e1932000001 |
Intraflagellar Transport Moves Material Up and Down Cilia and Flagella
| lodish8e_ch18_28.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_28_dlap.xml | 572b8dc6757a2e1932000001 |
Primary Cilia Are Sensory Organelles on Interphase Cells
| lodish8e_ch18_29.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_29_dlap.xml | 572b8dc6757a2e1932000001 |
Defects in Primary Cilia Underlie Many Diseases
| lodish8e_ch18_30.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_30_dlap.xml | 572b8dc6757a2e1932000001 |
Key Concepts of Section 18.5 | lodish8e_ch18_31.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_31_dlap.xml | 572b8dc6757a2e1932000001 |
18.6 Mitosis
| lodish8e_ch18_32.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_32_dlap.xml | 572b8dc6757a2e1932000001 |
Centrosomes Duplicate Early in the Cell Cycle in Preparation for Mitosis
| lodish8e_ch18_33.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_33_dlap.xml | 572b8dc6757a2e1932000001 |
Mitosis Can Be Divided into Six Stages
| lodish8e_ch18_34.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_34_dlap.xml | 572b8dc6757a2e1932000001 |
The Mitotic Spindle Contains Three Classes of Microtubules
| lodish8e_ch18_35.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_35_dlap.xml | 572b8dc6757a2e1932000001 |
Microtubule Dynamics Increase Dramatically in Mitosis
| lodish8e_ch18_36.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_36_dlap.xml | 572b8dc6757a2e1932000001 |
Mitotic Asters Are Pushed Apart by Kinesin-5 and Oriented by Dynein
| lodish8e_ch18_37.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_37_dlap.xml | 572b8dc6757a2e1932000001 |
Chromosomes Are Captured and Oriented During Prometaphase
| lodish8e_ch18_38.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_38_dlap.xml | 572b8dc6757a2e1932000001 |
Duplicated Chromosomes Are Aligned by Motors and Microtubule Dynamics
| lodish8e_ch18_39.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_39_dlap.xml | 572b8dc6757a2e1932000001 |
The Chromosomal Passenger Complex Regulates Microtubule Attachment at Kinetochores
| lodish8e_ch18_40.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_40_dlap.xml | 572b8dc6757a2e1932000001 |
Anaphase A Moves Chromosomes to Poles by Microtubule Shortening
| lodish8e_ch18_41.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_41_dlap.xml | 572b8dc6757a2e1932000001 |
Anaphase B Separates Poles by the Combined Action of Kinesins and Dynein
| lodish8e_ch18_42.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_42_dlap.xml | 572b8dc6757a2e1932000001 |
Additional Mechanisms Contribute to Spindle Formation
| lodish8e_ch18_43.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_43_dlap.xml | 572b8dc6757a2e1932000001 |
Cytokinesis Splits the Duplicated Cell in Two
| lodish8e_ch18_44.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_44_dlap.xml | 572b8dc6757a2e1932000001 |
Plant Cells Reorganize Their Microtubules and Build a New Cell Wall in Mitosis
| lodish8e_ch18_45.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_45_dlap.xml | 572b8dc6757a2e1932000001 |
Key Concepts of Section 18.6 | lodish8e_ch18_46.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_46_dlap.xml | 572b8dc6757a2e1932000001 |
18.7 Intermediate Filaments
| lodish8e_ch18_47.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_47_dlap.xml | 572b8dc6757a2e1932000001 |
Intermediate Filaments Are Assembled from Subunit Dimers
| lodish8e_ch18_48.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_48_dlap.xml | 572b8dc6757a2e1932000001 |
Intermediate Filaments Are Dynamic
| lodish8e_ch18_49.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_49_dlap.xml | 572b8dc6757a2e1932000001 |
Cytoplasmic Intermediate Filament Proteins Are Expressed in a Tissue-Specific Manner
| lodish8e_ch18_50.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_50_dlap.xml | 572b8dc6757a2e1932000001 |
Lamins Line the Inner Nuclear Envelope To Provide Organization and Rigidity to the Nucleus
| lodish8e_ch18_51.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_51_dlap.xml | 572b8dc6757a2e1932000001 |
Lamins Are Reversibly Disassembled by Phosphorylation During Mitosis
| lodish8e_ch18_52.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_52_dlap.xml | 572b8dc6757a2e1932000001 |
Key Concepts of Section 18.7 | lodish8e_ch18_53.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_53_dlap.xml | 572b8dc6757a2e1932000001 |
18.8 Coordination and Cooperation Between Cytoskeletal Elements
| lodish8e_ch18_54.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_54_dlap.xml | 572b8dc6757a2e1932000001 |
Intermediate FilamentâAssociated Proteins Contribute to Cellular Organization
| lodish8e_ch18_55.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_55_dlap.xml | 572b8dc6757a2e1932000001 |
Microfilaments and Microtubules Cooperate to Transport Melanosomes
| lodish8e_ch18_56.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_56_dlap.xml | 572b8dc6757a2e1932000001 |
Cdc42 Coordinates Microtubules and Microfilaments During Cell Migration
| lodish8e_ch18_57.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_57_dlap.xml | 572b8dc6757a2e1932000001 |
Advancement of Neural Growth Cones Is Coordinated by Microfilaments and Microtubules
| lodish8e_ch18_58.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_58_dlap.xml | 572b8dc6757a2e1932000001 |
Key Concepts of Section 18.8 | lodish8e_ch18_59.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_59_dlap.xml | 572b8dc6757a2e1932000001 |
Key Terms
| lodish8e_ch18_60.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_60_dlap.xml | 572b8dc6757a2e1932000001 |
Review the Concepts
| lodish8e_ch18_61.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_61_dlap.xml | 572b8dc6757a2e1932000001 |
Extended References
| lodish8e_ch18_62.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_62_dlap.xml | 572b8dc6757a2e1932000001 |
Perspectives for the Future
| lodish8e_ch18_63.html | 572b8dc6757a2e1932000001 |
DLAP questions | lodish8e_ch18_63_dlap.xml | 572b8dc6757a2e1932000001 |
Chapter Introduction | lodish8e_ch19_1.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_1_dlap.xml | 56f563fc757a2e8473000002 |
19.1 Overview of the Cell Cycle and Its Control
| lodish8e_ch19_2.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_2_dlap.xml | 56f563fc757a2e8473000002 |
The Cell Cycle Is an Ordered Series of Events Leading to Cell Replication
| lodish8e_ch19_3.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_3_dlap.xml | 56f563fc757a2e8473000002 |
Cyclin-Dependent Kinases Control the Eukaryotic Cell Cycle
| lodish8e_ch19_4.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_4_dlap.xml | 56f563fc757a2e8473000002 |
Several Key Principles Govern the Cell Cycle
| lodish8e_ch19_5.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_5_dlap.xml | 56f563fc757a2e8473000002 |
Key Concepts of Section 19.1 | lodish8e_ch19_6.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_6_dlap.xml | 56f563fc757a2e8473000002 |
19.2 Model Organisms and Methods of Studying the Cell Cycle
| lodish8e_ch19_7.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_7_dlap.xml | 56f563fc757a2e8473000002 |
Budding and Fission Yeasts Are Powerful Systems for Genetic Analysis of the Cell Cycle
| lodish8e_ch19_8.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_8_dlap.xml | 56f563fc757a2e8473000002 |
Frog Oocytes and Early Embryos Facilitate Biochemical Characterization of the Cell Cycle Machinery
| lodish8e_ch19_9.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_9_dlap.xml | 56f563fc757a2e8473000002 |
Fruit Flies Reveal the Interplay Between Development and the Cell Cycle
| lodish8e_ch19_10.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_10_dlap.xml | 56f563fc757a2e8473000002 |
The Study of Tissue Culture Cells Uncovers Cell Cycle Regulation in Mammals
| lodish8e_ch19_11.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_11_dlap.xml | 56f563fc757a2e8473000002 |
Researchers Use Multiple Tools to Study the Cell Cycle
| lodish8e_ch19_12.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_12_dlap.xml | 56f563fc757a2e8473000002 |
Key Concepts of Section 19.2 | lodish8e_ch19_13.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_13_dlap.xml | 56f563fc757a2e8473000002 |
19.3 Regulation of CDK Activity
| lodish8e_ch19_14.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_14_dlap.xml | 56f563fc757a2e8473000002 |
Cyclin-Dependent Kinases Are Small Protein Kinases That Require a Regulatory Cyclin Subunit for Their Activity
| lodish8e_ch19_15.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_15_dlap.xml | 56f563fc757a2e8473000002 |
Cyclins Determine the Activity of CDKs
| lodish8e_ch19_16.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_16_dlap.xml | 56f563fc757a2e8473000002 |
Cyclin Levels Are Primarily Regulated by Protein Degradation
| lodish8e_ch19_17.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_17_dlap.xml | 56f563fc757a2e8473000002 |
CDKs Are Regulated by Activating and Inhibitory Phosphorylation
| lodish8e_ch19_18.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_18_dlap.xml | 56f563fc757a2e8473000002 |
CDK Inhibitors Control Cyclin-CDK Activity
| lodish8e_ch19_19.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_19_dlap.xml | 56f563fc757a2e8473000002 |
Genetically Engineered CDKs Led to the Discovery of CDK Functions
| lodish8e_ch19_20.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_20_dlap.xml | 56f563fc757a2e8473000002 |
Key Concepts of Section 19.3 | lodish8e_ch19_21.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_21_dlap.xml | 56f563fc757a2e8473000002 |
19.4 Commitment to the Cell Cycle and DNA Replication
| lodish8e_ch19_22.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_22_dlap.xml | 56f563fc757a2e8473000002 |
Cells Are Irreversibly Committed to Division at a Cell Cycle Point Called START or the Restriction Point
| lodish8e_ch19_23.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_23_dlap.xml | 56f563fc757a2e8473000002 |
The E2F Transcription Factor and Its Regulator Rb Control the G1âS Phase Transition in Metazoans
| lodish8e_ch19_24.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_24_dlap.xml | 56f563fc757a2e8473000002 |
Extracellular Signals Govern Cell Cycle Entry
| lodish8e_ch19_25.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_25_dlap.xml | 56f563fc757a2e8473000002 |
Degradation of an S Phase CDK Inhibitor Triggers DNA Replication
| lodish8e_ch19_26.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_26_dlap.xml | 56f563fc757a2e8473000002 |
Replication at Each Origin Is Initiated Once and Only Once During the Cell Cycle
| lodish8e_ch19_27.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_27_dlap.xml | 56f563fc757a2e8473000002 |
Duplicated DNA Strands Become Linked During Replication
| lodish8e_ch19_28.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_28_dlap.xml | 56f563fc757a2e8473000002 |
Key Concepts of Section 19.4 | lodish8e_ch19_29.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_29_dlap.xml | 56f563fc757a2e8473000002 |
19.5 Entry into Mitosis
| lodish8e_ch19_30.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_30_dlap.xml | 56f563fc757a2e8473000002 |
Precipitous Activation of Mitotic CDKs Initiates Mitosis
| lodish8e_ch19_31.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_31_dlap.xml | 56f563fc757a2e8473000002 |
Mitotic CDKs Promote Nuclear Envelope Breakdown
| lodish8e_ch19_32.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_32_dlap.xml | 56f563fc757a2e8473000002 |
Mitotic CDKs Promote Mitotic Spindle Formation
| lodish8e_ch19_33.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_33_dlap.xml | 56f563fc757a2e8473000002 |
Chromosome Condensation Facilitates Chromosome Segregation
| lodish8e_ch19_34.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_34_dlap.xml | 56f563fc757a2e8473000002 |
Key Concepts of Section 19.5 | lodish8e_ch19_35.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_35_dlap.xml | 56f563fc757a2e8473000002 |
19.6 Completion of Mitosis: Chromosome Segregation and Exit from Mitosis
| lodish8e_ch19_36.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_36_dlap.xml | 56f563fc757a2e8473000002 |
Separase-Mediated Cleavage of Cohesins Initiates Chromosome Segregation
| lodish8e_ch19_37.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_37_dlap.xml | 56f563fc757a2e8473000002 |
APC/C Activates Separase Through Securin Ubiquitinylation
| lodish8e_ch19_38.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_38_dlap.xml | 56f563fc757a2e8473000002 |
Mitotic CDK Inactivation Triggers Exit from Mitosis
| lodish8e_ch19_39.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_39_dlap.xml | 56f563fc757a2e8473000002 |
Cytokinesis Creates Two Daughter Cells
| lodish8e_ch19_40.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_40_dlap.xml | 56f563fc757a2e8473000002 |
Key Concepts of Section 19.6 | lodish8e_ch19_41.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_41_dlap.xml | 56f563fc757a2e8473000002 |
19.7 Surveillance Mechanisms in Cell Cycle Regulation
| lodish8e_ch19_42.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_42_dlap.xml | 56f563fc757a2e8473000002 |
Checkpoint Pathways Establish Dependencies and Prevent Errors in the Cell Cycle
| lodish8e_ch19_43.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_43_dlap.xml | 56f563fc757a2e8473000002 |
The Growth Checkpoint Pathway Ensures That Cells Enter the Cell Cycle Only After Sufficient Macromolecule Biosynthesis
| lodish8e_ch19_44.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_44_dlap.xml | 56f563fc757a2e8473000002 |
The DNA Damage Response System Halts Cell Cycle Progression When DNA Is Compromised
| lodish8e_ch19_45.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_45_dlap.xml | 56f563fc757a2e8473000002 |
The Spindle Assembly Checkpoint Pathway Prevents Chromosome Segregation Until Chromosomes Are Accurately Attached to the Mitotic Spindle
| lodish8e_ch19_46.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_46_dlap.xml | 56f563fc757a2e8473000002 |
The Spindle Position Checkpoint Pathway Ensures That the Nucleus Is Accurately Partitioned Between Two Daughter Cells
| lodish8e_ch19_47.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_47_dlap.xml | 56f563fc757a2e8473000002 |
Key Concepts of Section 19.7 | lodish8e_ch19_48.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_48_dlap.xml | 56f563fc757a2e8473000002 |
19.8 Meiosis: A Special Type of Cell Division
| lodish8e_ch19_49.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_49_dlap.xml | 56f563fc757a2e8473000002 |
Extracellular and Intracellular Cues Regulate Germ Cell Formation
| lodish8e_ch19_50.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_50_dlap.xml | 56f563fc757a2e8473000002 |
Several Key Features Distinguish Meiosis from Mitosis
| lodish8e_ch19_51.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_51_dlap.xml | 56f563fc757a2e8473000002 |
Recombination and a Meiosis-Specific Cohesin Subunit Are Necessary for the Specialized Chromosome Segregation in Meiosis I
| lodish8e_ch19_52.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_52_dlap.xml | 56f563fc757a2e8473000002 |
Co-orienting Sister Kinetochores Is Critical for Meiosis I Chromosome Segregation
| lodish8e_ch19_53.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_53_dlap.xml | 56f563fc757a2e8473000002 |
DNA Replication Is Inhibited Between the Two Meiotic Divisions
| lodish8e_ch19_54.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_54_dlap.xml | 56f563fc757a2e8473000002 |
Key Concepts of Section 19.8 | lodish8e_ch19_55.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_55_dlap.xml | 56f563fc757a2e8473000002 |
Key Terms
| lodish8e_ch19_56.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_56_dlap.xml | 56f563fc757a2e8473000002 |
Review the Concepts
| lodish8e_ch19_57.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_57_dlap.xml | 56f563fc757a2e8473000002 |
References
| lodish8e_ch19_58.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_58_dlap.xml | 56f563fc757a2e8473000002 |
Perspectives for the Future: Cell Cycle Checkpoints and Regulation
| lodish8e_ch19_59.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_59_dlap.xml | 56f563fc757a2e8473000002 |
Classic Experiment 19-1: How Cyclins Were Discovered | lodish8e_ch19_60.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_60_dlap.xml | 56f563fc757a2e8473000002 |
Classic Experiment 19-2: Synthesis and Degradation of Mitotic Cyclin Are Required for Progression through Mitosis | lodish8e_ch19_61.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_61_dlap.xml | 56f563fc757a2e8473000002 |
Classic Experiment 19-3: The Formulation of the Checkpoint Concept | lodish8e_ch19_62.html | 56f563fc757a2e8473000002 |
DLAP questions | lodish8e_ch19_62_dlap.xml | 56f563fc757a2e8473000002 |
Chapter Introduction | lodish8e_ch20_1.html | 57335e81757a2e557f000000 |
DLAP questions | lodish8e_ch20_1_dlap.xml | 57335e81757a2e557f000000 |
20.1 Cell-Cell and CellâExtracellular Matrix Adhesion: An Overview
| lodish8e_ch20_2.html | 57335e81757a2e557f000000 |
DLAP questions | lodish8e_ch20_2_dlap.xml | 57335e81757a2e557f000000 |
Cell-Adhesion Molecules Bind to One Another and to Intracellular Proteins
| lodish8e_ch20_3.html | 57335e81757a2e557f000000 |
DLAP questions | lodish8e_ch20_3_dlap.xml | 57335e81757a2e557f000000 |
The Extracellular Matrix Participates in Adhesion, Signaling, and Other Functions
| lodish8e_ch20_4.html | 57335e81757a2e557f000000 |
DLAP questions | lodish8e_ch20_4_dlap.xml | 57335e81757a2e557f000000 |
The Evolution of Multifaceted Adhesion Molecules Made Possible the Evolution of Diverse Animal Tissues
| lodish8e_ch20_5.html | 57335e81757a2e557f000000 |
DLAP questions | lodish8e_ch20_5_dlap.xml | 57335e81757a2e557f000000 |
Cell-Adhesion Molecules Mediate Mechanotransduction
| lodish8e_ch20_6.html | 57335e81757a2e557f000000 |
DLAP questions | lodish8e_ch20_6_dlap.xml | 57335e81757a2e557f000000 |
Key Concepts of Section 20.1 | lodish8e_ch20_7.html | 57335e81757a2e557f000000 |
DLAP questions | lodish8e_ch20_7_dlap.xml | 57335e81757a2e557f000000 |
20.2 Cell-Cell and CellâExtracellular Junctions and Their Adhesion Molecules
| lodish8e_ch20_8.html | 57335e81757a2e557f000000 |
DLAP questions | lodish8e_ch20_8_dlap.xml | 57335e81757a2e557f000000 |
Epithelial Cells Have Distinct Apical, Lateral, and Basal Surfaces
| lodish8e_ch20_9.html | 57335e81757a2e557f000000 |
DLAP questions | lodish8e_ch20_9_dlap.xml | 57335e81757a2e557f000000 |
Three Types of Junctions Mediate Many Cell-Cell and Cell-ECM Interactions
| lodish8e_ch20_10.html | 57335e81757a2e557f000000 |
DLAP questions | lodish8e_ch20_10_dlap.xml | 57335e81757a2e557f000000 |
Cadherins Mediate Cell-Cell Adhesions in Adherens Junctions and Desmosomes
| lodish8e_ch20_11.html | 57335e81757a2e557f000000 |
DLAP questions | lodish8e_ch20_11_dlap.xml | 57335e81757a2e557f000000 |
Integrins Mediate Cell-ECM Adhesions, Including Those in Epithelial-Cell Hemidesmosomes
| lodish8e_ch20_12.html | 57335e81757a2e557f000000 |
DLAP questions | lodish8e_ch20_12_dlap.xml | 57335e81757a2e557f000000 |
Tight Junctions Seal Off Body Cavities and Restrict Diffusion of Membrane Components
| lodish8e_ch20_13.html | 57335e81757a2e557f000000 |
DLAP questions | lodish8e_ch20_13_dlap.xml | 57335e81757a2e557f000000 |
Gap Junctions Composed of Connexins Allow Small Molecules to Pass Directly Between the Cytosols of Adjacent Cells
| lodish8e_ch20_14.html | 57335e81757a2e557f000000 |
DLAP questions | lodish8e_ch20_14_dlap.xml | 57335e81757a2e557f000000 |
Key Concepts of Section 20.2 | lodish8e_ch20_15.html | 57335e81757a2e557f000000 |
DLAP questions | lodish8e_ch20_15_dlap.xml | 57335e81757a2e557f000000 |
20.3 The Extracellular Matrix I: The Basal Lamina
| lodish8e_ch20_16.html | 57335e81757a2e557f000000 |
DLAP questions | lodish8e_ch20_16_dlap.xml | 57335e81757a2e557f000000 |
The Basal Lamina Provides a Foundation for Assembly of Cells into Tissues
| lodish8e_ch20_17.html | 57335e81757a2e557f000000 |
DLAP questions | lodish8e_ch20_17_dlap.xml | 57335e81757a2e557f000000 |
Laminin, a Multi-adhesive Matrix Protein, Helps Cross-Link Components of the Basal Lamina
| lodish8e_ch20_18.html | 57335e81757a2e557f000000 |
DLAP questions | lodish8e_ch20_18_dlap.xml | 57335e81757a2e557f000000 |
Sheet-Forming Type IV Collagen Is a Major Structural Component of the Basal Lamina
| lodish8e_ch20_19.html | 57335e81757a2e557f000000 |
DLAP questions | lodish8e_ch20_19_dlap.xml | 57335e81757a2e557f000000 |
Perlecan, a Proteoglycan, Cross-Links Components of the Basal Lamina and Cell-Surface Receptors
| lodish8e_ch20_20.html | 57335e81757a2e557f000000 |
DLAP questions | lodish8e_ch20_20_dlap.xml | 57335e81757a2e557f000000 |
Key Concepts of Section 20.3 | lodish8e_ch20_21.html | 57335e81757a2e557f000000 |
DLAP questions | lodish8e_ch20_21_dlap.xml | 57335e81757a2e557f000000 |
20.4 The Extracellular Matrix II: Connective Tissue
| lodish8e_ch20_22.html | 57335e81757a2e557f000000 |
DLAP questions | lodish8e_ch20_22_dlap.xml | 57335e81757a2e557f000000 |
Fibrillar Collagens Are the Major Fibrous Proteins in the ECM of Connective Tissues
| lodish8e_ch20_23.html | 57335e81757a2e557f000000 |
DLAP questions | lodish8e_ch20_23_dlap.xml | 57335e81757a2e557f000000 |
Fibrillar Collagen Is Secreted and Assembled into Fibrils Outside the Cell
| lodish8e_ch20_24.html | 57335e81757a2e557f000000 |
DLAP questions | lodish8e_ch20_24_dlap.xml | 57335e81757a2e557f000000 |
Type I and II Collagens Associate with Nonfibrillar Collagens to Form Diverse Structures
| lodish8e_ch20_25.html | 57335e81757a2e557f000000 |
DLAP questions | lodish8e_ch20_25_dlap.xml | 57335e81757a2e557f000000 |
Proteoglycans and Their Constituent GAGs Play Diverse Roles in the ECM
| lodish8e_ch20_26.html | 57335e81757a2e557f000000 |
DLAP questions | lodish8e_ch20_26_dlap.xml | 57335e81757a2e557f000000 |
Hyaluronan Resists Compression, Facilitates Cell Migration, and Gives Cartilage Its Gel-Like Properties
| lodish8e_ch20_27.html | 57335e81757a2e557f000000 |
DLAP questions | lodish8e_ch20_27_dlap.xml | 57335e81757a2e557f000000 |
Fibronectins Connect Cells and ECM, Influencing Cell Shape, Differentiation, and Movement
| lodish8e_ch20_28.html | 57335e81757a2e557f000000 |
DLAP questions | lodish8e_ch20_28_dlap.xml | 57335e81757a2e557f000000 |
Elastic Fibers Permit Many Tissues to Undergo Repeated Stretching and Recoiling
| lodish8e_ch20_29.html | 57335e81757a2e557f000000 |
DLAP questions | lodish8e_ch20_29_dlap.xml | 57335e81757a2e557f000000 |
Metalloproteases Remodel and Degrade the Extracellular Matrix
| lodish8e_ch20_30.html | 57335e81757a2e557f000000 |
DLAP questions | lodish8e_ch20_30_dlap.xml | 57335e81757a2e557f000000 |
Key Concepts of Section 20.4 | lodish8e_ch20_31.html | 57335e81757a2e557f000000 |
DLAP questions | lodish8e_ch20_31_dlap.xml | 57335e81757a2e557f000000 |
20.5 Adhesive Interactions in Motile and Nonmotile Cells
| lodish8e_ch20_32.html | 57335e81757a2e557f000000 |
DLAP questions | lodish8e_ch20_32_dlap.xml | 57335e81757a2e557f000000 |
Integrins Mediate Adhesion and Relay Signals Between Cells and Their Three-Dimensional Environment
| lodish8e_ch20_33.html | 57335e81757a2e557f000000 |
DLAP questions | lodish8e_ch20_33_dlap.xml | 57335e81757a2e557f000000 |
Regulation of Integrin-Mediated Adhesion and Signaling Controls Cell Movement
| lodish8e_ch20_34.html | 57335e81757a2e557f000000 |
DLAP questions | lodish8e_ch20_34_dlap.xml | 57335e81757a2e557f000000 |
Connections Between the ECM and Cytoskeleton Are Defective in Muscular Dystrophy
| lodish8e_ch20_35.html | 57335e81757a2e557f000000 |
DLAP questions | lodish8e_ch20_35_dlap.xml | 57335e81757a2e557f000000 |
IgCAMs Mediate Cell-Cell Adhesion in Neural and Other Tissues
| lodish8e_ch20_36.html | 57335e81757a2e557f000000 |
DLAP questions | lodish8e_ch20_36_dlap.xml | 57335e81757a2e557f000000 |
Leukocyte Movement into Tissues Is Orchestrated by a Precisely Timed Sequence of Adhesive Interactions
| lodish8e_ch20_37.html | 57335e81757a2e557f000000 |
DLAP questions | lodish8e_ch20_37_dlap.xml | 57335e81757a2e557f000000 |
Key Concepts of Section 20.5 | lodish8e_ch20_38.html | 57335e81757a2e557f000000 |
DLAP questions | lodish8e_ch20_38_dlap.xml | 57335e81757a2e557f000000 |
20.6 Plant Tissues
| lodish8e_ch20_39.html | 57335e81757a2e557f000000 |
DLAP questions | lodish8e_ch20_39_dlap.xml | 57335e81757a2e557f000000 |
The Plant Cell Wall Is a Laminate of Cellulose Fibrils in a Matrix of Glycoproteins
| lodish8e_ch20_40.html | 57335e81757a2e557f000000 |
DLAP questions | lodish8e_ch20_40_dlap.xml | 57335e81757a2e557f000000 |
Loosening of the Cell Wall Permits Plant Cell Growth
| lodish8e_ch20_41.html | 57335e81757a2e557f000000 |
DLAP questions | lodish8e_ch20_41_dlap.xml | 57335e81757a2e557f000000 |
Plasmodesmata Directly Connect the Cytosols of Adjacent Cells
| lodish8e_ch20_42.html | 57335e81757a2e557f000000 |
DLAP questions | lodish8e_ch20_42_dlap.xml | 57335e81757a2e557f000000 |
Tunneling Nanotubes Resemble Plasmodesmata and Transfer Molecules and Organelles Between Animal Cells
| lodish8e_ch20_43.html | 57335e81757a2e557f000000 |
DLAP questions | lodish8e_ch20_43_dlap.xml | 57335e81757a2e557f000000 |
Only a Few Adhesion Molecules Have Been Identified in Plants
| lodish8e_ch20_44.html | 57335e81757a2e557f000000 |
DLAP questions | lodish8e_ch20_44_dlap.xml | 57335e81757a2e557f000000 |
Key Concepts of Section 20.6 | lodish8e_ch20_45.html | 57335e81757a2e557f000000 |
DLAP questions | lodish8e_ch20_45_dlap.xml | 57335e81757a2e557f000000 |
Key Terms
| lodish8e_ch20_46.html | 57335e81757a2e557f000000 |
DLAP questions | lodish8e_ch20_46_dlap.xml | 57335e81757a2e557f000000 |
Review the Concepts
| lodish8e_ch20_47.html | 57335e81757a2e557f000000 |
DLAP questions | lodish8e_ch20_47_dlap.xml | 57335e81757a2e557f000000 |
Extended References
| lodish8e_ch20_48.html | 57335e81757a2e557f000000 |
DLAP questions | lodish8e_ch20_48_dlap.xml | 57335e81757a2e557f000000 |
Perspectives for the Future
| lodish8e_ch20_49.html | 57335e81757a2e557f000000 |
DLAP questions | lodish8e_ch20_49_dlap.xml | 57335e81757a2e557f000000 |
Chapter Introduction | lodish8e_ch21_1.html | 57335f01757a2ed17f000002 |
DLAP questions | lodish8e_ch21_1_dlap.xml | 57335f01757a2ed17f000002 |
21.1 Early Mammalian Development
| lodish8e_ch21_2.html | 57335f01757a2ed17f000002 |
DLAP questions | lodish8e_ch21_2_dlap.xml | 57335f01757a2ed17f000002 |
Fertilization Unifies the Genome
| lodish8e_ch21_3.html | 57335f01757a2ed17f000002 |
DLAP questions | lodish8e_ch21_3_dlap.xml | 57335f01757a2ed17f000002 |
Cleavage of the Mammalian Embryo Leads to the First Differentiation Events
| lodish8e_ch21_4.html | 57335f01757a2ed17f000002 |
DLAP questions | lodish8e_ch21_4_dlap.xml | 57335f01757a2ed17f000002 |
Key Concepts of Section 21.1 | lodish8e_ch21_5.html | 57335f01757a2ed17f000002 |
DLAP questions | lodish8e_ch21_5_dlap.xml | 57335f01757a2ed17f000002 |
21.2 Embryonic Stem Cells and Induced Pluripotent Stem Cells
| lodish8e_ch21_6.html | 57335f01757a2ed17f000002 |
DLAP questions | lodish8e_ch21_6_dlap.xml | 57335f01757a2ed17f000002 |
The Inner Cell Mass Is the Source of ES Cells
| lodish8e_ch21_7.html | 57335f01757a2ed17f000002 |
DLAP questions | lodish8e_ch21_7_dlap.xml | 57335f01757a2ed17f000002 |
Multiple Factors Control the Pluripotency of ES Cells
| lodish8e_ch21_8.html | 57335f01757a2ed17f000002 |
DLAP questions | lodish8e_ch21_8_dlap.xml | 57335f01757a2ed17f000002 |
Animal Cloning Shows That Differentiation Can Be Reversed
| lodish8e_ch21_9.html | 57335f01757a2ed17f000002 |
DLAP questions | lodish8e_ch21_9_dlap.xml | 57335f01757a2ed17f000002 |
Somatic Cells Can Generate iPS Cells
| lodish8e_ch21_10.html | 57335f01757a2ed17f000002 |
DLAP questions | lodish8e_ch21_10_dlap.xml | 57335f01757a2ed17f000002 |
ES and iPS Cells Can Generate Functional Differentiated Human Cells
| lodish8e_ch21_11.html | 57335f01757a2ed17f000002 |
DLAP questions | lodish8e_ch21_11_dlap.xml | 57335f01757a2ed17f000002 |
Key Concepts of Section 21.2 | lodish8e_ch21_12.html | 57335f01757a2ed17f000002 |
DLAP questions | lodish8e_ch21_12_dlap.xml | 57335f01757a2ed17f000002 |
21.3 Stem Cells and Niches in Multicellular Organisms
| lodish8e_ch21_13.html | 57335f01757a2ed17f000002 |
DLAP questions | lodish8e_ch21_13_dlap.xml | 57335f01757a2ed17f000002 |
Adult Planaria Contain Pluripotent Stem Cells
| lodish8e_ch21_14.html | 57335f01757a2ed17f000002 |
DLAP questions | lodish8e_ch21_14_dlap.xml | 57335f01757a2ed17f000002 |
Multipotent Somatic Stem Cells Give Rise to Both Stem Cells and Differentiating Cells
| lodish8e_ch21_15.html | 57335f01757a2ed17f000002 |
DLAP questions | lodish8e_ch21_15_dlap.xml | 57335f01757a2ed17f000002 |
Stem Cells for Different Tissues Occupy Sustaining Niches
| lodish8e_ch21_16.html | 57335f01757a2ed17f000002 |
DLAP questions | lodish8e_ch21_16_dlap.xml | 57335f01757a2ed17f000002 |
Germ-Line Stem Cells Produce Sperm or Oocytes
| lodish8e_ch21_17.html | 57335f01757a2ed17f000002 |
DLAP questions | lodish8e_ch21_17_dlap.xml | 57335f01757a2ed17f000002 |
Intestinal Stem Cells Continuously Generate All the Cells of the Intestinal Epithelium
| lodish8e_ch21_18.html | 57335f01757a2ed17f000002 |
DLAP questions | lodish8e_ch21_18_dlap.xml | 57335f01757a2ed17f000002 |
Hematopoietic Stem Cells Form All Blood Cells
| lodish8e_ch21_19.html | 57335f01757a2ed17f000002 |
DLAP questions | lodish8e_ch21_19_dlap.xml | 57335f01757a2ed17f000002 |
Rare Types of Cells Constitute the Niche for Hematopoietic Stem Cells
| lodish8e_ch21_20.html | 57335f01757a2ed17f000002 |
DLAP questions | lodish8e_ch21_20_dlap.xml | 57335f01757a2ed17f000002 |
Meristems Are Niches for Stem Cells in Plants
| lodish8e_ch21_21.html | 57335f01757a2ed17f000002 |
DLAP questions | lodish8e_ch21_21_dlap.xml | 57335f01757a2ed17f000002 |
A Negative Feedback Loop Maintains the Size of the Shoot Apical Stem-Cell Population
| lodish8e_ch21_22.html | 57335f01757a2ed17f000002 |
DLAP questions | lodish8e_ch21_22_dlap.xml | 57335f01757a2ed17f000002 |
The Root Meristem Resembles the Shoot Meristem in Structure and Function
| lodish8e_ch21_23.html | 57335f01757a2ed17f000002 |
DLAP questions | lodish8e_ch21_23_dlap.xml | 57335f01757a2ed17f000002 |
Key Concepts of Section 21.3 | lodish8e_ch21_24.html | 57335f01757a2ed17f000002 |
DLAP questions | lodish8e_ch21_24_dlap.xml | 57335f01757a2ed17f000002 |
21.4 Mechanisms of Cell Polarity and Asymmetric Cell Division
| lodish8e_ch21_25.html | 57335f01757a2ed17f000002 |
DLAP questions | lodish8e_ch21_25_dlap.xml | 57335f01757a2ed17f000002 |
The Intrinsic Polarity Program Depends on a Positive Feedback Loop Involving Cdc42
| lodish8e_ch21_26.html | 57335f01757a2ed17f000002 |
DLAP questions | lodish8e_ch21_26_dlap.xml | 57335f01757a2ed17f000002 |
Cell Polarization Before Cell Division Follows a Common Hierarchy of Steps
| lodish8e_ch21_27.html | 57335f01757a2ed17f000002 |
DLAP questions | lodish8e_ch21_27_dlap.xml | 57335f01757a2ed17f000002 |
Polarized Membrane Traffic Allows Yeast to Grow Asymmetrically During Mating
| lodish8e_ch21_28.html | 57335f01757a2ed17f000002 |
DLAP questions | lodish8e_ch21_28_dlap.xml | 57335f01757a2ed17f000002 |
The Par Proteins Direct Cell Asymmetry in the Nematode Embryo
| lodish8e_ch21_29.html | 57335f01757a2ed17f000002 |
DLAP questions | lodish8e_ch21_29_dlap.xml | 57335f01757a2ed17f000002 |
The Par Proteins and Other Polarity Complexes Are Involved in Epithelial-Cell Polarity
| lodish8e_ch21_30.html | 57335f01757a2ed17f000002 |
DLAP questions | lodish8e_ch21_30_dlap.xml | 57335f01757a2ed17f000002 |
The Planar Cell Polarity Pathway Orients Cells Within an Epithelium
| lodish8e_ch21_31.html | 57335f01757a2ed17f000002 |
DLAP questions | lodish8e_ch21_31_dlap.xml | 57335f01757a2ed17f000002 |
The Par Proteins Are Involved in Asymmetric Division of Stem Cells
| lodish8e_ch21_32.html | 57335f01757a2ed17f000002 |
DLAP questions | lodish8e_ch21_32_dlap.xml | 57335f01757a2ed17f000002 |
Key Concepts of Section 21.4 | lodish8e_ch21_33.html | 57335f01757a2ed17f000002 |
DLAP questions | lodish8e_ch21_33_dlap.xml | 57335f01757a2ed17f000002 |
21.5 Cell Death and Its Regulation
| lodish8e_ch21_34.html | 57335f01757a2ed17f000002 |
DLAP questions | lodish8e_ch21_34_dlap.xml | 57335f01757a2ed17f000002 |
Most Programmed Cell Death Occurs Through Apoptosis
| lodish8e_ch21_35.html | 57335f01757a2ed17f000002 |
DLAP questions | lodish8e_ch21_35_dlap.xml | 57335f01757a2ed17f000002 |
Evolutionarily Conserved Proteins Participate in the Apoptotic Pathway
| lodish8e_ch21_36.html | 57335f01757a2ed17f000002 |
DLAP questions | lodish8e_ch21_36_dlap.xml | 57335f01757a2ed17f000002 |
Caspases Amplify the Initial Apoptotic Signal and Destroy Key Cellular Proteins
| lodish8e_ch21_37.html | 57335f01757a2ed17f000002 |
DLAP questions | lodish8e_ch21_37_dlap.xml | 57335f01757a2ed17f000002 |
Neurotrophins Promote Survival of Neurons
| lodish8e_ch21_38.html | 57335f01757a2ed17f000002 |
DLAP questions | lodish8e_ch21_38_dlap.xml | 57335f01757a2ed17f000002 |
Mitochondria Play a Central Role in Regulation of Apoptosis in Vertebrate Cells
| lodish8e_ch21_39.html | 57335f01757a2ed17f000002 |
DLAP questions | lodish8e_ch21_39_dlap.xml | 57335f01757a2ed17f000002 |
The Pro-apoptotic Proteins Bax and Bak Form Pores and Holes in the Outer Mitochondrial Membrane
| lodish8e_ch21_40.html | 57335f01757a2ed17f000002 |
DLAP questions | lodish8e_ch21_40_dlap.xml | 57335f01757a2ed17f000002 |
Release of Cytochrome c and SMAC/DIABLO Proteins from Mitochondria Leads to Formation of the Apoptosome and Caspase Activation
| lodish8e_ch21_41.html | 57335f01757a2ed17f000002 |
DLAP questions | lodish8e_ch21_41_dlap.xml | 57335f01757a2ed17f000002 |
Trophic Factors Induce Inactivation of Bad, a Pro-apoptotic BH3-Only Protein
| lodish8e_ch21_42.html | 57335f01757a2ed17f000002 |
DLAP questions | lodish8e_ch21_42_dlap.xml | 57335f01757a2ed17f000002 |
Vertebrate Apoptosis Is Regulated by BH3-Only Pro-apoptotic Proteins That Are Activated by Environmental Stresses
| lodish8e_ch21_43.html | 57335f01757a2ed17f000002 |
DLAP questions | lodish8e_ch21_43_dlap.xml | 57335f01757a2ed17f000002 |
Two Types of Cell Murder Are Triggered by Tumor Necrosis Factor, Fas Ligand, and Related Death Signals
| lodish8e_ch21_44.html | 57335f01757a2ed17f000002 |
DLAP questions | lodish8e_ch21_44_dlap.xml | 57335f01757a2ed17f000002 |
Key Concepts of Section 21.5 | lodish8e_ch21_45.html | 57335f01757a2ed17f000002 |
DLAP questions | lodish8e_ch21_45_dlap.xml | 57335f01757a2ed17f000002 |
Key Terms
| lodish8e_ch21_46.html | 57335f01757a2ed17f000002 |
DLAP questions | lodish8e_ch21_46_dlap.xml | 57335f01757a2ed17f000002 |
Review the Concepts
| lodish8e_ch21_47.html | 57335f01757a2ed17f000002 |
DLAP questions | lodish8e_ch21_47_dlap.xml | 57335f01757a2ed17f000002 |
References
| lodish8e_ch21_48.html | 57335f01757a2ed17f000002 |
DLAP questions | lodish8e_ch21_48_dlap.xml | 57335f01757a2ed17f000002 |
Perspectives for the Future
| lodish8e_ch21_49.html | 57335f01757a2ed17f000002 |
DLAP questions | lodish8e_ch21_49_dlap.xml | 57335f01757a2ed17f000002 |
Chapter Introduction | lodish8e_ch22_1.html | 57335f41757a2ede7e000005 |
DLAP questions | lodish8e_ch22_1_dlap.xml | 57335f41757a2ede7e000005 |
22.1 Neurons and Glia: Building Blocks of the Nervous System
| lodish8e_ch22_2.html | 57335f41757a2ede7e000005 |
DLAP questions | lodish8e_ch22_2_dlap.xml | 57335f41757a2ede7e000005 |
Information Flows Through Neurons from Dendrites to Axons
| lodish8e_ch22_3.html | 57335f41757a2ede7e000005 |
DLAP questions | lodish8e_ch22_3_dlap.xml | 57335f41757a2ede7e000005 |
Information Moves Along Axons as Pulses of Ion Flow Called Action Potentials
| lodish8e_ch22_4.html | 57335f41757a2ede7e000005 |
DLAP questions | lodish8e_ch22_4_dlap.xml | 57335f41757a2ede7e000005 |
Information Flows Between Neurons via Synapses
| lodish8e_ch22_5.html | 57335f41757a2ede7e000005 |
DLAP questions | lodish8e_ch22_5_dlap.xml | 57335f41757a2ede7e000005 |
The Nervous System Uses Signaling Circuits Composed of Multiple Neurons
| lodish8e_ch22_6.html | 57335f41757a2ede7e000005 |
DLAP questions | lodish8e_ch22_6_dlap.xml | 57335f41757a2ede7e000005 |
Glial Cells Form Myelin Sheaths and Support Neurons
| lodish8e_ch22_7.html | 57335f41757a2ede7e000005 |
DLAP questions | lodish8e_ch22_7_dlap.xml | 57335f41757a2ede7e000005 |
Neural Stem Cells Form Nerve and Glial Cells in the Central Nervous System
| lodish8e_ch22_8.html | 57335f41757a2ede7e000005 |
DLAP questions | lodish8e_ch22_8_dlap.xml | 57335f41757a2ede7e000005 |
Key Concepts of Section 22.1 | lodish8e_ch22_9.html | 57335f41757a2ede7e000005 |
DLAP questions | lodish8e_ch22_9_dlap.xml | 57335f41757a2ede7e000005 |
22.2 Voltage-Gated Ion Channels and the Propagation of Action Potentials
| lodish8e_ch22_10.html | 57335f41757a2ede7e000005 |
DLAP questions | lodish8e_ch22_10_dlap.xml | 57335f41757a2ede7e000005 |
The Magnitude of the Action Potential Is Close to ENa and Is Caused by Na+ Influx Through Open Na+ Channels
| lodish8e_ch22_11.html | 57335f41757a2ede7e000005 |
DLAP questions | lodish8e_ch22_11_dlap.xml | 57335f41757a2ede7e000005 |
Sequential Opening and Closing of Voltage-Gated Na+ and K+ Channels Generate Action Potentials
| lodish8e_ch22_12.html | 57335f41757a2ede7e000005 |
DLAP questions | lodish8e_ch22_12_dlap.xml | 57335f41757a2ede7e000005 |
Action Potentials Are Propagated Unidirectionally Without Diminution
| lodish8e_ch22_13.html | 57335f41757a2ede7e000005 |
DLAP questions | lodish8e_ch22_13_dlap.xml | 57335f41757a2ede7e000005 |
Nerve Cells Can Conduct Many Action Potentials in the Absence of ATP
| lodish8e_ch22_14.html | 57335f41757a2ede7e000005 |
DLAP questions | lodish8e_ch22_14_dlap.xml | 57335f41757a2ede7e000005 |
All Voltage-Gated Ion Channels Have Similar Structures
| lodish8e_ch22_15.html | 57335f41757a2ede7e000005 |
DLAP questions | lodish8e_ch22_15_dlap.xml | 57335f41757a2ede7e000005 |
Voltage-Sensing S4 α Helices Move in Response to Membrane Depolarization
| lodish8e_ch22_16.html | 57335f41757a2ede7e000005 |
DLAP questions | lodish8e_ch22_16_dlap.xml | 57335f41757a2ede7e000005 |
Movement of the Channel-Inactivating Segment into the Open Pore Blocks Ion Flow
| lodish8e_ch22_17.html | 57335f41757a2ede7e000005 |
DLAP questions | lodish8e_ch22_17_dlap.xml | 57335f41757a2ede7e000005 |
Myelination Increases the Velocity of Impulse Conduction
| lodish8e_ch22_18.html | 57335f41757a2ede7e000005 |
DLAP questions | lodish8e_ch22_18_dlap.xml | 57335f41757a2ede7e000005 |
Action Potentials âJumpâ from Node to Node in Myelinated Axons
| lodish8e_ch22_19.html | 57335f41757a2ede7e000005 |
DLAP questions | lodish8e_ch22_19_dlap.xml | 57335f41757a2ede7e000005 |
Two Types of Glia Produce Myelin Sheaths
| lodish8e_ch22_20.html | 57335f41757a2ede7e000005 |
DLAP questions | lodish8e_ch22_20_dlap.xml | 57335f41757a2ede7e000005 |
Light-Activated Ion Channels and Optogenetics
| lodish8e_ch22_21.html | 57335f41757a2ede7e000005 |
DLAP questions | lodish8e_ch22_21_dlap.xml | 57335f41757a2ede7e000005 |
Key Concepts of Section 22.2 | lodish8e_ch22_22.html | 57335f41757a2ede7e000005 |
DLAP questions | lodish8e_ch22_22_dlap.xml | 57335f41757a2ede7e000005 |
22.3 Communication at Synapses
| lodish8e_ch22_23.html | 57335f41757a2ede7e000005 |
DLAP questions | lodish8e_ch22_23_dlap.xml | 57335f41757a2ede7e000005 |
Formation of Synapses Requires Assembly of Presynaptic and Postsynaptic Structures
| lodish8e_ch22_24.html | 57335f41757a2ede7e000005 |
DLAP questions | lodish8e_ch22_24_dlap.xml | 57335f41757a2ede7e000005 |
Neurotransmitters Are Transported into Synaptic Vesicles by H+-Linked Antiport Proteins
| lodish8e_ch22_25.html | 57335f41757a2ede7e000005 |
DLAP questions | lodish8e_ch22_25_dlap.xml | 57335f41757a2ede7e000005 |
Three Pools of Synaptic Vesicles Loaded with Neurotransmitter Are Present in the Presynaptic Terminal
| lodish8e_ch22_26.html | 57335f41757a2ede7e000005 |
DLAP questions | lodish8e_ch22_26_dlap.xml | 57335f41757a2ede7e000005 |
Influx of Ca2+ Triggers Release of Neurotransmitters
| lodish8e_ch22_27.html | 57335f41757a2ede7e000005 |
DLAP questions | lodish8e_ch22_27_dlap.xml | 57335f41757a2ede7e000005 |
A Calcium-Binding Protein Regulates Fusion of Synaptic Vesicles with the Plasma Membrane
| lodish8e_ch22_28.html | 57335f41757a2ede7e000005 |
DLAP questions | lodish8e_ch22_28_dlap.xml | 57335f41757a2ede7e000005 |
Fly Mutants Lacking Dynamin Cannot Recycle Synaptic Vesicles
| lodish8e_ch22_29.html | 57335f41757a2ede7e000005 |
DLAP questions | lodish8e_ch22_29_dlap.xml | 57335f41757a2ede7e000005 |
Signaling at Synapses Is Terminated by Degradation or Reuptake of Neurotransmitters
| lodish8e_ch22_30.html | 57335f41757a2ede7e000005 |
DLAP questions | lodish8e_ch22_30_dlap.xml | 57335f41757a2ede7e000005 |
Opening of Acetylcholine-Gated Cation Channels Leads to Muscle Contraction
| lodish8e_ch22_31.html | 57335f41757a2ede7e000005 |
DLAP questions | lodish8e_ch22_31_dlap.xml | 57335f41757a2ede7e000005 |
All Five Subunits in the Nicotinic Acetylcholine Receptor Contribute to the Ion Channel
| lodish8e_ch22_32.html | 57335f41757a2ede7e000005 |
DLAP questions | lodish8e_ch22_32_dlap.xml | 57335f41757a2ede7e000005 |
Nerve Cells Integrate Many Inputs to Make an All-or-None Decision to Generate an Action Potential
| lodish8e_ch22_33.html | 57335f41757a2ede7e000005 |
DLAP questions | lodish8e_ch22_33_dlap.xml | 57335f41757a2ede7e000005 |
Gap Junctions Allow Direct Communication Between Neurons and Between Glia
| lodish8e_ch22_34.html | 57335f41757a2ede7e000005 |
DLAP questions | lodish8e_ch22_34_dlap.xml | 57335f41757a2ede7e000005 |
Key Concepts of Section 22.3 | lodish8e_ch22_35.html | 57335f41757a2ede7e000005 |
DLAP questions | lodish8e_ch22_35_dlap.xml | 57335f41757a2ede7e000005 |
22.4 Sensing the Environment: Touch, Pain, Taste, and Smell
| lodish8e_ch22_36.html | 57335f41757a2ede7e000005 |
DLAP questions | lodish8e_ch22_36_dlap.xml | 57335f41757a2ede7e000005 |
Mechanoreceptors Are Gated Cation Channels
| lodish8e_ch22_37.html | 57335f41757a2ede7e000005 |
DLAP questions | lodish8e_ch22_37_dlap.xml | 57335f41757a2ede7e000005 |
Pain Receptors Are Also Gated Cation Channels
| lodish8e_ch22_38.html | 57335f41757a2ede7e000005 |
DLAP questions | lodish8e_ch22_38_dlap.xml | 57335f41757a2ede7e000005 |
Five Primary Tastes Are Sensed by Subsets of Cells in Each Taste Bud
| lodish8e_ch22_39.html | 57335f41757a2ede7e000005 |
DLAP questions | lodish8e_ch22_39_dlap.xml | 57335f41757a2ede7e000005 |
A Plethora of Receptors Detect Odors
| lodish8e_ch22_40.html | 57335f41757a2ede7e000005 |
DLAP questions | lodish8e_ch22_40_dlap.xml | 57335f41757a2ede7e000005 |
Each Olfactory Receptor Neuron Expresses a Single Type of Odorant Receptor
| lodish8e_ch22_41.html | 57335f41757a2ede7e000005 |
DLAP questions | lodish8e_ch22_41_dlap.xml | 57335f41757a2ede7e000005 |
Key Concepts of Section 22.4 | lodish8e_ch22_42.html | 57335f41757a2ede7e000005 |
DLAP questions | lodish8e_ch22_42_dlap.xml | 57335f41757a2ede7e000005 |
22.5 Forming and Storing Memories
| lodish8e_ch22_43.html | 57335f41757a2ede7e000005 |
DLAP questions | lodish8e_ch22_43_dlap.xml | 57335f41757a2ede7e000005 |
Memories Are Formed by Changing the Number or Strength of Synapses Between Neurons
| lodish8e_ch22_44.html | 57335f41757a2ede7e000005 |
DLAP questions | lodish8e_ch22_44_dlap.xml | 57335f41757a2ede7e000005 |
The Hippocampus Is Required for Memory Formation
| lodish8e_ch22_45.html | 57335f41757a2ede7e000005 |
DLAP questions | lodish8e_ch22_45_dlap.xml | 57335f41757a2ede7e000005 |
Multiple Molecular Mechanisms Contribute to Synaptic Plasticity
| lodish8e_ch22_46.html | 57335f41757a2ede7e000005 |
DLAP questions | lodish8e_ch22_46_dlap.xml | 57335f41757a2ede7e000005 |
Formation of Long-Term Memories Requires Gene Expression
| lodish8e_ch22_47.html | 57335f41757a2ede7e000005 |
DLAP questions | lodish8e_ch22_47_dlap.xml | 57335f41757a2ede7e000005 |
Key Concepts of Section 22.5 | lodish8e_ch22_48.html | 57335f41757a2ede7e000005 |
DLAP questions | lodish8e_ch22_48_dlap.xml | 57335f41757a2ede7e000005 |
Key Terms
| lodish8e_ch22_49.html | 57335f41757a2ede7e000005 |
DLAP questions | lodish8e_ch22_49_dlap.xml | 57335f41757a2ede7e000005 |
Review the Concepts
| lodish8e_ch22_50.html | 57335f41757a2ede7e000005 |
DLAP questions | lodish8e_ch22_50_dlap.xml | 57335f41757a2ede7e000005 |
Extended References
| lodish8e_ch22_51.html | 57335f41757a2ede7e000005 |
DLAP questions | lodish8e_ch22_51_dlap.xml | 57335f41757a2ede7e000005 |
Perspectives for the Future
| lodish8e_ch22_52.html | 57335f41757a2ede7e000005 |
DLAP questions | lodish8e_ch22_52_dlap.xml | 57335f41757a2ede7e000005 |
Chapter Introduction | lodish8e_ch23_1.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_1_dlap.xml | 57335f7c757a2eec7e000001 |
23.1 Overview of Host Defenses
| lodish8e_ch23_2.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_2_dlap.xml | 57335f7c757a2eec7e000001 |
Pathogens Enter the Body Through Different Routes and Replicate at Different Sites
| lodish8e_ch23_3.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_3_dlap.xml | 57335f7c757a2eec7e000001 |
Leukocytes Circulate Throughout the Body and Take Up Residence in Tissues and Lymph Nodes
| lodish8e_ch23_4.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_4_dlap.xml | 57335f7c757a2eec7e000001 |
Mechanical and Chemical Boundaries Form a First Layer of Defense Against Pathogens
| lodish8e_ch23_5.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_5_dlap.xml | 57335f7c757a2eec7e000001 |
Innate Immunity Provides a Second Line of Defense
| lodish8e_ch23_6.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_6_dlap.xml | 57335f7c757a2eec7e000001 |
Inflammation Is a Complex Response to Injury That Encompasses Both Innate and Adaptive Immunity
| lodish8e_ch23_7.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_7_dlap.xml | 57335f7c757a2eec7e000001 |
Adaptive Immunity, the Third Line of Defense, Exhibits Specificity
| lodish8e_ch23_8.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_8_dlap.xml | 57335f7c757a2eec7e000001 |
Key Concepts of Section 23.1 | lodish8e_ch23_9.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_9_dlap.xml | 57335f7c757a2eec7e000001 |
23.2 Immunoglobulins: Structure and Function
| lodish8e_ch23_10.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_10_dlap.xml | 57335f7c757a2eec7e000001 |
Immunoglobulins Have a Conserved Structure Consisting of Heavy and Light Chains
| lodish8e_ch23_11.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_11_dlap.xml | 57335f7c757a2eec7e000001 |
Multiple Immunoglobulin Isotypes Exist, Each with Different Functions
| lodish8e_ch23_12.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_12_dlap.xml | 57335f7c757a2eec7e000001 |
Each Naive B Cell Produces a Unique Immunoglobulin
| lodish8e_ch23_13.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_13_dlap.xml | 57335f7c757a2eec7e000001 |
Immunoglobulin Domains Have a Characteristic Fold Composed of Two β Sheets Stabilized by a Disulfide Bond
| lodish8e_ch23_14.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_14_dlap.xml | 57335f7c757a2eec7e000001 |
An Immunoglobulinâs Constant Region Determines Its Functional Properties
| lodish8e_ch23_15.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_15_dlap.xml | 57335f7c757a2eec7e000001 |
Key Concepts of Section 23.2 | lodish8e_ch23_16.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_16_dlap.xml | 57335f7c757a2eec7e000001 |
23.3 Generation of Antibody Diversity and B-Cell Development
| lodish8e_ch23_17.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_17_dlap.xml | 57335f7c757a2eec7e000001 |
A Functional Light-Chain Gene Requires Assembly of V and J Gene Segments
| lodish8e_ch23_18.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_18_dlap.xml | 57335f7c757a2eec7e000001 |
Rearrangement of the Heavy-Chain Locus Involves V, D, and J Gene Segments
| lodish8e_ch23_19.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_19_dlap.xml | 57335f7c757a2eec7e000001 |
Somatic Hypermutation Allows the Generation and Selection of Antibodies with Improved Affinities
| lodish8e_ch23_20.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_20_dlap.xml | 57335f7c757a2eec7e000001 |
B-Cell Development Requires Input from a Pre-B-Cell Receptor
| lodish8e_ch23_21.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_21_dlap.xml | 57335f7c757a2eec7e000001 |
During an Adaptive Response, B Cells Switch from Making Membrane-Bound Ig to Making Secreted Ig
| lodish8e_ch23_22.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_22_dlap.xml | 57335f7c757a2eec7e000001 |
B Cells Can Switch the Isotype of Immunoglobulin They Make
| lodish8e_ch23_23.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_23_dlap.xml | 57335f7c757a2eec7e000001 |
Key Concepts of Section 23.3 | lodish8e_ch23_24.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_24_dlap.xml | 57335f7c757a2eec7e000001 |
23.4 The MHC and Antigen Presentation
| lodish8e_ch23_25.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_25_dlap.xml | 57335f7c757a2eec7e000001 |
The MHC Determines the Ability of Two Unrelated Individuals of the Same Species to Accept or Reject Grafts
| lodish8e_ch23_26.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_26_dlap.xml | 57335f7c757a2eec7e000001 |
The Killing Activity of Cytotoxic T Cells Is Antigen Specific and MHC Restricted
| lodish8e_ch23_27.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_27_dlap.xml | 57335f7c757a2eec7e000001 |
T Cells with Different Functional Properties Are Guided by Two Distinct Classes of MHC Molecules
| lodish8e_ch23_28.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_28_dlap.xml | 57335f7c757a2eec7e000001 |
MHC Molecules Bind Peptide Antigens and Interact with the T-Cell Receptor
| lodish8e_ch23_29.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_29_dlap.xml | 57335f7c757a2eec7e000001 |
Antigen Presentation Is the Process by Which Protein Fragments Are Complexed with MHC Products and Posted to the Cell Surface
| lodish8e_ch23_30.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_30_dlap.xml | 57335f7c757a2eec7e000001 |
The Class I MHC Pathway Presents Cytosolic Antigens
| lodish8e_ch23_31.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_31_dlap.xml | 57335f7c757a2eec7e000001 |
The Class II MHC Pathway Presents Antigens Delivered to the Endocytic Pathway
| lodish8e_ch23_32.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_32_dlap.xml | 57335f7c757a2eec7e000001 |
Key Concepts of Section 23.4 | lodish8e_ch23_33.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_33_dlap.xml | 57335f7c757a2eec7e000001 |
23.5 T Cells, T-Cell Receptors, and T-Cell Development
| lodish8e_ch23_34.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_34_dlap.xml | 57335f7c757a2eec7e000001 |
The Structure of the T-Cell Receptor Resembles the F(ab) Portion of an Immunoglobulin
| lodish8e_ch23_35.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_35_dlap.xml | 57335f7c757a2eec7e000001 |
TCR Genes Are Rearranged in a Manner Similar to Immunoglobulin Genes
| lodish8e_ch23_36.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_36_dlap.xml | 57335f7c757a2eec7e000001 |
Many of the Variable Residues of TCRs Are Encoded in the Junctions Between V, D, and J Gene Segments
| lodish8e_ch23_37.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_37_dlap.xml | 57335f7c757a2eec7e000001 |
Signaling via Antigen-Specific Receptors Triggers Proliferation and Differentiation of T and B Cells
| lodish8e_ch23_38.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_38_dlap.xml | 57335f7c757a2eec7e000001 |
T Cells Capable of Recognizing MHC Molecules Develop Through a Process of Positive and Negative Selection
| lodish8e_ch23_39.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_39_dlap.xml | 57335f7c757a2eec7e000001 |
T Cells Commit to the CD4 or CD8 Lineage in the Thymus
| lodish8e_ch23_40.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_40_dlap.xml | 57335f7c757a2eec7e000001 |
T Cells Require Two Types of Signals for Full Activation
| lodish8e_ch23_41.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_41_dlap.xml | 57335f7c757a2eec7e000001 |
Cytotoxic T Cells Carry the CD8 Co-receptor and Are Specialized for Killing
| lodish8e_ch23_42.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_42_dlap.xml | 57335f7c757a2eec7e000001 |
T Cells Produce an Array of Cytokines That Provide Signals to Other Immune-System Cells
| lodish8e_ch23_43.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_43_dlap.xml | 57335f7c757a2eec7e000001 |
Helper T Cells Are Divided into Distinct Subsets Based on Their Cytokine Production and Expression of Surface Markers
| lodish8e_ch23_44.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_44_dlap.xml | 57335f7c757a2eec7e000001 |
Leukocytes Move in Response to Chemotactic Cues Provided by Chemokines
| lodish8e_ch23_45.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_45_dlap.xml | 57335f7c757a2eec7e000001 |
Key Concepts of Section 23.5 | lodish8e_ch23_46.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_46_dlap.xml | 57335f7c757a2eec7e000001 |
23.6 Collaboration of Immune-System Cells in the Adaptive Response
| lodish8e_ch23_47.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_47_dlap.xml | 57335f7c757a2eec7e000001 |
Toll-Like Receptors Perceive a Variety of Pathogen-Derived Macromolecular Patterns
| lodish8e_ch23_48.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_48_dlap.xml | 57335f7c757a2eec7e000001 |
Engagement of Toll-Like Receptors Leads to Activation of Antigen-Presenting Cells
| lodish8e_ch23_49.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_49_dlap.xml | 57335f7c757a2eec7e000001 |
Production of High-Affinity Antibodies Requires Collaboration Between B and T cells
| lodish8e_ch23_50.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_50_dlap.xml | 57335f7c757a2eec7e000001 |
Vaccines Elicit Protective Immunity Against a Variety of Pathogens
| lodish8e_ch23_51.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_51_dlap.xml | 57335f7c757a2eec7e000001 |
The Immune System Defends Against Cancer
| lodish8e_ch23_52.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_52_dlap.xml | 57335f7c757a2eec7e000001 |
Key Concepts of Section 23.6 | lodish8e_ch23_53.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_53_dlap.xml | 57335f7c757a2eec7e000001 |
Key Terms
| lodish8e_ch23_54.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_54_dlap.xml | 57335f7c757a2eec7e000001 |
Review the Concepts
| lodish8e_ch23_55.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_55_dlap.xml | 57335f7c757a2eec7e000001 |
Extended References
| lodish8e_ch23_56.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_56_dlap.xml | 57335f7c757a2eec7e000001 |
Perspectives for the Future
| lodish8e_ch23_57.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_57_dlap.xml | 57335f7c757a2eec7e000001 |
Classic Experiment 23-1: Two Genes Become One: Somatic Recombination of Immunoglobulin Genes | lodish8e_ch23_58.html | 57335f7c757a2eec7e000001 |
DLAP questions | lodish8e_ch23_58_dlap.xml | 57335f7c757a2eec7e000001 |
Classic Experiment 24-1: Identification of the RAS Oncogene | lodish8e_ch24_1.html | 57335fb8757a2ee27e000001 |
DLAP questions | lodish8e_ch24_1_dlap.xml | 57335fb8757a2ee27e000001 |
24.1 How Tumor Cells Differ from Normal Cells
| lodish8e_ch24_2.html | 57335fb8757a2ee27e000001 |
DLAP questions | lodish8e_ch24_2_dlap.xml | 57335fb8757a2ee27e000001 |
The Genetic Makeup of Most Cancer Cells Is Dramatically Altered
| lodish8e_ch24_3.html | 57335fb8757a2ee27e000001 |
DLAP questions | lodish8e_ch24_3_dlap.xml | 57335fb8757a2ee27e000001 |
Cellular Housekeeping Functions Are Fundamentally Altered in Cancer Cells
| lodish8e_ch24_4.html | 57335fb8757a2ee27e000001 |
DLAP questions | lodish8e_ch24_4_dlap.xml | 57335fb8757a2ee27e000001 |
Uncontrolled Proliferation Is a Universal Trait of Cancer
| lodish8e_ch24_5.html | 57335fb8757a2ee27e000001 |
DLAP questions | lodish8e_ch24_5_dlap.xml | 57335fb8757a2ee27e000001 |
Cancer Cells Escape the Confines of Tissues
| lodish8e_ch24_6.html | 57335fb8757a2ee27e000001 |
DLAP questions | lodish8e_ch24_6_dlap.xml | 57335fb8757a2ee27e000001 |
Tumors Are Heterogeneous Organs That Are Sculpted by Their Environment
| lodish8e_ch24_7.html | 57335fb8757a2ee27e000001 |
DLAP questions | lodish8e_ch24_7_dlap.xml | 57335fb8757a2ee27e000001 |
Tumor Growth Requires Formation of New Blood Vessels
| lodish8e_ch24_8.html | 57335fb8757a2ee27e000001 |
DLAP questions | lodish8e_ch24_8_dlap.xml | 57335fb8757a2ee27e000001 |
Invasion and Metastasis Are Late Stages of Tumorigenesis
| lodish8e_ch24_9.html | 57335fb8757a2ee27e000001 |
DLAP questions | lodish8e_ch24_9_dlap.xml | 57335fb8757a2ee27e000001 |
Key Concepts of Section 24.1 | lodish8e_ch24_10.html | 57335fb8757a2ee27e000001 |
DLAP questions | lodish8e_ch24_10_dlap.xml | 57335fb8757a2ee27e000001 |
24.2 The Origins and Development of Cancer
| lodish8e_ch24_11.html | 57335fb8757a2ee27e000001 |
DLAP questions | lodish8e_ch24_11_dlap.xml | 57335fb8757a2ee27e000001 |
Carcinogens Induce Cancer by Damaging DNA
| lodish8e_ch24_12.html | 57335fb8757a2ee27e000001 |
DLAP questions | lodish8e_ch24_12_dlap.xml | 57335fb8757a2ee27e000001 |
Some Carcinogens Have Been Linked to Specific Cancers
| lodish8e_ch24_13.html | 57335fb8757a2ee27e000001 |
DLAP questions | lodish8e_ch24_13_dlap.xml | 57335fb8757a2ee27e000001 |
The Multi-hit Model Can Explain the Progress of Cancer
| lodish8e_ch24_14.html | 57335fb8757a2ee27e000001 |
DLAP questions | lodish8e_ch24_14_dlap.xml | 57335fb8757a2ee27e000001 |
Successive Oncogenic Mutations Can Be Traced in Colon Cancers
| lodish8e_ch24_15.html | 57335fb8757a2ee27e000001 |
DLAP questions | lodish8e_ch24_15_dlap.xml | 57335fb8757a2ee27e000001 |
Cancer Development Can Be Studied in Cultured Cells and in Animal Models
| lodish8e_ch24_16.html | 57335fb8757a2ee27e000001 |
DLAP questions | lodish8e_ch24_16_dlap.xml | 57335fb8757a2ee27e000001 |
Key Concepts of Section 24.2 | lodish8e_ch24_17.html | 57335fb8757a2ee27e000001 |
DLAP questions | lodish8e_ch24_17_dlap.xml | 57335fb8757a2ee27e000001 |
24.3 The Genetic Basis of Cancer
| lodish8e_ch24_18.html | 57335fb8757a2ee27e000001 |
DLAP questions | lodish8e_ch24_18_dlap.xml | 57335fb8757a2ee27e000001 |
Gain-of-Function Mutations Convert Proto-oncogenes into Oncogenes
| lodish8e_ch24_19.html | 57335fb8757a2ee27e000001 |
DLAP questions | lodish8e_ch24_19_dlap.xml | 57335fb8757a2ee27e000001 |
Cancer-Causing Viruses Contain Oncogenes or Activate Cellular Proto-oncogenes
| lodish8e_ch24_20.html | 57335fb8757a2ee27e000001 |
DLAP questions | lodish8e_ch24_20_dlap.xml | 57335fb8757a2ee27e000001 |
Loss-of-Function Mutations in Tumor-Suppressor Genes Are Oncogenic
| lodish8e_ch24_21.html | 57335fb8757a2ee27e000001 |
DLAP questions | lodish8e_ch24_21_dlap.xml | 57335fb8757a2ee27e000001 |
Inherited Mutations in Tumor-Suppressor Genes Increase Cancer Risk
| lodish8e_ch24_22.html | 57335fb8757a2ee27e000001 |
DLAP questions | lodish8e_ch24_22_dlap.xml | 57335fb8757a2ee27e000001 |
Epigenetic Changes Can Contribute to Tumorigenesis
| lodish8e_ch24_23.html | 57335fb8757a2ee27e000001 |
DLAP questions | lodish8e_ch24_23_dlap.xml | 57335fb8757a2ee27e000001 |
Micro-RNAs Can Promote and Inhibit Tumorigenesis
| lodish8e_ch24_24.html | 57335fb8757a2ee27e000001 |
DLAP questions | lodish8e_ch24_24_dlap.xml | 57335fb8757a2ee27e000001 |
Researchers Are Identifying Drivers of Tumorigenesis
| lodish8e_ch24_25.html | 57335fb8757a2ee27e000001 |
DLAP questions | lodish8e_ch24_25_dlap.xml | 57335fb8757a2ee27e000001 |
Molecular Cell Biology Is Changing How Cancer Is Diagnosed and Treated
| lodish8e_ch24_26.html | 57335fb8757a2ee27e000001 |
DLAP questions | lodish8e_ch24_26_dlap.xml | 57335fb8757a2ee27e000001 |
Key Concepts of Section 24.3 | lodish8e_ch24_27.html | 57335fb8757a2ee27e000001 |
DLAP questions | lodish8e_ch24_27_dlap.xml | 57335fb8757a2ee27e000001 |
24.4 Misregulation of Cell Growth and Death Pathways in Cancer
| lodish8e_ch24_28.html | 57335fb8757a2ee27e000001 |
DLAP questions | lodish8e_ch24_28_dlap.xml | 57335fb8757a2ee27e000001 |
Oncogenic Receptors Can Promote Proliferation in the Absence of External Growth Factors
| lodish8e_ch24_29.html | 57335fb8757a2ee27e000001 |
DLAP questions | lodish8e_ch24_29_dlap.xml | 57335fb8757a2ee27e000001 |
Many Oncogenes Encode Constitutively Active Signal-Transducing Proteins
| lodish8e_ch24_30.html | 57335fb8757a2ee27e000001 |
DLAP questions | lodish8e_ch24_30_dlap.xml | 57335fb8757a2ee27e000001 |
Inappropriate Production of Nuclear Transcription Factors Can Induce Transformation
| lodish8e_ch24_31.html | 57335fb8757a2ee27e000001 |
DLAP questions | lodish8e_ch24_31_dlap.xml | 57335fb8757a2ee27e000001 |
Aberrations in Signaling Pathways That Control Development Are Associated with Many Cancers
| lodish8e_ch24_32.html | 57335fb8757a2ee27e000001 |
DLAP questions | lodish8e_ch24_32_dlap.xml | 57335fb8757a2ee27e000001 |
Genes That Regulate Apoptosis Can Function as Proto-oncogenes or Tumor-Suppressor Genes
| lodish8e_ch24_33.html | 57335fb8757a2ee27e000001 |
DLAP questions | lodish8e_ch24_33_dlap.xml | 57335fb8757a2ee27e000001 |
Key Concepts of Section 24.4 | lodish8e_ch24_34.html | 57335fb8757a2ee27e000001 |
DLAP questions | lodish8e_ch24_34_dlap.xml | 57335fb8757a2ee27e000001 |
24.5 Deregulation of the Cell Cycle and Genome Maintenance Pathways in Cancer
| lodish8e_ch24_35.html | 57335fb8757a2ee27e000001 |
DLAP questions | lodish8e_ch24_35_dlap.xml | 57335fb8757a2ee27e000001 |
Mutations That Promote Unregulated Passage from G1 to S Phase Are Oncogenic
| lodish8e_ch24_36.html | 57335fb8757a2ee27e000001 |
DLAP questions | lodish8e_ch24_36_dlap.xml | 57335fb8757a2ee27e000001 |
Loss of p53 Abolishes the DNA Damage Checkpoint
| lodish8e_ch24_37.html | 57335fb8757a2ee27e000001 |
DLAP questions | lodish8e_ch24_37_dlap.xml | 57335fb8757a2ee27e000001 |
Loss of DNA-Repair Systems Can Lead to Cancer
| lodish8e_ch24_38.html | 57335fb8757a2ee27e000001 |
DLAP questions | lodish8e_ch24_38_dlap.xml | 57335fb8757a2ee27e000001 |
Key Concepts of Section 24.5 | lodish8e_ch24_39.html | 57335fb8757a2ee27e000001 |
DLAP questions | lodish8e_ch24_39_dlap.xml | 57335fb8757a2ee27e000001 |
Key Terms
| lodish8e_ch24_40.html | 57335fb8757a2ee27e000001 |
DLAP questions | lodish8e_ch24_40_dlap.xml | 57335fb8757a2ee27e000001 |
Review the Concepts
| lodish8e_ch24_41.html | 57335fb8757a2ee27e000001 |
DLAP questions | lodish8e_ch24_41_dlap.xml | 57335fb8757a2ee27e000001 |
References
| lodish8e_ch24_42.html | 57335fb8757a2ee27e000001 |
DLAP questions | lodish8e_ch24_42_dlap.xml | 57335fb8757a2ee27e000001 |
Perspectives for the Future
| lodish8e_ch24_43.html | 57335fb8757a2ee27e000001 |
DLAP questions | lodish8e_ch24_43_dlap.xml | 57335fb8757a2ee27e000001 |
[Unknown Title] | lodish8e_ch24_44.html | 57335fb8757a2ee27e000001 |
DLAP questions | lodish8e_ch24_44_dlap.xml | 57335fb8757a2ee27e000001 |
Glossary - A | lodish8e_ch201_1.html | 5758c5ab757a2e0305000000 |
DLAP questions | lodish8e_ch201_1_dlap.xml | 5758c5ab757a2e0305000000 |
Glossary - B | lodish8e_ch201_2.html | 5758c5ab757a2e0305000000 |
DLAP questions | lodish8e_ch201_2_dlap.xml | 5758c5ab757a2e0305000000 |
Glossary - C | lodish8e_ch201_3.html | 5758c5ab757a2e0305000000 |
DLAP questions | lodish8e_ch201_3_dlap.xml | 5758c5ab757a2e0305000000 |
Glossary - D | lodish8e_ch201_4.html | 5758c5ab757a2e0305000000 |
DLAP questions | lodish8e_ch201_4_dlap.xml | 5758c5ab757a2e0305000000 |
Glossary - E | lodish8e_ch201_5.html | 5758c5ab757a2e0305000000 |
DLAP questions | lodish8e_ch201_5_dlap.xml | 5758c5ab757a2e0305000000 |
Glossary - F | lodish8e_ch201_6.html | 5758c5ab757a2e0305000000 |
DLAP questions | lodish8e_ch201_6_dlap.xml | 5758c5ab757a2e0305000000 |
Glossary - G | lodish8e_ch201_7.html | 5758c5ab757a2e0305000000 |
DLAP questions | lodish8e_ch201_7_dlap.xml | 5758c5ab757a2e0305000000 |
Glossary - H | lodish8e_ch201_8.html | 5758c5ab757a2e0305000000 |
DLAP questions | lodish8e_ch201_8_dlap.xml | 5758c5ab757a2e0305000000 |
Glossary - I | lodish8e_ch201_9.html | 5758c5ab757a2e0305000000 |
DLAP questions | lodish8e_ch201_9_dlap.xml | 5758c5ab757a2e0305000000 |
Glossary - J | lodish8e_ch201_10.html | 5758c5ab757a2e0305000000 |
DLAP questions | lodish8e_ch201_10_dlap.xml | 5758c5ab757a2e0305000000 |
Glossary - K | lodish8e_ch201_11.html | 5758c5ab757a2e0305000000 |
DLAP questions | lodish8e_ch201_11_dlap.xml | 5758c5ab757a2e0305000000 |
Glossary - L | lodish8e_ch201_12.html | 5758c5ab757a2e0305000000 |
DLAP questions | lodish8e_ch201_12_dlap.xml | 5758c5ab757a2e0305000000 |
Glossary - M | lodish8e_ch201_13.html | 5758c5ab757a2e0305000000 |
DLAP questions | lodish8e_ch201_13_dlap.xml | 5758c5ab757a2e0305000000 |
Glossary - N | lodish8e_ch201_14.html | 5758c5ab757a2e0305000000 |
DLAP questions | lodish8e_ch201_14_dlap.xml | 5758c5ab757a2e0305000000 |
Glossary - O | lodish8e_ch201_15.html | 5758c5ab757a2e0305000000 |
DLAP questions | lodish8e_ch201_15_dlap.xml | 5758c5ab757a2e0305000000 |
Glossary - P | lodish8e_ch201_16.html | 5758c5ab757a2e0305000000 |
DLAP questions | lodish8e_ch201_16_dlap.xml | 5758c5ab757a2e0305000000 |
Glossary - Q | lodish8e_ch201_17.html | 5758c5ab757a2e0305000000 |
DLAP questions | lodish8e_ch201_17_dlap.xml | 5758c5ab757a2e0305000000 |
Glossary - R | lodish8e_ch201_18.html | 5758c5ab757a2e0305000000 |
DLAP questions | lodish8e_ch201_18_dlap.xml | 5758c5ab757a2e0305000000 |
Glossary - S | lodish8e_ch201_19.html | 5758c5ab757a2e0305000000 |
DLAP questions | lodish8e_ch201_19_dlap.xml | 5758c5ab757a2e0305000000 |
Glossary - T | lodish8e_ch201_20.html | 5758c5ab757a2e0305000000 |
DLAP questions | lodish8e_ch201_20_dlap.xml | 5758c5ab757a2e0305000000 |
Glossary - U | lodish8e_ch201_21.html | 5758c5ab757a2e0305000000 |
DLAP questions | lodish8e_ch201_21_dlap.xml | 5758c5ab757a2e0305000000 |
Glossary - V | lodish8e_ch201_22.html | 5758c5ab757a2e0305000000 |
DLAP questions | lodish8e_ch201_22_dlap.xml | 5758c5ab757a2e0305000000 |
Glossary - W | lodish8e_ch201_23.html | 5758c5ab757a2e0305000000 |
DLAP questions | lodish8e_ch201_23_dlap.xml | 5758c5ab757a2e0305000000 |
Glossary - X, Y, Z | lodish8e_ch201_24.html | 5758c5ab757a2e0305000000 |
DLAP questions | lodish8e_ch201_24_dlap.xml | 5758c5ab757a2e0305000000 |
Index - A | lodish8e_ch202_1.html | 5758d2c9757a2ebe07000000 |
DLAP questions | lodish8e_ch202_1_dlap.xml | 5758d2c9757a2ebe07000000 |
Index - B | lodish8e_ch202_2.html | 5758d2c9757a2ebe07000000 |
DLAP questions | lodish8e_ch202_2_dlap.xml | 5758d2c9757a2ebe07000000 |
Index - C | lodish8e_ch202_3.html | 5758d2c9757a2ebe07000000 |
DLAP questions | lodish8e_ch202_3_dlap.xml | 5758d2c9757a2ebe07000000 |
Index - D | lodish8e_ch202_4.html | 5758d2c9757a2ebe07000000 |
DLAP questions | lodish8e_ch202_4_dlap.xml | 5758d2c9757a2ebe07000000 |
Index - E | lodish8e_ch202_5.html | 5758d2c9757a2ebe07000000 |
DLAP questions | lodish8e_ch202_5_dlap.xml | 5758d2c9757a2ebe07000000 |
Index - F | lodish8e_ch202_6.html | 5758d2c9757a2ebe07000000 |
DLAP questions | lodish8e_ch202_6_dlap.xml | 5758d2c9757a2ebe07000000 |
Index - G | lodish8e_ch202_7.html | 5758d2c9757a2ebe07000000 |
DLAP questions | lodish8e_ch202_7_dlap.xml | 5758d2c9757a2ebe07000000 |
Index - H | lodish8e_ch202_8.html | 5758d2c9757a2ebe07000000 |
DLAP questions | lodish8e_ch202_8_dlap.xml | 5758d2c9757a2ebe07000000 |
Index - I | lodish8e_ch202_9.html | 5758d2c9757a2ebe07000000 |
DLAP questions | lodish8e_ch202_9_dlap.xml | 5758d2c9757a2ebe07000000 |
Index - J | lodish8e_ch202_10.html | 5758d2c9757a2ebe07000000 |
DLAP questions | lodish8e_ch202_10_dlap.xml | 5758d2c9757a2ebe07000000 |
Index - K | lodish8e_ch202_11.html | 5758d2c9757a2ebe07000000 |
DLAP questions | lodish8e_ch202_11_dlap.xml | 5758d2c9757a2ebe07000000 |
Index - L | lodish8e_ch202_12.html | 5758d2c9757a2ebe07000000 |
DLAP questions | lodish8e_ch202_12_dlap.xml | 5758d2c9757a2ebe07000000 |
Index - M | lodish8e_ch202_13.html | 5758d2c9757a2ebe07000000 |
DLAP questions | lodish8e_ch202_13_dlap.xml | 5758d2c9757a2ebe07000000 |
Index - N | lodish8e_ch202_14.html | 5758d2c9757a2ebe07000000 |
DLAP questions | lodish8e_ch202_14_dlap.xml | 5758d2c9757a2ebe07000000 |
Index - O | lodish8e_ch202_15.html | 5758d2c9757a2ebe07000000 |
DLAP questions | lodish8e_ch202_15_dlap.xml | 5758d2c9757a2ebe07000000 |
Index - P | lodish8e_ch202_16.html | 5758d2c9757a2ebe07000000 |
DLAP questions | lodish8e_ch202_16_dlap.xml | 5758d2c9757a2ebe07000000 |
Index - Q | lodish8e_ch202_17.html | 5758d2c9757a2ebe07000000 |
DLAP questions | lodish8e_ch202_17_dlap.xml | 5758d2c9757a2ebe07000000 |
Index - R | lodish8e_ch202_18.html | 5758d2c9757a2ebe07000000 |
DLAP questions | lodish8e_ch202_18_dlap.xml | 5758d2c9757a2ebe07000000 |
Index - S | lodish8e_ch202_19.html | 5758d2c9757a2ebe07000000 |
DLAP questions | lodish8e_ch202_19_dlap.xml | 5758d2c9757a2ebe07000000 |
Index - T | lodish8e_ch202_20.html | 5758d2c9757a2ebe07000000 |
DLAP questions | lodish8e_ch202_20_dlap.xml | 5758d2c9757a2ebe07000000 |
Index - U | lodish8e_ch202_21.html | 5758d2c9757a2ebe07000000 |
DLAP questions | lodish8e_ch202_21_dlap.xml | 5758d2c9757a2ebe07000000 |
Index - V | lodish8e_ch202_22.html | 5758d2c9757a2ebe07000000 |
DLAP questions | lodish8e_ch202_22_dlap.xml | 5758d2c9757a2ebe07000000 |
Index - W | lodish8e_ch202_23.html | 5758d2c9757a2ebe07000000 |
DLAP questions | lodish8e_ch202_23_dlap.xml | 5758d2c9757a2ebe07000000 |
Index - X, Y, Z | lodish8e_ch202_24.html | 5758d2c9757a2ebe07000000 |
DLAP questions | lodish8e_ch202_24_dlap.xml | 5758d2c9757a2ebe07000000 |
About the Authors
| lodish8e_ch101_1.html | 5759af77757a2e6214000000 |
DLAP questions | lodish8e_ch101_1_dlap.xml | 5759af77757a2e6214000000 |
Molecular Cell Biology, Eighth Edition | lodish8e_ch101_2.html | 5759af77757a2e6214000000 |
DLAP questions | lodish8e_ch101_2_dlap.xml | 5759af77757a2e6214000000 |
Preface
| lodish8e_ch101_3.html | 5759af77757a2e6214000000 |
DLAP questions | lodish8e_ch101_3_dlap.xml | 5759af77757a2e6214000000 |
Media and Supplements
| lodish8e_ch101_4.html | 5759af77757a2e6214000000 |
DLAP questions | lodish8e_ch101_4_dlap.xml | 5759af77757a2e6214000000 |
ACKNOWLEDGMENTS
| lodish8e_ch101_5.html | 5759af77757a2e6214000000 |
DLAP questions | lodish8e_ch101_5_dlap.xml | 5759af77757a2e6214000000 |